<u>High-Volume TSP Sampler</u> <u>5-Point Calibration Record</u>

Location:AM1(ICC)Calibrated by:K.T.HoDate:04/05/2025

<u>Sampler</u>

Model : TE-5170 Serial Number : S/N 0767

Calibration Orifice and Standard Calibration Relationship

Serial Number : 2454

Next Calibration Date : 02 December 2025

 Slope (m)
 : 2.08315

 Intercept (b)
 : -0.04938

 Correlation Coefficient(r)
 : 0.99985

Standard Condition

Pstd (hpa) : 1013 Tstd (K) : 298.18

Calibration Condition

Pa (hpa) : 1010 Ta(K) : 301

Resi	istance Plate	dH [green liquid]	Z	X=Qstd	IC	Y
		(inch water)		(cubic meter/min)	(chart)	(corrected)
1	18 holes	10.2	3.173	1.547	58	57.63
2	13 holes	7.5	2.721	1.330	50	49.68
3	10 holes	5.6	2.351	1.152	42	41.73
4	7 holes	3.8	1.937	0.954	34	33.78
5	5 holes	2.6	1.602	0.793	24	23.85

Notes:Z=SQRT{dH(Pa/Pstd)(Tstd/Ta)}, X=Z/m-b, Y(Corrected Flow)=IC*{SQRT(Pa/Pstd)(Tstd/Ta)}

Sampler Calibration Relationship

Slope(m): $\underline{44.098}$ Intercept(b): $\underline{-9.6053}$ Correlation Coefficient(r): $\underline{0.9959}$

Checked by: _____ Date: <u>06/05/2025</u>

Magnum Fan

<u>High-Volume TSP Sampler</u> <u>5-Point Calibration Record</u>

 Location
 : AM1(ICC)

 Calibrated by
 : K.T.Ho

 Date
 : 04/07/2025

Sampler

 Model
 :
 TE-5170

 Serial Number
 :
 S/N 0767

Calibration Orifice and Standard Calibration Relationship

Serial Number : 2454

Next Calibration Date : 02 December 2025

 Slope (m)
 : 2.08315

 Intercept (b)
 : -0.04938

 Correlation Coefficient(r)
 : 0.99985

Standard Condition

Pstd (hpa) : 1013 Tstd (K) : 298.18

Calibration Condition

Pa (hpa) : 1005 Ta(K) : 305.5

Resi	istance Plate	dH [green liquid]	Z	X=Qstd	IC	Y
		(inch water)		(cubic meter/min)	(chart)	(corrected)
1	18 holes	12.4	3.465	1.687	64	62.97
2	13 holes	9.0	2.952	1.441	54	53.13
3	10 holes	6.6	2.528	1.237	42	41.32
4	7 holes	4.2	2.016	0.992	32	31.48
5	5 holes	2.8	1.646	0.814	20	19.68

Notes:Z=SQRT{dH(Pa/Pstd)(Tstd/Ta)}, X=Z/m-b, Y(Corrected Flow)=IC*{SQRT(Pa/Pstd)(Tstd/Ta)}

Sampler Calibration Relationship

Checked by: Date: 07/07/2025

Magnum Fan

RECALIBRATION **DUE DATE:**

December 2, 2025

Pertificate of

Calibration Certification Information

Cal. Date: December 2, 2024

Rootsmeter S/N: 438320

Ta: 293

°K

Operator: Jim Tisch Pa: 757.4

mm Hg

Calibration Model #: TE-5025A

Calibrator S/N: 2454

Run	Vol. Init (m3)	Vol. Final (m3)	ΔVol. (m3)	ΔTime (min)	ΔP (mm Hg)	ΔH (in H2O)
1	1	2	1	1.4200	3.2	2.00
2	3	4	1	1.0170	6.4	4.00
3	5	6	1	0.9090	7.9	5.00
4	7	8	1	0.8700	8.8	5.50
5	9	10	1	0.7140	12.8	8.00

	Data Tabulation							
Vstd	Qstd	$\sqrt{\Delta H(\frac{Pa}{Pstd})(\frac{Tstd}{Ta})}$		Qa	√∆H(Ta/Pa)			
(m3)	(x-axis)	(y-axis)	Va	(x-axis)	(y-axis)			
1.0093	0.7108	1.4238	0.9958	0.7013	0.8796			
1.0051	0.9883	2.0136	0.9916	0.9750	1.2439			
1.0031	1.1035	2.2512	0.9896	1.0886	1.3907			
1.0018	1.1515	2.3611	0.9884	1.1361	1.4586			
0.9965	1.3956	2.8476	0.9831	1.3769	1.7592			
	m=	2.08315		m=	1.30443			
QSTD	b=	-0.04938	QA	b=	-0.03050			
	r=	0.99985		r=	0.99985			

	Calculation	ns	
Vstd=	ΔVol((Pa-ΔP)/Pstd)(Tstd/Ta)	Va=	ΔVol((Pa-ΔP)/Pa)
Qstd= Vstd/ΔTime		Qa= Va/ΔTime	
	For subsequent flow ra	te calculatio	ns:
Qstd=	$1/m\left(\left(\sqrt{\Delta H\left(\frac{Pa}{Pstd}\right)\left(\frac{Tstd}{Ta}\right)}\right)-b\right)$	Qa=	$1/m\left(\left(\sqrt{\Delta H(Ta/Pa)}\right)-b\right)$

