Development at West Kowloon Cultural District

Monthly Environmental Monitoring and Audit (EM&A) Report for January 2025

14 February 2025

In accordance with the Environmental Permit, Condition 3.4, this Monthly EM&A Report has been certified by the Environmental Team Leader (ETL) and verified by the Independent Environmental Checker (IEC) as complying with the requirements as set out in Sections 1, 10, 11, 12 and 13 of the EM&A Manual.

Certified by:

Max LEE Environmental Team Leader (ETL) West Kowloon Cultural District Authority

14 February 2025

Verified by:

Date

Claudine LEE Independent Environmental Checker (IEC) Meinhardt Infrastructure & Environment Ltd

Date

14 February 2025

This Report Consists of:

Part-1: EM&A at Lyric Theatre Complex

and

Part-2: EM&A for ELS Works for The Integrated Basement and Underground Road in Zones 2A, 2B & 2C

Part-1: EM&A at Lyric Theatre Complex

Lyric Theatre Complex

Mott MacDonald 3/F International Trade Tower 348 Kwun Tong Road Kwun Tong Kowloon Hong Kong

T +852 2828 5757 mottmac.hk

Contents

Exe	ecutive	summar	ſy	1				
1	Introduction							
	1.1	Backgro	und	3				
	1.2	Project (Organisation	3				
	1.3	Status of Construction Works in the Reporting Period						
	1.4	Summar	ry of EM&A Requirements and Alternative Monitoring Locations	4				
		1.4.1	EM&A Requirements	4				
		1.4.2	Alternative Monitoring Locations	4				
2	Impa	act Monit	oring Methodology	6				
	2.1							
	2.2	Air Qual	ity	6 6				
		2.2.1	Monitoring Parameters, Frequency and Duration	6				
		2.2.2	Monitoring Locations	6				
		2.2.3	Monitoring Equipment	6				
		2.2.4	Monitoring Methodology	7				
	2.3	Noise		10				
		2.3.1	Monitoring Parameters, Frequency and Duration	10				
		2.3.2	Monitoring Location	10				
		2.3.3	Monitoring Equipment	10				
		2.3.4	Monitoring Methodology	10				
	2.4	Landsca	ape and Visual	11				
		2.4.1	Monitoring Program	11				
3	Mon	itoring R	esults	12				
	3.1	Impact N	Monitoring	12				
	3.2		ity Monitoring	12				
		3.2.1	1-hour TSP	12				
		3.2.2	24-hour TSP	12				
	3.3	Noise M	onitoring	13				
	3.4	Landsca	ape and Visual Impact	13				
4	Site Environmental Management							
	4.1	.1 Site Inspection						
	4.2	•						
	4.3		f Environmental Licenses and Permits	15				
	4.4	Recomm	nended Mitigation Measures	15				

5	Com	mpliance with Environmental Permit 1					
6	Report in Non-compliance, Complaints, Notification of Summons and Successful Prosecutions						
	6.1	Record on Non-compliance of Action and Limit Levels	17				
	6.2	Record on Environmental Complaints Received	17				
	6.3	Record on Notifications of Summons and Successful Prosecution	17				
7	Futur	e Key Issues	18				
	7.1	Construction Works for the Coming Month(s)	18				
	7.2	Key Issues for the Coming Month	18				
	7.3	Monitoring Schedule for the Coming Month	18				
8	Conc	lusions and Recommendations	19				
	8.1	Conclusions	19				
	8.2	Recommendations	19				
Figu	re 1	Site Layout Plan and Monitoring Stations					
Appe	endice	S					
A.	A. Project Organisation						

- B. Tentative Construction Programme
- C. Action and Limit Levels for Construction Phase
- D. Event and Action Plan for Air Quality, Noise, Landscape and Visual Impact
- E. Monitoring Schedule
- F. Calibration Certifications
- G. Graphical Plots of the Monitoring Results
- H. Meteorological Data Extracted from Hong Kong Observatory
- I. Waste Flow Table
- J. Environmental Mitigation Measures Implementation Status

K. Cumulative Statistics on Complaints, Notifications of Summons and Successful Prosecutions

Executive summary

Mott MacDonald Hong Kong Limited (MMHK) was commissioned to undertake the Environmental Team (ET) services (including environmental monitoring and audit (EM&A)) for the construction of M+ Museum Main Works (Contract No.: CC/2015/3A/022) and Lyric Theatre Complex including the Foundation Works (Contract No.: CC/2015/3A/014), L1 Contract (Contract No. CC/2017/3A/030) and L2 Contract (Contract No. CC/2017/3A/031) at West Kowloon Cultural District (WKCD) (The Project) as part of the WKCD development. The Project Proponent is the West Kowloon Cultural District Authority (WKCDA). The construction works and EM&A programme for M+ Museum was commenced on 31 October 2015 and completed on 28 February 2021; while the construction works and EM&A programme for Lyric Theatre Complex (L1 and L2 Contracts) was commenced on 1 March 2016, and the EM&A programme for L1 Contract was completed on 30 June 2021.

The overall works for the WKCD fall under two separate categories of Designated Project (DP) of the Environmental Impact Assessment Ordinance (EIAO), namely an "engineering feasibility study of urban development projects with a study area covering more than 20 ha or involving a total population of more than 100 000" (Item 1 of Schedule 3) and "an underpass more than 100m in length under the built areas" (Item A.9, Part I, Schedule 2). An Environmental Permit No. EP-453/2013/B (EP) was issued with respect to the "Underpass Road and Austin Road Flyover Serving the West Kowloon Cultural District" which specifically includes the abovementioned category of DP under Item A.9, Part I, Schedule 2 of the EIAO.

This Monthly EM&A Report presents the monitoring works at Lyric Theatre Complex (L2 Contract) from 1 January to 31 January 2025.

Exceedance of Action and Limit Levels

There was no breach of Action or Limit levels for Air Quality (1-hour TSP and 24-hour TSP) and Noise in this reporting month.

Implementation of Mitigation Measures

Construction phase weekly site inspections were carried out on 8, 15, 22 and 27 January 2025 for Lyric Theatre Complex (L2 Contract) to confirm the implementation measures undertaken by the Contractor in the reporting month. The outcomes are presented in Section 4 and the status of implementation of mitigation measures in the site is shown in **Appendix J**.

Landscape and visual impact inspections were conducted as part of the abovementioned weekly site inspection during the reporting month. No adverse comment on landscape and visual aspects were made during the inspections.

Record of Complaints

One environmental complaint was recorded in the reporting month.

Record of Notifications of Summons and Successful Prosecutions

No notifications of summons and successful prosecutions were recorded in the reporting month.

Future Key Issues

The major site works for L2 to be commissioned in the coming month include:

- LTC construction
 - ABWF works
 - Façade work
 - MEP works
- ASDA and Lyric Theatre Promenade
 - Defects rectification
 - Excavation and backfilling
- DCS cofferdam
 - Backfilling
 - Construction of cable draw pits
- Extended basement
 - MEP works
 - Power cabling

Potential environmental impacts due to the construction activities, including air quality, noise, water quality, waste, landscape and visual, will be monitored or reviewed. The recommended environmental mitigation measures shall be implemented on site and regular inspections as required will be carried out to ensure that the environmental conditions are acceptable.

2

1 Introduction

1.1 Background

Mott MacDonald Hong Kong Limited (MMHK) was commissioned to undertake the Environmental Team (ET) services (including environmental monitoring and audit (EM&A)) for the construction of M+ Museum Main Works (Contract No.: CC/2015/3A/022) and Lyric Theatre Complex including the Foundation Works (Contract No.: CC/2015/3A/014), L1 Contract (Contract No. CC/2017/3A/030) and L2 Contract (Contract No. CC/2017/3A/031) at West Kowloon Cultural District (WKCD) (The Project) as part of the WKCD development. The Project Proponent is the West Kowloon Cultural District Authority (WKCDA). The construction works and EM&A programme for M+ Museum was commenced on 31 October 2015 and completed on 28 February 2021; while the construction works and EM&A programme for Lyric Theatre Complex (L1 and L2 Contracts) were commenced on 1 March 2016, and the EM&A programme for L1 Contract was completed on 30 June 2021.