	Standard Conditions	
Tstd:	298.15 °K	
Pstd:	760 mm Hg	
	Key	
ΔH: calibrator	manometer reading (in H2O)	
ΔP: rootsmete	er manometer reading (mm Hg)	
Ta: actual abs	olute temperature (°K)	
Pa: actual bar	ometric pressure (mm Hg)	
b: intercept		
m: slope		

RECALIBRATION

US EPA recommends annual recalibration per 1998 40 Code of Federal Regulations Part 50 to 51, Appendix B to Part 50, Reference Method for the Determination of Suspended Particulate Matter in the Atmosphere, 9.2.17, page 30

Tisch Environmental, Inc. 145 South Miami Avenue Village of Cleves, OH 45002 www.tisch-env.com

TOLL FREE: (877)263-7610

FAX: (513)467-9009

ALS Technichem (HK) Pty Ltd

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

SUB-CONTRACTING REPORT

CONTACT : MR MAGNUM FAN WORK ORDER : HK2502565

CLIENT : ENVIROTECH SERVICES CO.

ADDRESS : RM 712, 7/F, MY LOFT 9 HOI WING ROAD, SUB-BATCH : 1

TUEN MUN, N.T. HK

DATE RECEIVED : 15-JAN-2025

DATE OF ISSUE : 21-JAN-2025

PROJECT : ---- NO. OF SAMPLES : 1

CLIENT ORDER :--

General Comments

• Sample information (Project name, Sample ID, Sampling date/time, etc.) is provided by client.

- Result(s) of sample(s) is/are reported on as received basis, unless otherwise specified. The result(s) is/are related only to the
 item(s) tested.
- Sample(s) was/ were submitted by client. Sample(s) arrived laboratory in ambient condition.
- Calibration was subcontracted to Envirotech Services Company.

Signatories

This document has been signed by those names that appear on this report and are the authorised signatories

Signatories Position

Richard Fung

Fung Managing Director

This report supersedes any previous report(s) with the same work order number.

All pages of this report have been checked and approved for release.

: HK2502565 WORK ORDER

SUB-BATCH

: 1 : ENVIROTECH SERVICES CO. CLIENT

PROJECT

ALS Lab	Client's Sample ID	Sample Type	Sample Date	External Lab Report No.
HK2502565-001	Sibata LD-5R (831656)	Equipments	02-Jan-2025	S/N: 831656

----- END OF REPORT -----

 $\mathsf{Page}: 2 \ \mathsf{of} \ 2$

Envirotech Services Co.

Rm. 712, 7/F My Loft, 9 Hoi Wing Road, Tuen Mun, H.K. Tel: 2560 8450 Fax: 2560 6553

Equipment Verification Report (TSP)

Equipment Calibrated:

Type:

Laser Dust Monitor

Manufacturer:

Sibata LD-5R

Serial No.:

831656

Equipment Ref.:

N/A

ALS Job Order:

HK2500343

Standard Equipment

Standard Equipment:

High Volume Sampler (TSP)

Location:

Envirotech Room (Calibration Room)

Equipment Ref.:

HVS 8162

Last Calibration Date:

1-Jan-2025

Equipment Verification Results:

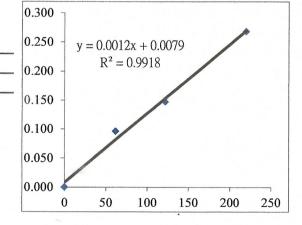
Verification Date:

2-Jan-2025

		Mean	Mean	TSP Level in mg	Total Count
Hour	Time	Temp°C	Pressure	(Standard Equipment)	(Calibrated Equipment)
			(hpa)	(Y-Axis)	(X-Axis)
1hr 00mins	0900-1000	16.1	1023	0.096	62
2hr 00mins	1005-1205	20.5	1022	0.147	122
3hr 00mins	1330-1630	21.0	1022	0.268	220

Linear Regression of Y or X

Slope (K-factor):


0.0012(mg)/Count

Correlation Coefficient (R):

0.9959

Date of Issue:

15-Jan-2025

Remarks:

- 1. Strong Correlation (>0.8)
- 2. Factor <u>0.0012(mg)/Count</u> should be applied for TSP monitoring

Operator:

P.F.Yeung

Signature

Date: 15 Jan 2025

QC Reviewer:

K.F.Ho

Signature

Date: 15 Jan 2025

^{*}If R<0.5, repair or verification is required for the equipment

TSP SAMPLER CALIBRATION CACULATION SPREADSHEET

Location: Rm. 712, My Loft, Tuen Mun Date of Calibration: 1-Jan-25
HVS ID: 8162 Next Calibration Date: 31-Mar-25

CONDITIONS

Sea Level Pressure (hpa) 1023
Temperature (°C) 15.8

Name and Model: TISCH HVS Model TE-5170

Corrected Pressure (mm Hg) 767.3 Temperature (K) 288.8

CALIBRATION ORIFICE

Make: Model:

Serial#:

TISCH TE-5025A 2454 Qstd Slope Ostd Intercept

Operator:

2.08315 -0.04938

K.F.Ho

CALIBRATION

- 8								
-	Plate	H2O(L)	H20(R)	H2O	Qstd	I	IC	LINEAR
	No.	(in)	(in)	(in)	(m3/min)	(chart)	(corrected)	REGRESSION
	18	6.4	6.4	12.8	1.777	62	63.30	Slope= 35.208
	13	5.3	5.3	10.6	1.619	56	57.17	Intercept= -0.0015
100000000000000000000000000000000000000	10	4.2	4.2	8.4	1.444	48	49.00	Corr. Coeff.= 0.9959
	7	2.7	2.7	5.4	1.163	41	41.86	chekeling A-weighted equivalent continue
	5	1.7	1.7	3.4	0.927	32	32.67	nevel of Leg(30min), L19(30min) and Lee

Calulations:

Qstd = 1/m[Sqrt(H2O(Pa/Pstd)(Tstd/Ta))-b]

IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Ostd = standard flow rate

IC = corrected chart response

I = actual chart response

m = calibrator Qstd slope

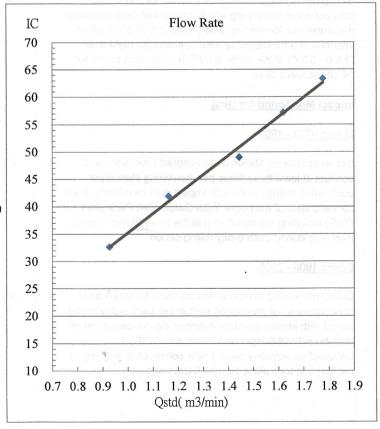
b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K)

Pa = actual pressure during calibration (mm Hg)

For subsequent calculation of sampler flow:

1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)


m = sampler slope

b = sampler intercept

I = chart response

Tav = daily average temperature

Pav = daily average pressure

RECALIBRATION DUE DATE:

December 2, 2025

Certificate of Calibration

Calibration Certification Information

Cal. Date: December 2, 2024

Rootsmeter S/N: 438320

Ta: 293

°K

Operator: Jim Tisch

......

Pa: 757.4

mm Hg

Calibration Model #:

TE-5025A

Calibrator S/N: 2454

Run	Vol. Init (m3)	Vol. Final (m3)	ΔVol. (m3)	ΔTime (min)	ΔP (mm Hg)	ΔH (in H2O)
1	1	2	1	1.4200	3.2	2.00
2	3	4	1	1.0170	6.4	4.00
3	5	6	1	0.9090	7.9	5.00
4	7	8	1	0.8700	8.8	5.50
5	9	10	1	0.7140	12.8	8.00

	Data Tabulation							
Vstd	Qstd	$\sqrt{\Delta H \left(\frac{Pa}{Pstd}\right) \left(\frac{Tstd}{Ta}\right)}$		Qa	√∆H(Ta/Pa)			
(m3)	(x-axis)	(y-axis)	Va	(x-axis)	(y-axis)			
1.0093	0.7108	1.4238	0.9958	0.7013	0.8796			
1.0051	0.9883	2.0136	0.9916	0.9750	1.2439			
1.0031	1.1035	2.2512	0.9896	1.0886	1.3907			
1.0018	1.1515	2.3611	0.9884	1.1361	1.4586			
0.9965	1.3956	2.8476	0.9831	1.3769	1.7592			
	m=	2.08315		m=	1.30443			
QSTD	b=	-0.04938	QA	b=	-0.03050			
QJID	r=	0.99985		r=	0.99985			

	Calculations		
Vstd=	ΔVol((Pa-ΔP)/Pstd)(Tstd/Ta)	Va=	ΔVol((Pa-ΔP)/Pa)
	Vstd/ΔTime	Qa=	Va/ΔTime
	For subsequent flow rate	calculatio	ns:
Qstd=	$1/m\left(\left(\sqrt{\Delta H\left(\frac{Pa}{Pstd}\right)\left(\frac{Tstd}{Ta}\right)}\right)-b\right)$	Qa=	$1/m\left(\left(\sqrt{\Delta H\left(Ta/Pa\right)}\right)-b\right)$

	Standard Conditions
Tstd:	298.15 °K
Pstd:	760 mm Hg
	Key
ΔH: calibrator	manometer reading (in H2O)
ΔP: rootsmete	er manometer reading (mm Hg)
	olute temperature (°K)
Pa: actual bar	ometric pressure (mm Hg)
b: intercept	
m: slope	

RECALIBRATION

US EPA recommends annual recalibration per 1998 40 Code of Federal Regulations Part 50 to 51, Appendix B to Part 50, Reference Method for the Determination of Suspended Particulate Matter in the Atmosphere, 9.2.17, page 30

Tisch Environmental, Inc. 145 South Miami Avenue Village of Cleves, OH 45002 www.tisch-env.com

TOLL FREE: (877)263-7610

FAX: (513)467-9009

ALS Technichem (HK) Pty Ltd

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

SUB-CONTRACTING REPORT

CONTACT

: MR MAGNUM FAN

WORK ORDER

HK2500019

CLIENT

: ENVIROTECH SERVICES CO.