The overall works for the WKCD fall under two separate categories of Designated Project (DP) of the Environmental Impact Assessment Ordinance (EIAO), namely an "engineering feasibility study of urban development projects with a study area covering more than 20 ha or involving a total population of more than 100 000" (Item 1 of Schedule 3) and "an underpass more than 100m in length under the built areas" (Item A.9, Part I, Schedule 2). An Environmental Permit No. EP-453/2013/B (EP) was issued with respect to the "Underpass Road and Austin Road Flyover Serving the West Kowloon Cultural District" which specifically includes the abovementioned category of DP under Item A.9, Part I, Schedule 2 of the EIAO. The captioned projects include part of the abovementioned underpass road located within the site boundary also falls under this same category.

The M+ Museum development aims to provide an iconic presence for the M+ Museum, semitransparent vertical plane, housing education facilities, a public restaurant and museum offices. At ground and lower levels, generous access will be provided to the park and other West Kowloon Cultural District facilities, alongside a public resource centre, theatres, retail and dining, and backof-house functions.

The Lyric Theatre Complex (now known as "the WestK Performing Arts Centre") will comprise a 1,450-seat Grand Theatre, a 600-seat Medium Theatre and a 270-seat Studio Theatre. The complex will also house extensive rehearsal facilities and a Resident Company Centre that will serve as an exploration, development and collaboration hub for dance companies and artists in Hong Kong.

The Monthly EM&A Report is prepared in accordance with the Condition 3.4 of the Environmental Permit No. EP-453/2013/B. This Monthly EM&A Report presents the monitoring works at Lyric Theatre Complex (L2 Contract) from 1 January to 31 January 2025. The purpose of this report is to summarise the findings in the EM&A of the project over the reporting period.

1.2 **Project Organisation**

The organisation chart and lines of communication with respect to the on-site environmental management structure together with the contact information of the key personnel are shown in **Appendix A**.

1.3 Status of Construction Works in the Reporting Period

During the reporting period, construction works at L2 undertaken include:

- LTC construction
 - ABWF works
 - Façade work
 - MEP works
- ASDA and Lyric Theatre Promenade
 - Defects rectification
- DCS cofferdam
 - Backfilling
 - Excavation
 - Construction of valve chamber
- Extended basement
 - MEP works
 - Power cabling

The Construction Works Programme of Lyric Theatre Complex (L2 Contract) is provided in **Appendix B**. As on 31 January 2023, site area P32 was handed over to AST Developer and was thus excluded from the site boundary of Lyric Theatre Complex (L2 Contract), the area was delineated in red in the layout plan of the Project which is provided in **Figure 1**. Please refer to **Table 4.1** on the status of the environmental licenses.

1.4 Summary of EM&A Requirements and Alternative Monitoring Locations

The EM&A programme requires environmental monitoring of air quality, noise, landscape and visual as specified in the approved EM&A Manual.

1.4.1 EM&A Requirements

A summary of impact EM&A requirements is presented in Table 1.1.

Parameters	Descriptions	Locations	Frequencies		
Air Quality	24-Hour TSP	AM1 – International Commerce Centre	At least once every 6 days		
	1-Hour TSP	AM1 – International Commerce Centre	At least 3 times every 6 days		
	24-Hour TSP	AM2 – The Harbourside Tower 1	At least once every 6 days		
	1-Hour TSP	AM2 – The Harbourside Tower 1	At least 3 times every 6 days		
Noise	Leq, 30 minutes	NM1- The Harbourside Tower 1	Weekly		
Landscape & Visual	Monitor implementation of proposed mitigation measures during the construction stage	As described in Table 9.1 and 9.2 of the EM&A Manual	Bi-weekly		

Table 1.1: Summary of Impact EM&A Requirements

1.4.2 Alternative Monitoring Locations

In the context of the monitoring activities at M+ Museum and the Lyric Theatre Complex, three monitoring stations had been considered, including AM1 (International Commerce Centre), AM2 (The Harbourside Tower 1) for air monitoring, and NM1 (The Harbourside Tower 1) for noise

monitoring. Other monitoring locations (i.e. AM3 to AM5 and NM2 to NM5) were so far away from M+ Museum and the Lyric Complex and could not be representative for impact monitoring.

The Harbourside management office formally rejected our proposal of setting up air quality and noise monitoring equipment on its premises at the podium level of Tower 1 (AM2/NM1) on 10 November 2015. Nevertheless, a suitable air quality monitoring location at AM2 was identified on the ground floor in front of The Harbourside Tower 1, which is at the same location as that of baseline monitoring for consistency. No management approval is required on the ground floor for conducting the air monitoring. However, the electricity supply at AM2 was suspended from 31 August 2016. In order to have a more secure electricity supply, an alternative air monitoring location (AM2A) was identified at Austin Road West opposite to The Harbourside Tower 1, which is close to Lyric Theatre Complex site entrance. This alternative air monitoring location was approved by EPD on 28 September 2016. Due to the works programme, the air monitoring location AM2A has been relocated to the alternative monitoring location AM2B at the 1st floor of Gammon's site office, which was approved by EPD on 21 February 2019. In view of the upcoming construction works to be undertaken at the air monitoring station AM2B, AM2B was no longer available for conducting the impact air quality monitoring. Hence, an alternative air monitoring location was identified on the ground floor in front of The Harbourside Tower 1 (AM2) which is at the same location as the baseline monitoring and this previously approved monitoring location had also been used for the EM&A Programme from November 2015 to August 2016, the relocation was approved by EPD on 27 May 2021.

Alternative noise monitoring location was identified at The Arch (NM2); however, The Arch management office formally rejected our proposal of setting up noise monitoring equipment on its premises on 23 November 2015. On the other hand, noise monitoring at G/F of Harbourside could not be representative. However, approval from the management office of the International Commerce Centre has been granted on 29 February 2016 for conducting noise monitoring at the alternative noise monitoring location identified at the podium floor (NM1A) which is free from screening to the construction activities.

In short, 2 air quality monitoring stations and 1 noise impact monitoring station were confirmed for the impact monitoring.

The Environmental Quality Performance Limits for air quality and noise are shown in **Appendix C**.

The Event and Action Plan for air quality, construction noise, and landscape and visual are shown in **Appendix D**.

The EM&A programme followed the recommended mitigation measures in the EM&A Manual. The EM&A requirements as well as the summary of implementation status of the environmental mitigation measures are provided in **Appendix J**.

2 Impact Monitoring Methodology

2.1 Introduction

For air quality and noise, the monitoring methodology, including the monitoring locations, monitoring equipment used, monitoring parameters, and frequency and duration etc., for air quality and noise are detailed in this Section. The environmental monitoring schedules for the reporting period and the tentative monitoring schedule for the coming month are provided in **Appendix E**.

For landscape and visual impact, the relevant EM&A monitoring requirements and details are also presented in this Section.

2.2 Air Quality

2.2.1 Monitoring Parameters, Frequency and Duration

Table 2.1 summarizes the monitoring parameters, frequency and duration of the TSP monitoring.

Parameter	Frequency	Duration				
24-hour TSP	At least once in every six-days	24 hours				
1-hour TSP	At least 3 times every six-days	60 minutes				

Table 2.1: Air Quality Monitoring Parameters, Frequency and Duration

2.2.2 Monitoring Locations

Currently, the works under the captioned project are confined in the western part of the WKCD site. Therefore, only the monitoring stations AM1 and AM2 were set up at the proposed locations in accordance with updated EM&A Manual. Location of the monitoring station is given in **Table 2.2** and shown in **Figure 1**.

Table 2.2: Air Quality Monitoring Station

Monitoring Station	Location		
AM1	International Commerce Centre (ICC)		
AM2	The Harbourside Tower 1 – Ground Floor		

2.2.3 Monitoring Equipment

For 24-hour TSP air quality monitoring, High Volume Sampler (HVS) was used at air monitoring station AM1 and portable direct reading dust meter was used at air monitoring station AM2 due to the unavailability of power supply for HVS at / in the vicinity of the AM2. The portable direct reading dust meter is capable of producing comparable results as that by the HVS method. For 1-hour TSP monitoring, portable direct reading dust meter was used for the measurement.

Table 2.3 summarizes the equipment used in the impact air quality monitoring. Copies of the calibration certificates for the calibration kit and portable dust meters are attached in **Appendix F**.

Table 2.3: TSP Monitoring Equipment

Equipment	Model
24-hour TSP monitoring	
High Volume Sampler	TE-5170 (Serial No: 0767)
Calibrator	TE-5025A (Orifice I.D.: 2454)
Portable direct reading dust meter	Sibata LD-5R (Serial No.: 841724)
1-hour TSP monitoring	
Portable direct reading dust meter	Sibata LD-3B (Serial No.: 235786 and 245834)
1-hour TSP monitoring	

Calibration of the HVS (five point calibration) using Calibration Kit was carried out every two months. The HVS calibration orifice will be calibrated annually. Calibration certificate of the TE-5025A Calibration Kit and the HVS are provided in **Appendix F**.

The portable direct reading dust meter should be determined periodically (e.g. annually) by the HVS to check the validity and accuracy of the results measured by direct reading method.

2.2.4 Monitoring Methodology

24-hour TSP Monitoring (HVS)

Installation

The HVS was installed at the site boundary. The following criteria were considered in the installation of the HVS.

- A horizontal platform with appropriate support to secure the sampler against gusty wind was provided.
- The distance between the HVS and any obstacles, such as buildings, was at least twice the height that the obstacle protrudes above the HVS.
- A minimum of 2 metres separation from walls, parapets and penthouse was required for rooftop sampler.
- A minimum of 2 metres separation from any supporting structure, measured horizontally was required.
- No furnace or incinerator flues or building vent were nearby.
- Airflow around the sampler was unrestricted.
- The sampler has been more than 20 metres from any drip line.
- Permission was obtained to set up the sampler and to obtain access to the monitoring station.
- A secured supply of electricity is needed to operate the sampler.

Preparation of Filter Papers

- Glass fibre filters were labelled and sufficient filters that were clean and without pinholes were selected.
- The filters used are specified to have a minimum collection efficiency of 99 percent for 0.3 μm (DOP) particles.
- All filters were equilibrated in the conditioning environment for 24 hours before weighing. The conditioning environment temperature was around 25 °C and not variable by more than ±3 °C with relative humidity (RH) < 50% and was not variable by more than ±5 %. A convenient working RH was 40%. All preparation of filters was done by Hong Kong Laboratory Accreditation Scheme (HOKLAS) accredited laboratory.

Field Monitoring Procedures

- The power supply was checked to ensure the HVS works properly.
- The filter holder and the area surrounding the filter were cleaned.
- The filter holder was removed by loosening the four bolts and a new filter, with stamped number upward, on a supporting screen was aligned carefully.
- The filter was properly aligned on the screen so that the gasket formed an airtight seal on the outer edges of the filter.
- The swing bolts were fastened to hold the filter holder down to the frame. The pressure applied should be sufficient to avoid air leakage at the edges.
- The shelter lid was closed and was secured with the aluminium strip.
- The HVS was warmed-up for about 5 minutes to establish run-temperature conditions.
- A new flow rate record sheet was set into the flow recorder.
- The flow rate of the HVS was checked and adjusted at around 1.3 m³/min. The range specified in the EM&A Manual was between 0.6-1.7 m³/min.
- The programmable timer was set for a sampling period of 24 hours, and the starting time, weather condition and the filter number were recorded.
- The initial elapsed time was recorded.
- At the end of sampling, the sampled filter was removed carefully and folded in half length so that only surfaces with collected particulate matter were in contact.
- It was then placed in a clean plastic envelope and sealed.
- All monitoring information was recorded on a standard data sheet.
- Filters were sent to a Hong Kong Laboratory Accreditation Scheme (HOKLAS) accredited laboratory for analysis.

Maintenance and Calibration

- The HVS and its accessories are maintained in good working condition, such as replacing motor brushes routinely and checking electrical wiring to ensure a continuous power supply.
- HVSs were calibrated upon installation and thereafter at bi-monthly intervals. The calibration kits were calibrated annually.

Weather Condition

 Meteorological data extracted from Hong Kong Observatory for the reporting month is provided in Appendix H.

24-hour TSP Monitoring (Portable direct reading dust meter)

Field Monitoring

The measuring procedures of the portable direct reading dust meter are in accordance with the Manufacturer's Instruction Manual as follows:

- Turn the power on.
- Close the air collecting opening cover.
- Push the "TIME SETTING" switch to [BG].
- Push "START/STOP" switch to perform background measurement for 6 seconds.
- Turn the knob at SENSI ADJ position to insert the light scattering plate.

- Leave the equipment for 1 minute upon "SPAN CHECK" is indicated in the display.
- Push "START/STOP" switch to perform automatic sensitivity adjustment. This measurement takes 1 minute.
- Pull out the knob and return it to MEASURE position.
- Setting time period of 24 hours for the 24-hour TSP measurement.
- Push "START/STOP" to start the 24-hour TSP measurement.
- Regular checking of the time period setting to ensure monitoring time of 24 hours.

Maintenance and Calibration

- The portable direct reading dust meter would be checked at 3-month intervals and calibrated at 1-year intervals throughout all stages of the air quality monitoring.
- Calibration records for direct dust meters are shown in Appendix F.

Weather Condition

 Meteorological data extracted from Hong Kong Observatory for the reporting month is provided in Appendix H.

1-hour TSP Monitoring

Field Monitoring

The measuring procedures of the 1-hour dust meter are in accordance with the Manufacturer's Instruction Manual as follows:

- Turn the power on.
- Close the air collecting opening cover.
- Push the "TIME SETTING" switch to [BG].
- Push "START/STOP" switch to perform background measurement for 6 seconds.
- Turn the knob at SENSI ADJ position to insert the light scattering plate.
- Leave the equipment for 1 minute upon "SPAN CHECK" is indicated in the display.
- Push "START/STOP" switch to perform automatic sensitivity adjustment. This measurement takes 1 minute.
- Pull out the knob and return it to MEASURE position.
- Setting time period of 1 hour for the 1-hour TSP measurement.
- Push "START/STOP" to start the 1-hour TSP measurement.
- Regular checking of the time period setting to ensure monitoring time of 1 hour.

Maintenance and Calibration

- The 1-hour dust meter would be checked at 3-month intervals and calibrated at 1-year intervals throughout all stages of the air quality monitoring.
- Calibration records for direct dust meters are shown in Appendix F.

Weather Condition

 Meteorological data extracted from Hong Kong Observatory for the reporting month is provided in Appendix H.

2.3 Noise

2.3.1 Monitoring Parameters, Frequency and Duration

Table 2.4 summarizes the monitoring parameters, frequency and duration of noise monitoring. The noise in A-weighted levels L_{eq} , L_{10} and L_{90} are recorded in a 30-minute interval between 0700 and 1900 hours.

Table 2.4: Noise Monitoring Parameters, Period and Frequency

Time Period	Parameters	Frequency
Daytime on normal weekdays (0700-1900 hours)	$L_{eq}(30 \text{ min}), L_{90}(30 \text{ min}) \& L_{10} (30 \text{ min})$	Once every week

2.3.2 Monitoring Location

Currently, the works under the captioned project are confined in the western part of the WKCD site. Therefore, only the monitoring station NM1A was set up. Location of the monitoring station is given in **Table 2.5** and shown in **Figure 1**.