ADDRESS

PROJECT

: RM 712, 7/F, MY LOFT 9 HOI WING ROAD,

TUEN MUN, N.T. HK

SUB-BATCH

: 1

DATE RECEIVED : 16-DEC-2024

DATE OF ISSUE : 8-JAN-2025

NO. OF SAMPLES : 1

CLIENT ORDER

General Comments

Sample information (Project name, Sample ID, Sampling date/time, etc.) is provided by client.

- Result(s) of sample(s) is/are reported on as received basis, unless otherwise specified. The result(s) is/are related only to the item(s) tested.
- Sample(s) was/ were submitted by client. Sample(s) arrived laboratory in ambient condition.
- Calibration was subcontracted to Envirotech Services Company.

Signatories

This document has been signed by those names that appear on this report and are the authorised signatories

Signatories

Position

Richard Jung

Richard Fung

Managing Director

1

WORK ORDER

: HK2500019

SUB-BATCH

CLIENT

: 1 : ENVIROTECH SERVICES CO.

PROJECT	:				
ALS Lab	Client's Sample ID	Sample Type	Sample Date	External Lab Report No.	
HK2500019-001	Sibata LD-3B (235780)	Equipments	07-Dec-2024	S/N: 235780	

-- END OF REPORT -----

0

Envirotech Services Co.

Rm. 712, 7/F My Loft, 9 Hoi Wing Road, Tuen Mun, H.K. Tel: 2560 8450 Fax: 2560 6553

E-mail: envirotech@netvigator.com

Equipment Verification Report (TSP)

Equipment Calibrated:

Type:

Laser Dust Monitor

Manufacturer:

Sibata LD-3B

Serial No.:

235780

Equipment Ref.:

N/A

ALS Job Order:

HK2451037

Standard Equipment

Standard Equipment:

High Volume Sampler (TSP)

Location:

Envirotech Room (Calibration Room)

Equipment Ref .:

HVS 8162

Last Calibration Date:

19-Oct-2024

Equipment Verification Results:

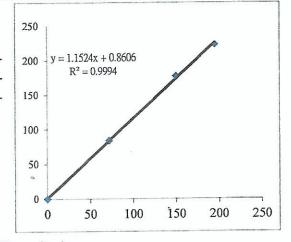
Verification Date:

7-Dec-2024

Hour	Time	Mean Temp ^o C	Mean Pressure (hpa)	Concentration in µg/m³ (Standard Equipment) (Y-Axis)	Concentration in µg/m³ (Calibrated Equipment) (X-Axis)
1hr 00mins	0910-1010	19.5	1022	84	72
2hr 00mins	1300-1500	21.2	1019	177	150
3hr 00mins	1505-1805	21.5	1018	223	195

Linear Regression of Y or X

Slope (K-factor):


1.1524(µg/m³)/CPM

Correlation Coefficient (R):

0.9997

Date of Issue:

14-Dec-2024

Remarks:

1. Strong Correlation (>0.8)

2. Factor 1.1524(µg/m³)/CPM should be applied for TSP monitoring

Operator:

P.F.Yeung Signature

1

Date: 14 Dec 2024

QC Reviewer:

K.F.Ho

Signature

a)

Date: 14 Dec 2024

^{*}If R<0.5, repair or verification is required for the equipment

TSP SAMPLER CALIBRATION CACULATION SPREADSHEET

Date of Calibration: 19-Oct-24 Location: Rm. 712, My Loft, Tuen Mun 19-Dec-24 Next Calibration Date: HVS ID: 8162 K.F.Ho Operator: Name and Model: TISCH HVS Model TE-5170 CONDITIONS 1015 Corrected Pressure (mm Hg) 761.3 Sea Level Pressure (hpa) 299 Temperature (K) 26.0 Temperature (°C) CALIBRATION ORIFICE 2.07544 TISCH **Qstd Slope** Make: -0.03205 **Qstd Intercept** TE-5025A Model: 2454 Serial#:

CA	T	TD	D	۸٦	T	1	N
(.A		חו.	ıĸ.	A		U	IN

Plate	H2O(L)	H20(R)	H2O	Qstd	I	IC	LINEAR
No.	(in)	(in)	(in)	(m3/min)	(chart)	(corrected)	REGRESSION
18	6.1	6.4	12.5	1.718	62	61.97	Slope= 45.67
13	4.9	5.2	10.1	1.546	56	55.97	Intercept= -15.103
10	3.6	3.8	7.4	1.325	48	47.97	Corr. Coeff.= 0.9947
7	2.4	2.7	5.1	1.103	34	33.98	
5	1.4	1.7	3.1	0.863	24	23.99	ž .