Table 2.5: Noise Monitoring Station

Monitoring Station	Location		
NM1A	International Commerce Centre (ICC)		

2.3.3 Monitoring Equipment

Integrating Sound Level Meter was used for noise monitoring. It was a Type 1 sound level meter capable of giving a continuous readout of the noise level readings including equivalent continuous sound pressure level (L_{Aeq}) and percentile sound pressure level (L_x). They comply with International Electrotechnical Commission Publications 651:1979 (Type 1) and 804:1985 (Type 1). **Table 2.6** summarizes the noise monitoring equipment model being used.

Table 2.6: Noise Monitoring Equipment

Monitoring Station	on Equipment Model			
	Integrating Sound Level Meter	Calibrator		
NM1A	Rion NL-52 (Serial No. 00643040)	LARSON DAVIS CAL200 (Serial No. 11334)		

2.3.4 Monitoring Methodology

Field Monitoring

- The microphone of the Sound Level Meter was set at least 1.2 m above the ground.
- Free Field measurement was made at the monitoring locations.
- The battery condition was checked to ensure the correct functioning of the meter.
- Parameters such as frequency weighting, the time weighting and the measurement time were set as follows:
 - frequency weighting: A
 - time weighting: Fast
 - time measurement: 30 minutes intervals (between 0700-1900 on normal weekdays)
- Prior to and after each noise measurement, the meter was calibrated using a Calibrator for 94 dB at 1 kHz. If the difference in the calibration level before and after measurement was more than 1 dB, the measurement would be considered invalid and has to be repeated after re-calibration or repair of the equipment.

- During the monitoring period, the L_{eq}, L₁₀ and L₉₀ were recorded. In addition, any site observations and noise sources were recorded on a standard record sheet.
- A correction of +3dB(A) was made to the free field measurements.

Maintenance and Calibration

- The microphone head of the sound level meter and calibrator is cleaned with soft cloth at quarterly intervals.
- The sound level meter and calibrator are sent to the supplier or HOKLAS laboratory to check and calibrate at yearly intervals.
- Calibration records are shown in **Appendix F**.

Weather Condition

 Meteorological data extracted from Hong Kong Observatory for the reporting month is provided in Appendix H.

2.4 Landscape and Visual

2.4.1 Monitoring Program

Table 2.7 details the monitoring program (as proposed in the WKCD EIA report) for landscape and visual impact during the construction phase.

Table 2.7:Monitoring Program for Landscape and Visual Impact duringConstruction Phase

Stage	Monitoring Task	Frequency	Report	Approval
Construction	Monitor implementation of proposed mitigation measures during the construction stage.	Bi-weekly	ET to report on Contractor's compliance	Counter-signed by IEC

During the landscape and visual impact monitoring, any changes in relation to the landscape and visual amenity should be monitored with reference to the baseline conditions of the site. In addition, mitigation measures were proposed in the WKCD EIA report to minimise the landscape and visual impacts during the construction phase. The proposed mitigation measures as shown in Table 9.1 and Table 9.2 of the EM&A Manual should be checked for proper implementation.

3 Monitoring Results

3.1 Impact Monitoring

Construction impact monitoring for air quality, noise and landscape and visual impact was undertaken in compliance with the EM&A Manual during the reporting month.

3.2 Air Quality Monitoring

3.2.1 1-hour TSP

Results of 1-hour TSP at the monitoring location AM1 and AM2 are summarised in **Table 3.1**. Graphical plots of the monitoring results are shown in **Appendix G**.

Monitoring	Monitoring	Start	1-hour TSP (µg/m3)			Range	Action	Limit
Station	Date	Time	1 st Result	2 nd Result	3 rd Result	(µg/m3)	Level (µg/m3)	Level (µg/m3)
	2-Jan-25	8:33	22	23	29		273.7	500
	8-Jan-25	8:34	42	48	50	19-50		
	14-Jan-25	8:33	24	27	30			
AM1	20-Jan-25	8:31	19	22	23			
	24-Jan-25	8:33	24	21	26			
	28-Jan-25	8:23	27	24	26			
	2-Jan-25	8:48	34	30	28			500
	8-Jan-25	8:50	55	60	59			
	14-Jan-25	8:49	34	31	39	27-60 274.2 		
AM2	20-Jan-25	8:47	31	28	27		274.2	
	24-Jan-25	8:49	35	39	30			
	28-Jan-25	8:38	30	36	33			

Table 3.1: Summary of 1-hour TSP monitoring results

3.2.2 24-hour TSP

Results of 24-hour TSP at the monitoring location AM1 and AM2 are summarised in **Table 3.2**. Graphical plots of the monitoring results are shown in **Appendix G**.

Table 3.2:	Summary of 24-hour TSP monitoring results							
Monitoring Station	Monitoring Date	Start Time	Monitoring Results (µg/m³)	Range (µg/m³)	Action Level (µg/m³)	Limit Level (µg/m³)		
	2-Jan-25	8:30	12					
	8-Jan-25	8:31	37	11-37	143.6	260		
AM1	14-Jan-25	8:30	12					
AWI	20-Jan-25	8:28	11					
	24-Jan-25	8:30	13					
	28-Jan-25	8:20	18	=				
4142	2-Jan-25	8:45	25	01 51	454 4	260		
AM2	8-Jan-25	8:47	51	- 21-51	151.1	260		

Development at West Kowloon Cultural District

Monthly Environmental Monitoring and Audit (EM&A) Report for January 2025

14-Jan-25	8:46	26	
20-Jan-25	8:44	21	
24-Jan-25	8:46	24	
28-Jan-25	8:36	26	

No exceedance of 1-hour and 24-hour TSP (Action or Limit Level) was recorded in the reporting period.

3.3 Noise Monitoring

The construction noise monitoring results at the monitoring location NM1A are summarized in **Table 3.3**. Graphical plots of the monitoring data and the station set-up of a free-field measurement are shown in **Appendix G**.

Monitoring Date	Start Time	End Time	L _{eq} (30 mins)*, dB(A)	Limit Level for Leq (dB(A))						
2-Jan-25	9:33	10:03	64							
8-Jan-25	9:34	10:04	63	-						
14-Jan-25	9:34	10:04	65	75						
20-Jan-25	9:32	10:02	63	-						
28-Jan-25	9:23	9:53	65	-						

 Table 3.3:
 Summary of noise monitoring results during normal weekdays

Remarks:

* +3dB (A) correction was applied to free-field measurement.

No exceedance (Action/Limit Level) of construction noise was recorded in the reporting month.

3.4 Landscape and Visual Impact

Landscape and visual impact inspections were conducted as part of the weekly site inspection on 8 and 22 January 2025 for Lyric Theatre Complex (L2 Contract) during the reporting month. As reviewed by the registered Landscape Architect, no adverse comment on landscape and visual aspects was made during this inspection.

The landscape and visual mitigation measures were implemented during the reporting period. The summary of implementation status of the environmental mitigation measures is provided in **Appendix J**.

4 Site Environmental Management

4.1 Site Inspection

Construction phase weekly site inspections were carried out on 8, 15, 22 and 27 January 2025 at Lyric Theatre Complex (L2 Contract). While the site environmental management committee meeting with IEC, ET, ER and Contractor was held on 22 January 2025. All observations have been recorded in the site inspection checklist and passed to the Contractor together with the appropriate recommended mitigation measures where necessary.

The key observations from the site inspections and associated recommendations are summarized in **Table 4.1.**

Inspection Date	Parameter	Observation / Recommendation	Contactor's Responses / Action(s) Undertaken	Close-out (Date)
30/12/2024	Air Quality	The contractor was reminded to cover the cement bags properly or remove them if no longer in use. (Location L00Z1)	The contractor has covered the cement bags.	8/1/2025
8/1/2025	Water Quality	No drip tray was observed for the concerned machinery, the contractor was reminded to provide a suitable drip tray and clear the oil stain.	The oil stain was cleared and the contractor clarified that no oil would be used in operating the machinery.	15/1/2025
8/1/2025	Waste Management	Plastic bottle was observed in the recycling bin for aluminium cans, the contractor was reminded to ensure the proper segregation and recycling of waste.	The contractor has practiced proper segregation for recycling waste.	14/1/2025
15/1/2025	Air Quality	The contractor was reminded to implement proper mitigation measures to avoid dust impact.	The concerned works were ended shortly and the contractor will provide proper mitigation measures if similar operation is to be conducted in the future.	22/1/2025
22/1/2025	Air Quality	Dust was observed during breaking works, the contractor was reminded to implement proper dust suppression measures.	The contractor has applied active water spraying to avoid fugitive dust emission.	22/1/2025
27/1/2025	Waste Management	General refuse was observed without proper storage, the contractor was reminded to regularly clear them and store them properly.	On-going	

Table 4.1: Summary of Site Inspections and Recommendations for L2

4.2 Advice on the Solid and Liquid Waste Management Status

The Contractor has been registered as a chemical waste producer for the Project. Construction and demolition (C&D) material sorting will be carried out on site. A sufficient number of receptacles were available for general refuse collection.

As advised by the Lyric Theatre Complex (L2 Contract) Contractor, 242.0 tonnes, 65.1 tonnes and 0.0 tonne of inert C&D materials were disposed of as public fill to Tseung Kwan O Area 137 Public Fill, Tuen Mun Area 38 Public Fill and Chai Wan Public Fill Barging Point respectively in the reporting month, while 714.3 tonnes of general refuse were disposed of at SENT and WENT

landfill. 0.0 tonne of metals, 0.0 tonne of paper/cardboard packaging, 0.0 tonne of plastics and 0.0 tonne of timber were collected by recycling contractors in the reporting month. 0.0 tonne of inert C&D material was reused on site. 0.0 tonne of inert C&D material was reused in other projects and 0.0 tonne of inert C&D material was imported for reuse at site. 5.8 tonnes of inert C&D material was disposed to sorting facility and 0.0 tonne of chemical waste were collected by licensed contractors in the reporting period.

The actual amounts of different types of waste generated by the activities of construction works at Lyric Theatre Complex in the reporting month are shown in **Appendix I**.

4.3 Status of Environmental Licenses and Permits

The environmental permits, licenses, and/or notifications on environmental protection for this Project which were valid during the period are summarised in **Table 4.2**.

Permit / License No. /	Valid F	Period	Status	Remarks
Notification / Reference No.	From	То	_	
Chemical Waste Producer R	egistration			
WPN:5213-217-G2347-39	13-Sep-21	-	Valid	
Billing Account Construction	n Waste Disposal			
7032787	02-Jan-19	-	Account Active	
Construction Noise Permit				
GW-RE0938-24	16-Aug-24	11-Feb-25	Valid	
Wastewater Discharge Licer	ise			
WT00043449-2023	30-Mar-23	30-Apr-28	Valid	
Notification under Air Pollut	ion Control (Const	ruction Dust) Reg	ulation	
448474	27-Aug-19	-	Notified	

Table 4.2: Status of Environmental Submissions, Licenses and Permits for L2

4.4 Recommended Mitigation Measures

The EM&A programme followed the recommended mitigation measures in the EM&A Manual. The EM&A requirements as well as the summary of implementation status of the environmental mitigation measures are provided in **Appendix J**. In particular, the following mitigation measures were brought to attention during the site inspections:

Air Quality

- High standard of housekeeping should be maintained to prevent emission of fugitive dust.
- Water spraying should be maintained for active construction areas.

Water Quality

 Oils and fuels should be stored in designated areas which have pollution prevention facilities.

Waste Management

- General refuse should be sorted in enclosed bins or compaction units separated from inert C&D materials.
- Recycling bins should be provided to collect and recycle the waste.

5 Compliance with Environmental Permit

The status of the required submission under the EP during the reporting period is summarized in **Table 5.1**.

Table 5.1: Status of Submissions under the Environmental Permit

EP Condition	Submission	Submission Date
Condition 3.4	Monthly EM&A Report for Dec 2024	14 Jan 2025

6 Report in Non-compliance, Complaints, Notification of Summons and Successful Prosecutions

6.1 Record on Non-compliance of Action and Limit Levels

There was no breach of Action or Limit Levels for Air Quality and Noise monitoring in the reporting month.

6.2 Record on Environmental Complaints Received

One environmental complaint was received in the reporting month.

On 13 January 2025, the WKCD hotline received a complaint from Mr. So from the security control room of The Harbourside reported a complaint filed by a resident about the noise disturbance arising from the construction site between Xiqu Centre and M+. The complainant claimed that noise arose from the construction activities and vehicles in the afternoon on 11 January 2025 with no specific time mentioned. After the investigation, the major construction activities for Lyric Theatre Complex (L2 Contract) were carried out between 8:00 a.m. and 7:00 p.m. which is compliant with the statutory requirement. Preventive and mitigation measures are well-deployed and maintained by the Contractor including noise insulating fabric for breaking works, as well as regular briefings and meetings with subcontractors. And from the regular noise monitoring results, the results were well below the action/limit levels such that the construction works of Lyric Theatre Complex (L2 Contract) should not be posing significant impacts to the nearby sensitive receivers. As concluded from the above investigation and findings, it could not directly imply the complaint was attributable to Lyric Theatre Complex (L2 Contract).

The cumulative statistics on complaints were provided in Appendix K.

6.3 Record on Notifications of Summons and Successful Prosecution

No notifications of summons or successful prosecutions were received this month. The cumulative statistics on notifications of summons and successful prosecutions were provided in **Appendix** K.

7 Future Key Issues

7.1 Construction Works for the Coming Month(s)

The major site works for L2 to be commissioned in the coming month include:

- LTC construction
 - ABWF works
 - Façade work
 - MEP works
- ASDA and Lyric Theatre Promenade
 - Defects rectification
 - Excavation and backfilling
- DCS cofferdam
 - Backfilling
 - Construction of cable draw pits
- Extended basement
 - MEP works
 - Power cabling

7.2 Key Issues for the Coming Month

Key issues to be considered at Lyric Theatre Complex in the coming month include:

- · Generation of dust from construction works;
- Noise impact from operating equipment and machinery on-site;
- · Generation of site surface runoffs and wastewater from activities on-site;
- Management of stockpiles and slopes, particularly on rainy days;
- Sorting, recycling, storage and disposal of general refuse and construction waste;
- · Management of chemicals and avoidance of oil spillage on-site; and
- Operating conditions of drainage facilities.