Calulations:

Qstd = 1/m[Sqrt(H2O(Pa/Pstd)(Tstd/Ta))-b]

IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Ostd = standard flow rate

IC = corrected chart response

I = actual chart response

m = calibrator Qstd slope

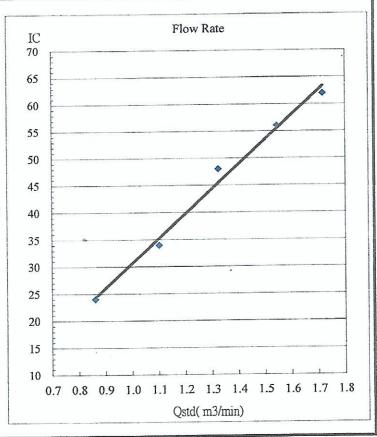
b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K)

Pa = actual pressure during calibration (mm Hg)

For subsequent calculation of sampler flow:

1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)


m = sampler slope

b = sampler intercept

I = chart response

Tav = daily average temperature

Pav = daily average pressure

RECALIBRATION **DUE DATE:**

December 15, 2024

Pertificate of Palibration

Calibration Certification Information

Cal. Date: December 15, 2023

Rootsmeter S/N: 438320

Ta: 295

°K

Operator: Jim Tisch

Pa: 748.5

mm Hg

Calibration Model #: TE-5025A

Calibrator S/N: 2454

Run	Vol. Init (m3)	Vol. Final (m3)	ΔVol. (m3)	ΔTime (min)	ΔP (mm Hg)	ΔH (in H2O)
1	1	2	1	1.4250	3.2	2.00
2	3	4	1	1.0090	6.4	4.00
3	5	6	1	0.9040	7.9	5.00
4	7	8	1	0.8610	8.8	5.50
5	9	10	1	0.7110	12.8	8.00

	Data Tabulation							
Vstd	Qstd	$\sqrt{\Delta H \left(\frac{Pa}{Pstd}\right) \left(\frac{Tstd}{Ta}\right)}$		Qa	$\sqrt{\Delta H (Ta/Pa)}$			
(m3)	(x-axis)	(y-axis)	Va	(x-axis)	(y-axis)			
0.9907	0.6952	1.4106	0.9957	0.6988	0.8878			
0.9864	0.9776	1.9949	0.9914	0.9826	1.2556			
0.9844	1.0890	2.2304	0.9894	1.0945	1.4037			
0.9832	1.1420	2.3393	0.9882	1.1478	1.4723			
0.9779	1.3754	2.8213	0.9829	1.3824	1.7756			
	m=	2.07544		m=	1.29961			
QSTD	b=	-0.03205	QA	b=	-0.02017			
~	r=	0.99999		r=	0.99999			

	Calculation	ns	
Vstd=	ΔVol((Pa-ΔP)/Pstd)(Tstd/Ta)	Va=	ΔVol((Pa-ΔP)/Pa)
Qstd=	Vstd/∆Time	Qa=	Va/ΔTime
	For subsequent flow ra	te calculatio	ns:
Qstd=	$1/m\left(\left(\sqrt{\Delta H\left(\frac{Pa}{Pstd}\right)\left(\frac{Tstd}{Ta}\right)}\right)-b\right)$	Qa=	$1/m\left(\left(\sqrt{\Delta H(Ta/Pa)}\right)-b\right)$

Standard Conditions	
298.15 °K	
760 mm Hg	
Key	
r manometer reading (in H2O)	
er manometer reading (mm Hg)	_
ometric pressure (mm Hg)	
	298.15 °K 760 mm Hg

RECALIBRATION

US EPA recommends annual recalibration per 1998 40 Code of Federal Regulations Part 50 to 51, Appendix B to Part 50, Reference Method for the Determination of Suspended Particulate Matter in the Atmosphere, 9.2.17, page 30

Tisch Environmental, Inc. 145 South Miami Avenue Village of Cleves, OH 45002 www.tisch-env.com

TOLL FREE: (877)263-7610

FAX: (513)467-9009

ALS Technichem (HK) Pty Ltd

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

SUB-CONTRACTING REPORT

HK2448121 WORK ORDER CONTACT : MR MAGNUM FAN

CLIENT : ENVIROTECH SERVICES CO.

ADDRESS : RM 712, 7/F, MY LOFT 9 HOI WING ROAD, SUB-BATCH : 1

DATE RECEIVED : 13-NOV-2024 TUEN MUN, N.T. HK

DATE OF ISSUE : 20-NOV-2024

PROJECT NO. OF SAMPLES : 1 CLIENT ORDER

General Comments

Sample information (Project name, Sample ID, Sampling date/time, etc.) is provided by client.

- Result(s) of sample(s) is/are reported on as received basis, unless otherwise specified. The result(s) is/are related only to the
- Sample(s) was/ were submitted by client. Sample(s) arrived laboratory in ambient condition.
- Calibration was subcontracted to Envirotech Services Company.

Signatories

This document has been signed by those names that appear on this report and are the authorised signatories

Signatories Position

Richard Fung

Managing Director

This report supersedes any previous report(s) with the same work order number.

All pages of this report have been checked and approved for release.

: HK2448121 WORK ORDER

SUB-BATCH

: 1 : ENVIROTECH SERVICES CO. CLIENT

PROJECT

ALS Lab	Client's Sample ID	Sample Type	Sample Date	External Lab Report No.
HK2448121-001	Sibata LD-3B (245834)	Equipments	09-Nov-2024	S/N: 245834

----- END OF REPORT -----

 $\mathsf{Page}: 2 \ \mathsf{of} \ 2$

Envirotech Services Co.