7.3 Monitoring Schedule for the Coming Month

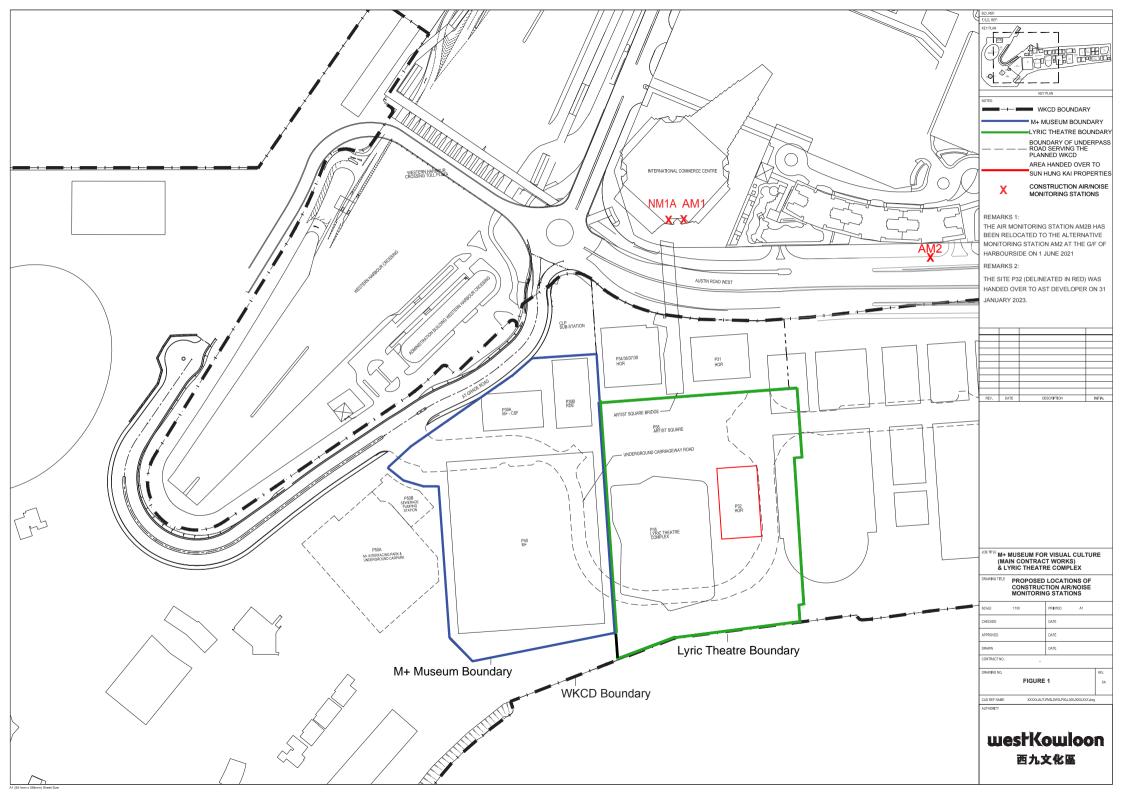
The environmental site inspection and environmental monitoring will be continued in the coming month. The tentative monitoring schedule for the coming month is shown in the **Appendix E**.

8 Conclusions and Recommendations

8.1 Conclusions

The EM&A programme as recommended in the EM&A Manual has been undertaken. The construction works and EM&A programme for M+ Museum was commenced on 31 October 2015 and completed on 28 February 2021; while the construction works and EM&A programme for Lyric Theatre Complex (L1 and L2 Contracts) was commenced on 1 March 2016, and the EM&A programme for L1 Contract was completed on 30 June 2021.

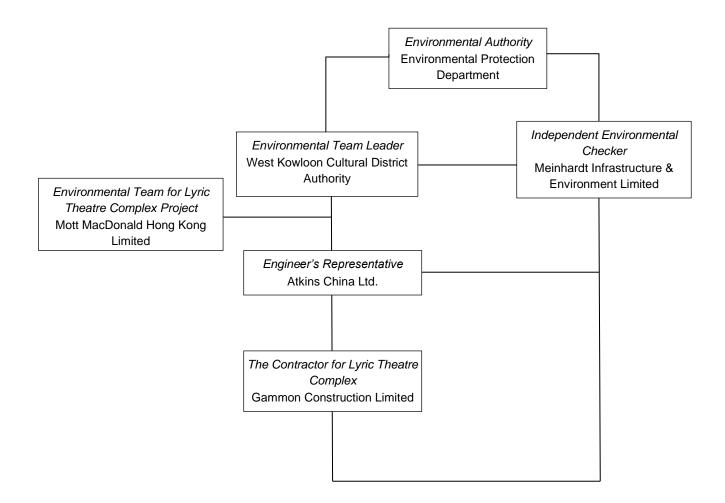
Monitoring of air quality and noise with respect to the Project is underway. In particular, the 1-hour TSP, 24-hour TSP, noise level (as L_{eq}, 30 minutes) under monitoring have been checked against established Action and Limit levels. There was no breach of Action and Limit Levels for 1-hour TSP, 24-hour TSP and noise in the reporting month.


One environmental complaint was recorded in the reporting month. No notifications of summons or successful prosecutions were received during the reporting month.

Weekly construction phase site inspections and bi-weekly landscape and visual impact inspections were conducted during the reporting month as required. It was observed that the Contractors had implemented all possible and feasible mitigation measures to mitigate the potential environmental impacts during construction phase works.

8.2 **Recommendations**

Potential environmental impacts due to the construction activities, including air quality, noise, water quality, waste, landscape and visual, will be monitored or reviewed. The recommended environmental mitigation measures shall be implemented on site and regular inspections as required will be carried out to ensure that the environmental conditions are acceptable.


Figure 1 Site Layout Plan and Monitoring Stations

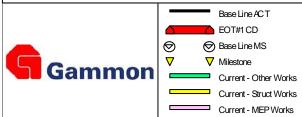
Appendices

- A. Project Organisation
- B. Tentative Construction Programme
- C. Action and Limit Levels for Construction Phase
- D. Event and Action Plan for Air Quality, Noise, Landscape and Visual Impact
- E. Monitoring Schedule
- F. Calibration Certifications
- G. Graphical Plots of the Monitoring Results
- H. Meteorological Data Extracted from Hong Kong Observatory
- I. Waste Flow table
- J. Environmental Mitigation Measures Implementation Status
- K. Cumulative Statistics on Complaints, Notifications of Summons and Successful Prosecutions

A. Project Organisation

Table A-1: Contact information

Company Name	Role	Name	Telephone	Email
Atkins China Ltd.	Project Manager	Mr. Simha LytheRao	2204 8259	Simha.Lytherao@atkinsglobal.com
Meinhardt Infrastructure & Environment Limited	Independent Environmental Checker	Ms. Claudine Lee	2859 5409	claudinelee@meinhardt.com.hk
Gammon Construction Limited (L2)	Environmental Manager	Ms. Fiona Law	9156 7654	fiona.cm.law@gammonconstruction.c om
Mott MacDonald Hong Kong Ltd.	Contractor's Environmental Team Leader	Mr. Thomas Chan	2828 5757	thomas.chan@mottmac.com
West Kowloon Cultural District Authority	Project Manager (Health, Safety and Environment)	Mr. Max Lee	2200 0782	max.sl.lee@wkcda.hk


B. Tentative Construction Programme

Development at West Kowloon Cultural District Monthly Environmental Monitoring and Audit (EM&A) Report for January 2025

L2-CMWP-R_3_B_11 L2 CMWP_R_3_B - Rev_3B_11 2nd DRAFT [DD=31Dec24] ***L I V E***

TASK filter: UPD: Summary Level 1 Prog.