Rm. 712, 7/F My Loft, 9 Hoi Wing Road, Tuen Mun, H.K. Tel: 2560 8450 Fax: 2560 8553

Equipment Verification Report (TSP)

Equipment Calibrated:

Type:

Laser Dust Monitor

Manufacturer:

Sibata LD-3B

Serial No.:

245834

Equipment Ref.:

N/A

ALS Job Order:

HK2446853

Standard Equipment

Standard Equipment:

High Volume Sampler (TSP)

Location:

Envirotech Room (Calibration Room)

Equipment Ref.:

HVS 8162

Last Calibration Date:

19-Oct-2024

Equipment Verification Results:

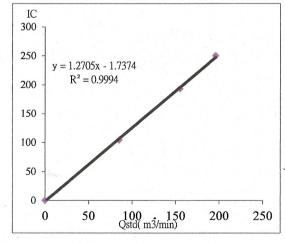
Verification Date:

9-Nov-2024

Hour	Time	Mean Temp °C	Mean Pressure (hpa)	Concentration in µg/m³ (Standard Equipment) (Y-Axis)	Concentration in µg/m ³ (Calibrated Equipment) (X-Axis)
1hr 00mins	0905-1005	24.9	1013	85	104
2hr 00mins	1015-1215	25.2	1014	155	193
3hr 00mins	1430-1730	25.6	1014	196	250

Linear Regression of Y or X

Slope (K-factor):


 $1.2705(\mu g/m^3)/CPM$

Correlation Coefficient (R):

0.9997

Date of Issue:

13-Nov-2024

Remarks:

- 1. Strong Correlation (>0.8)
- 2. Factor 1.2705(μg/m³)/CPM should be applied for TSP monitoring

Operator:

P.F.Yeung

Signature

Date: 11 Nov 2024

QC Reviewer:

K.F.Ho

Signature

Date: 11 Nov 2024

^{*}If R<0.5, repair or verification is required for the equipment

TSP SAMPLER CALIBRATION CACULATION SPREADSHEET Location: Rm. 712, My Loft, Tuen Mun Date of Calibration: 19-Oct-24 HVS ID: 8162 Next Calibration Date: 19-Dec-24 Name and Model: TISCH HVS Model TE-5170 Operator: K.F.Ho **CONDITIONS** Sea Level Pressure (hpa) 1015 Corrected Pressure (mm Hg) 761.3 Temperature (°C) 26.0 Temperature (K) 299 CALIBRATION ORIFICE Make: TISCH Ostd Slope 2.07544 Model: TE-5025A **Qstd Intercept** -0.03205 Serial#: 2454 CALIBRATION H2O(L) H20(R) Plate H₂O Qstd I IC LINEAR No. (in) (in) (in) (m3/min) (chart) (corrected) REGRESSION 18 6.1 6.4 12.5 1.718 62 61.97 Slope= 45.67 13 4.9 5.2. 10.1 1.546 56 55.97 Intercept=-15.10310 3.6 3.8 7.4 1.325 48 47.97 Corr. Coeff.= 0.9947 7 2.4 2.7 5.1 1.103 34 33.98 5 1.4 1.7 3.1 0.863 24 23.99 Calulations: Flow Rate IC Qstd = 1/m[Sqrt(H2O(Pa/Pstd)(Tstd/Ta))-b]70 IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]65 Qstd = standard flow rate 60 IC = corrected chart response 55 I = actual chart response 50 m = calibrator Ostd slope

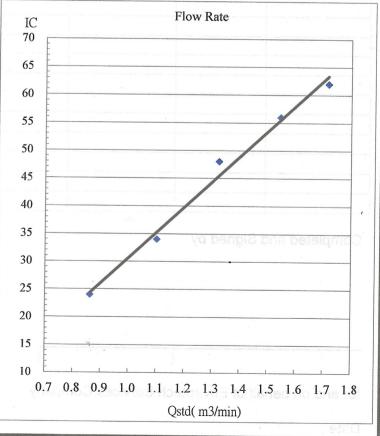
b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K)

Pa = actual pressure during calibration (mm Hg)

For subsequent calculation of sampler flow:

1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)


m = sampler slope

b = sampler intercept

I = chart response

Tav = daily average temperature

Pav = daily average pressure

RECALIBRATION **DUE DATE:**

December 15, 2024

Pertificate o

Calibration Certification Information

Cal. Date: December 15, 2023

TE-5025A

Rootsmeter S/N: 438320

Calibrator S/N: 2454

Ta: 295 Pa: 748.5 °K

Operator: Jim Tisch Calibration Model #:

mm Hg

Run	Vol. Init (m3)	Vol. Final (m3)	ΔVol. (m3)	ΔTime (min)	ΔP (mm Hg)	ΔH (in H2O)
1	1	2	1	1.4250	3.2	2.00
2	3	4	1	1.0090	6.4	4.00
3	5	6	1	0.9040	7.9	5.00
4	7	8	1	0.8610	8.8	5.50
5	9	10	1	0.7110	12.8	8.00