	Activity	RD EOT #1 Finish	Rev_3B START	Rev_3B FINISH	Current Current EO START FINISH V	ot#1 R_3B AR VAR.		TF	Qtr 1 Qt J F A	2021 tr 2 Qtr 3	Qtr4 C	Qtr 1 Qtr 2	2 Qtr 3 J J A S	Qtr 4 Qtr	202 1 Qtr 2 A J	Qtr 3 Qtr	4 Qtr 1 Q D J F A	2024 ir 2 Qtr 3 J J A S	Qtr 4 Qt	tr 1 Qtr 2	25 Qtr 3 Qtr 4 J A S N	JJFA	2026 ir 2 Qtr 3 J J A S	Qtr 4
MWP_R	3_B - Rev_3B_11 2nd DRAFT [DD=31Dec24] ***L I V E***																							
NERAL	& PRELIMINARIES																							
ontract (Significant Dates																							
Commence	ment & Completion Dates - CMWP_Rev_01															- + - + - + - + - + - +								
Section Key	rdates																							
KD05A	Complete Pedestrian Access Corr. & Floor Finishes at AURW	0 28-Feb-21		12-Nov-21	12-Nov-21 A -2	256 0	0		•						- + - + - + - +	- + - + - + - + - +								
KD05B	Complete Required Pedestrian Access Corridor & associated top slab a Avenue Level [if instructed]	t 0 14-Feb-21		12-Nov-21	12-Nov-21 A -2	270 0	0				◙			- J - J J - 4 - 1 - 1 - 1 - 1				- L - L - L - L - I I I I I I I I I I I I I I I I I I I		- L L L L I. I. I. I. I. I. I. I. I. I. I. I. I. I. I.	L - L - L - L - L - L I			
KD05	PC for HO of the Remaining Works for M+ Promenade South	0 24-Aug-20	1	11-Sep-24	13-May-25* -17	723 -244	-33 -2	244						+ - + - + - + - + - + -				Ø		▼				
KD08	PC for HO Local ICT/Riser/SCR/TBE/MNO Rooms	0 09-Aug-23	;	07-Jan-26	07-Jun-26* -10	033 -151	0 -	151								-	-+-+-+-+-+					♥	V	
KD10	PC for HO of ASDA, Lyric Theatre Promenade South to Authority	0 09-Aug-23	;	07-Jan-26	07-Jun-26* -10	033 -151	0 -	·151								-						0	V	
KD09	PC for HO of RDE areas for Tenancy Fit-out Wrks	0 09-Aug-23	;	07-Jan-26	07-Jun-26* -10	033 -151	0 -	151							- + - + - + - +	•	-+-+-+-+-+					Ø	V	
KD11	PC for HO of Extended Basement for HO to Authority & HO of CW to	0 09-Aug-23	i	07-Jan-26	07-Jun-26* -10	033 -151	0 -	151								-						Ø	▽	
KD07	Relev. Gov Authority PRACTICAL COMPLETION for M+ Day 2 Works to the Authority	0 09-Aug-23	i	06-Feb-26	04-Jul-26* -10	060 -148	0 -	148						+ - + - + - + - + - + - +		-						Ø	▽	
KD13	PRACTICAL COMPLETION for LT, EB & C'Way 3B (Including PPE)	0 06-Mar-24		07-Aug-26	05-Jan-27* -10	035 -151	0 -	·151															Ø	
Stage Keyd	ates																			$\begin{array}{cccccccccccccccccccccccccccccccccccc$				1
KD03	OBTAIN OP for Lyric Theatre & Extended Basement	0 10-Jun-23		07-Nov-25	07-Apr-26* -10	032 -151	0 -	151									-+-+-+-+-+				Ø	▽		
KD01	Compl Dsgn Coor/Subm and obtn NNO for L1 Contr Bsmt constn wrks			20-Jul-19	· · ·	0 0	0																	
KD06	PC for Fountain Related Plantroom(s) (allow access to Project	0 01-Apr-21		22-Sep-22	22-Sep-22 A -5	538 0	0						S											
KD14	Contractor) Complete all Necessary Works Incl. Integ_T&C along CW Z3a/Z3b for	0 31-Jan-23		22-Nov-25	22-Apr-26* -11	177 -151	0 -	151						•	- + - + - + - +	- + - + - + - + - +					Ø			
KD02	Rel_Authority Pre-Insp. Obtain BA14 Acknowledge from BD for M+Day2 A&A Works	0 10-Jun-23		06-Jan-26	03-Jun-26* -10	089 -148	0 -	148														Ø	▼	
CMWP-S	ummary Program - RSS														$= \frac{1}{1} = \frac{1}{1} = \frac{1}{1} = \frac{1}{1} = \frac{1}{1}$	- + - + - + - + - + - + - + - + - + - +								
SUM100	[LoE] CC_B - Lyric Theatre	466	02-May-20	22-Jan-26	02-May-20 A 31-Jul-26	-153	0	130		· · · · ·	· · · ·	· · · · · · · ·												; ; ; ; ;;
SUM101	[LoE] CC_C - ASDA and Lyric Theatre Promenade	421	12-Apr-21		12-Apr-21 A 06-Jun-26	-121		175																
SUM102	[LoE] CC D - Remaining Works for M+ Promenade South	103	26-May-22	11-Sep-24	26-May-22 A 13-May-25	-188		188																
SUM103	[LoE] CC_E - DCS Cofferdam		-	04-Jul-24	07-Aug-20 A 30-Nov-24 A	-111		100			· · · · ·	· · · · · · · ·	 						·····			·		
		0	07-Aug-20		-		3	10																
SUM104	[LoE] CC_F - Modification to Existing Pump Cell	113	12-Oct-22	04-Dec-24	12-Oct-22 A 24-May-25	-134		-46			 													
SUM105	[LoE] CC_G - Extended Basement	203	15-May-21	28-May-25	15-May-21 A 09-Sep-25	-87		97																
SUM106	[LoE] CC_H - Vibration Isolation Spring System Remaining as of 30Apr2020	0	14-Apr-20	06-Feb-21	14-Apr-20 A 06-Feb-21 A	0	0												X					
SUM107	[LoE] CC_I - Underpass and Associated Area	212	24-Feb-21	09-Jun-25	24-Feb-21 A 19-Sep-25	-87	8	52																
SUM108	[LoE] CC_J - M+ Day 2 Works	392	03-Jun-21	03-Dec-25	03-Jun-21 A 04-May-26	-119	0 ·	-93										111/						
SUM109	[LoE] CC_K - Water Main at Promenade	169	23-Apr-22	10-Jan-25	23-Apr-22 A 31-Jul-25	-161	-24	-36																
SUM110	[LoE] CC_N - Lifts & Escalators	84	16-Aug-21	30-Aug-25	16-Aug-21 A 18-Apr-25	111	2	99												<u></u>				
SUM111	[LoE] P32 Interim Development	85	17-May-21	14-Feb-25	17-May-21 A 19-Apr-25	-51	-1 3	361												•				
SUM112	[LoE] Project Wide Stat. Inspections & Approval [LTC&EB FSD & BD Summary LTC/EB_3B & 3A)]	146	14-Jul-25	06-Jan-26	03-Dec-25 03-Jun-26	-119	0 -	-119										K				+		
	· · · ·				, , , , , , , , , , , , , , , , , , , ,	1			-													<u></u>		
															<u> </u>	Date	1		Rev	vision			necked	Ar
	Base Line ACT Legend: EOT#1CD RD = Remainin		_		2 CMWP_R_3		Dou			11 0	bal	DD				6-Jan-25	CN 414		-	4 Update		NS		<u>יירו</u> וווו

Type; LM = Last Month; SUMM = Summary; TF = Total Float; VAR = Variance

[DD=31Dec24] ***L I V E***

Page 1 / 1

C. Action and Limit Levels for Construction Phase

Air Quality

The Action and Limit Levels for 1-hour and 24-hour TSP for the monitoring station are presented in following tables:

Table C-1: Action and Limit Levels for 1-hour TSP								
Monitoring	J Station	Action Level (mg/m ³)	Limit Level (mg/m ³)					
AM	1	273.7	500					
AM	2	274.2	500					

Table C-2: Action and Limit Levels for 24-hour TSP

Monitoring Station	Action Level (µg/m³)	Limit Level (µg/m³)
AM1	143.6	260
AM2	151.1	260

<u>Noise</u>

The Action and Limit Levels for Noise for the monitoring stations are presented in following table:

Table C-3: Action and Limit Levels for Construction Noise

Time Period & Monitoring Locations	Action Level	Limit Level
NM1A		
0700-1900 hours on normal weekdays	When one valid documented complaint is received.	75 dB(A)

D. Event and Action Plan for Air Quality, Noise, Landscape and Visual Impact

Air Quality

In case the Action and Limit Levels are not complied during construction stage, the following Event and Action Plan should be followed:

Table D-1: Event and Action	Plan for Air Quality
-----------------------------	----------------------

Event	Action					
	ET	IEC	WKCDA	Contractor		
Action Level						
1. Exceedance for one sample	 Identify source, investigate the causes of exceedance and propose remedial measures; Inform IEC and WKCDA; Repeat measurement to confirm finding; Increase monitoring 	 Check monitoring data submitted by ET; Check Contractor's working method. 	1. Notify Contractor	 Rectify any unacceptable practice; Amend working methods if appropriate. 		
	frequency to daily.					
2. Exceedance for two or more consecutive samples	 Identify source; Inform IEC and WKCDA; Advise the WKCDA on the effectiveness of the proposed remedial measures; Repeat measurements to confirm findings; Increase monitoring frequency to daily; Discuss with IEC and Contractor on remedial actions required; If exceedance continues, arrange meeting with IEC and WKCDA; If exceedance stops, cease additional 	 Check monitoring data submitted by ET; Check Contractor's working method; Discuss with ET and Contractor on possible remedial measures; Advise the ET on the effectiveness of the proposed remedial measures; Monitor the implementation of remedial measures. 	-	 Submit proposals for remedial to WKCDA within three working days of notification; Implement the agreed proposals; Amend proposal if appropriate. 		
Limit Level	monitoring.					
	 Identify source, investigate the causes of exceedance and propose remedial measures; Inform WKCDA, Contractor and EPD; Repeat measurement to confirm finding; Increase monitoring frequency to daily; Assess effectiveness of 	 Check Contractor's working method; Discuss with ET and Contractor on possible premedial measures; Advise the WKCDA on the effectiveness of the proposed remedial 	notification of failure in writing;	 Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IEC within three working days of notification; Implement the agreed proposals; Amend proposal if appropriate. 		