		Data Tabula	tion		-
Vstd (m3)	Qstd (x-axis)	$\sqrt{\Delta H \left(\frac{Pa}{Pstd}\right) \left(\frac{Tstd}{Ta}\right)}$ (y-axis)	Va	Qa (x-axis)	√∆H(Ta/Pa) (y-axis)
0.9907	0.6952	1.4106	0.9957	0.6988	0,8878
0.9864	0.9776	1.9949	0.9914	0.9826	1.2556
0.9844	1.0890	2.2304	0.9894	1.0945	1.4037
0.9832	1.1420	2.3393	0.9882	1.1478	1.4723
0.9779	1.3754	2.8213	0.9829	1.3824	1.7756
	m=	2.07544		m=	1.29961
QSTD[b=	-0.03205	QA	b=	-0.02017
	r=	0.99999	-		0.99999

	Calculation	ons	
	ΔVol((Pa-ΔP)/Pstd)(Tstd/Ta)	Va=	ΔVol((Pa-ΔP)/Pa)
Qstd=	Vstd/∆Time		Va/ΔTime
	For subsequent flow ra	ite calculatio	ns:
Qstd=	$1/m\left(\left(\sqrt{\Delta H\left(\frac{Pa}{Pstd}\right)\left(\frac{Tstd}{Ta}\right)}\right)-b\right)$	Qa=	1/m((√ΔH(Ta/Pa))-b

	Standard Conditions
Tstd:	298.15 °K
Pstd:	760 mm Hg
	Key
ΔH: calibrator	manometer reading (in H2O)
ΔP: rootsmete	er manometer reading (mm Hg)
Ta: actual absorption	olute temperature (°K)
Pa: actual bard	ometric pressure (mm Hg)
b: intercept	, 0,
m: slope	

RECALIBRATION

US EPA recommends annual recalibration per 1998 40 Code of Federal Regulations Part 50 to 51, Appendix B to Part 50, Reference Method for the Determination of Suspended Particulate Matter in the Atmosphere, 9.2.17, page 30

sch Environmental, Inc. 15 South Miami Avenue llage of Cleves, OH 45002

www.tisch-env.com

TOLL FREE: (877)263-7610

FAX: (513)467-9009

Certificate of Calibration

Description:

Sound Level Calibrator

Manufacturer:

Larson Davis

Type No .:

CAL200

Serial No.:

16172

Submitted by:

Customer:

Envirotech Services Co.

Address:

Rm.712, 7/F., My Loft, 9 Hoi Wing Road,

Tuen Mun, Hong Kong

U	pon	receipt	for	calibration,	the	instrument	was	found	to	be:
_	~~~	- cock	~ ~ ~							3

Within

☐ Outside

the allowable tolerance.

The test equipments used for calibration are traceable to National Standards via:

The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory

Date of receipt: 6 February 2025

Date of calibration: 7 February 2025

Date of NEXT calibration: 6 February 2026

Calibrated by:

Date of issue: 7 February 2025

Certified by:

Mr. Ng Yan Wa

Page 1 of 2

Laboratory Manager

Certificate No.: APJ24-143-CC002

Room 422, Leader Industrial Centre, 57-59 Au Pui Wan Street, Fo Tan, Shatin, N.T., Hong Kong Fax: (852) 2668 6946 Tel: (852) 2668 3423 F-mail: inquiry@aa-lah.com

Acoustics and Air Testing Laboratory Co. Ltd. 聲學及空氣測試實驗室有限公司

1. Calibration Precautions:

- The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 24 hours, and switched on to warm up for over 10 minutes before the commencement of the test.
- The results presented are the mean of 3 measurements at each calibration point.

2. Calibration Specifications:

Calibration check

3. Calibration Conditions:

Air Temperature:	24.3 °C
Air Pressure:	1006 hPa
Relative Humidity:	59.2 %

4. Calibration Equipment:

Test Equipment	Type	Serial No.	Calibration Report Number	Traceable to
Multifunction Calibrator	B&K 4226	2288467	AV240081	HOKLAS
Sound Level Meter	RION NA-28	30721812	AV240109	HOKLAS

5. Calibration Results

5.1 Sound Pressure Level

Nominal value dB	Accept lower level dB	Accept upper level dB	Measured value dB
94.0	93.6	94.4	93.7
114.0	113.6	114.4	113.7

6. Calibration Results Applied

The results apply to the particular unit-under-test only. All calibration points are within manufacture's specification as IEC 60942 Class 1.

Note:

The values given in this certification only related to the values measured at the time of the calibration.

Certificate No.: APJ24-143-CC002

Certificate of Calibration

for

Description:

Sound Level Meter

Manufacturer:

RION

Type No.:

NL-52 (Serial No.: 00643040)

Microphone:

PCB 377B02 (Serial No.: 172764)

Preamplifier:

NH-25 (Serial No.:21757)

Submitted by:

Customer:

Envirotech Services Co.

Address:

Rm.712, 7/F., My Loft, 9 Hoi Wing Road,

Tuen Mun, Hong Kong

Upon receipt for calibration, the instrument was found to be:

☑ Within (31.5Hz – 8kHz)

☐ Outside

the allowable tolerance.

The test equipment used for calibration are traceable to National Standards via:

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory

Date of receipt: 25 September 2024

Date of calibration: 27 September 2024

Date of NEXT calibration: 26 September 2025

Calibrated by:

Certified by:

Mr. Ng Yan Wa Laboratory Manager

Date of issue: 27 September 2024

Page 1 of 4

1. Calibration Precaution:

- The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 24 hours, and switched on to warm up for over 10 minutes before the commencement of the test.
- The results presented are the mean of 3 measurements at each calibration point.

2. Calibration Conditions:

Air Temperature:

24.9 °C

Air Pressure:

1006 **hPa**

Relative Humidity:

54.5 %

3. Calibration Equipment:

Type

Serial No.

Calibration Report Number

Traceable to

Multifunction Calibrator

B&K 4226

2288467

AV240081

HOKLAS

4. Calibration Results

Sound Pressure Level

Reference Sound Pressure Level

Sett	Setting of Unit-under-test (UUT)				Applied value		IEC 61672 Class 1
Range, dB	Freq. W	eighting	Time Weighting	Level, dB	Frequency, Hz	dB	Specification, dB
30-130	dBA	SPL	Fast	94	1000	94.0	±0.4

Linearity

Sett	ing of Ui	nit-under-t	est (UUT)	App	lied value	UUT Reading,	IEC 61672 Class 1
Range, dB	Freq. V	Weighting	Time Weighting	Level, dB	Frequency, Hz	dB	Specification, dB
				94		94.0	Ref
30-130	dBA	SPL	Fast	104	1000	104.0	±0.3
				114		114.0	±0.3

Time Weighting

Setting of Unit-under-test (UUT)			Applied value		UUT Reading,	IEC 61672 Class 1	
Range, dB	Freq. W	eighting	Time Weighting	Level, dB	Frequency, Hz	dB	Specification, dB
20.120	TO 4	CDI	Fast	0.4	1000	94.0	Ref
30-130	dBA SPL	SPL	Slow	94	1000	94.0	±0.3

Certificate No.: APJ24-072-CC001

Page 2 of 4

Frequency Response

Linear Response

Sett	ing of Uni	t-under-t	est (UUT)	Appl	ied value	UUT Reading,	IEC 61672 Class 1						
Range, dB	Freq. W	eighting	Time Weighting	Level, dB	Frequency, Hz	dB	Specification, dB						
					31.5	93.8	±2.0						
					63	93.9	±1.5						
											125	93.9	±1.5
					250	93.9	±1.4						
30-130	dB	SPL	Fast	Fast	Fast 94	500	93.9	±1.4					
								1000	94.0	Ref			
					2000	94.0	±1.6						
	1-45				4000	94.5	±1.6						
					8000	91.8	+2.1; -3.1						

A-weighting

Sett	ing of Uni	it-under-t	est (UUT)	Appl	ied value	UUT Reading,	IEC 61672 Class 1					
Range, dB	Freq. W	eighting	Time Weighting	Level, dB	Frequency, Hz	dB	Specification, dB					
					31.5	54.4	-39.4 ±2.0					
					63	67.8	-26.2 ±1.5					
											125	77.8
					250	85.3	-8.6 ± 1.4					
30-130	dBA	SPL	Fast	94	500	90.7	-3.2 ±1.4					
					1000	94.0	Ref					
					2000	95.2	+1.2±1.6					
				4000	95.5	`+1.0±1.6						
					8000	90.8	-1.1+2.1; -3.1					

C-weighting

Setting of Unit-under-test (UUT)				Applied value		UUT Reading,	IEC 61672 Class 1
Range, dB	Freq. W	eighting	Time Weighting	Level, dB	Frequency, Hz	dB	Specification, dB
30-130		SPL	Fast	94	31.5	90.8	-3.0 ±2.0
					63	93.1	-0.8 ±1.5
					125	93.7	-0.2 ±1.5
					250	93.9	-0.0 ±1.4
	dBC				500	93.9	-0.0 ±1.4
					1000	94.0	Ref
					2000	93.8	-0.2 ±1.6
					4000	93.7	-0.8 ±1.6
					8000	89.0	-3.0 +2.1: -3.1

Certificate No.: APJ24-072-CC001

Page 3 of 4

5. Calibration Results Applied

The results apply to the particular unit-under-test only. All calibration points are within manufacture's specification as IEC 61672 Class 1.

Uncertainties of Applied Value:

94 dB	31.5 Hz	± 0.15
	63 Hz	± 0.10
	125 Hz	± 0.10
	250 Hz	± 0.05
	500 Hz	± 0.10
	1000 Hz	± 0.05
	2000 Hz	± 0.05
	4000 Hz	± 0.05
	8000 Hz	± 0.10
104 dB	1000 Hz	± 0.05
114 dB	1000 Hz	± 0.05

The uncertainties are evaluated for a 95% confidence level.

Note:

The values given in this certification only related to the values measured at the time of the calibration and any uncertainties quoted will not allow for the equipment long-term drift, variations with environmental changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the calibration. (A+A)*L shall not be liable for any loss or damage resulting from the use of the equipment.

E-mail:inquiry@aa-lab.com

Page 4 of 4

Homepage: http://www.aa-lab.com