5. Monitor the

implementation of

remedial measures.

Contractor's remedial actions and keep IEC,

informed of the results.

EPD and WKCDA

Event

Action

2. Exceedance for two or more consecutive samples	 Notify IEC, WKCDA, Contractor and EPD; Identify source; 	 Check monitoring data submitted by ET; Check Contractor's working method: 	notification of failure in writing;	 Take immediate action to avoid further exceedance; Submit proposals for
	 Repeat measurement to confirm findings; Increase monitoring frequency to daily; Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented; Arrange meeting with IEC and WKCDA to discuss the remedial actions to be taken; Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and WKCDA informed of the results; If exceedance stops, cease additional monitoring. 	 Discuss amongst WKCDA, ET, and Contractor on the potentia remedial actions; Review Contractor's remedial actions whenever necessary to assure their effectiveness and advise the WKCDA accordingly; Monitor the implementation of 	 In consolidation with the IEC, agree liwith the Contractor on the remedial measures to be implemented; Ensure remedial 	remedial actions to IEC within three working days of notification; 3. Implement the agreed proposals; 4. Resubmit proposals if problem still not under control; 5. Stop the relevant portion of works as determined by the WKCDA until the exceedance is abated.

Construction Noise

In case the Action and Limit Levels are not complied during construction stage, the following Event and Action Plan should be followed:

Event	t Action			
	ET	IEC	WKCDA	Contractor
Action Level	 Notify WKCDA, IEC and Contractor; Carry out investigation; Report the results of investigation to the IEC, WKCDA and Contractor; Discuss with the IEC and Contractor on remedial measures required; Increase monitoring frequency to check mitigation effectiveness. 	investigation results	in writing;2. Notify Contractor;	mitigation proposals to IEC and WKCDA;
Limit Level	 Inform IEC, WKCDA, Contractor and EPD; Repeat measurements to confirm findings; Increase monitoring frequency; Identify source and investigate the cause of exceedance; Carry out analysis of Contractor's working procedures; Discuss with the IEC, Contractor and WKCDA on remedial measures required; Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and WKCDA informed of the results; If exceedance stops, cease additional monitoring. 	 Discuss amongst WKCDA, ET, and Contractor on the potentia remedial actions; Review Contractor's remedial actions whenever necessary to assure their effectiveness and advise the WKCDA accordingly. 	 lin writing; Notify Contractor; In consolidation with the IEC, agree with the Contractor on the remedial measures to be implemented; Supervise the implementation of remedial measures; If exceedance continues, consider stopping the Contractor to 	 action to avoid further exceedance; 2. Submit proposals for remedial actions to IEC and WKCDA within 3 working days of notification; 3. Implement the agreed proposals; 4. Submit further proposal if problem still not under control; 5. Stop the relevant portion of works as instructed by the WKCDA until the exceedance is abated.

 Table D-2:
 Event and Action Plan for Construction Noise

Landscape and Visual Impact

In case of non-compliance of landscape and visual impacts, procedures in accordance with the Event and Action Plan should be followed:

Event	Action					
	ET	IEC	WKCDA	Contractor		
Design Check	1. Design check to make sure the design complies with all the proposed mitigation measures in the EIA report;	 Check report submitted by ET; Recommend remedial design if necessary. 	1. Undertake remedial design if necessary.	-		
	2. Prepare and submit report.					
Non-conformity on one occasion	1. Identify source of non- conformity;	1. Check and verify source of non-conformity;	 Notify Contractor; Ensure remedial 	1. Amend working method as necessary;		
	2. Report to IEC and WKCDA;	2. Discuss remedial actions with ET and	actions are properly implemented.	2. Rectify damage and undertake necessary		
	3. Discuss remedial actions with IEC, WKCDA and Contractor;	effectiveness of proposed		replacement and remedial actions.		
	4. Monitor remedial actions until rectification has been completed.	remedial actions; 4. Check implementation of remedial actions.				
Repeated non conformity	-1. Identify source of non- conformity;	1. Check and verify source of non-conformity;	 Notify Contractor; Ensure remedial 	1. Amend working method as necessary;		
	2. Report to IEC and WKCDA;	2. Check Contractor's working method;	actions are properly implemented.	2. Rectify damage and undertake necessary		
	 Increase monitoring frequency; Discuss remedial actions with IEC, WKCDA and Contractor; 	3. Discuss remedial actions with ET and		replacement and remedial actions.		
		effectiveness of proposed				
	5. Monitor remedial actions until rectification has been completed;	remedial actions; 5. Supervise implementation of				
	6. If non-conformity rectified, reduce monitoring frequency back to normal.	remedial actions.				

Table D-3: Event and Action Plan for Landscape and Visual Impact

E. Monitoring Schedule

January 2025

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
			1	2 AM1, AM2 - 24hrTSP, 1hr TSP x3 NM1A - Noise Impact Monitoring	3	4
5	6	7	8 AM1, AM2 - 24hrTSP, 1hr TSP x3 NM1A - Noise Impact Monitoring Lyric Landscape & Visual Inspection	9	10	11
12	13	14 AM1, AM2 - 24hrTSP, 1hr TSP x3 NM1A - Noise Impact Monitoring	15	16	17	18
19	20 AM1, AM2 - 24hrTSP, 1hr TSP x3 NM1A - Noise Impact Monitoring	21	22 Lyric Landscape & Visual Inspection	23	24 AM1, AM2 - 24hrTSP, 1hr TSP x3	25
26	27	28 AM1, AM2 - 24hrTSP, 1hr TSP x3 NM1A - Noise Impact Monitoring	29	30	31	
		Notes AM1 - International (AM2 - The Harboursi NM1A - Internationa	de Tower 1 - Ground	Floor	1	

February 2025

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
						1
2	3 AM1, AM2 - 24hrTSP, 1hr TSP x3 NM1A - Noise Impact Monitoring	4	5	6		8 AM1, AM2 - 24hrTSP, 1hr TSP x3 NM1A - Noise Impact Monitoring
9	10	11	12	13	14 AM1, AM2 - 24hrTSP, 1hr TSP x3 NM1A - Noise Impact Monitoring	15
16	17	18	19	20 AM1, AM2 - 24hrTSP, 1hr TSP x3 NM1A - Noise Impact Monitoring	21	22
23	24	25	26 AM1, AM2 - 24hrTSP, 1hr TSP x3 NM1A - Noise Impact Monitoring	27	28	
		AM2 - The Harboursi	Commerce Centre (IC ide Tower 1 - Ground I Commerce Centre (1	Floor		

F. Calibration Certifications

		olume TSP Sampler Calibration Record
Location Calibrated by Date	: : :	AM1(ICC) K.T.Ho 06/11/2024
<u>Sampler</u> Model Serial Number	:	TE-5170 S/N 0767

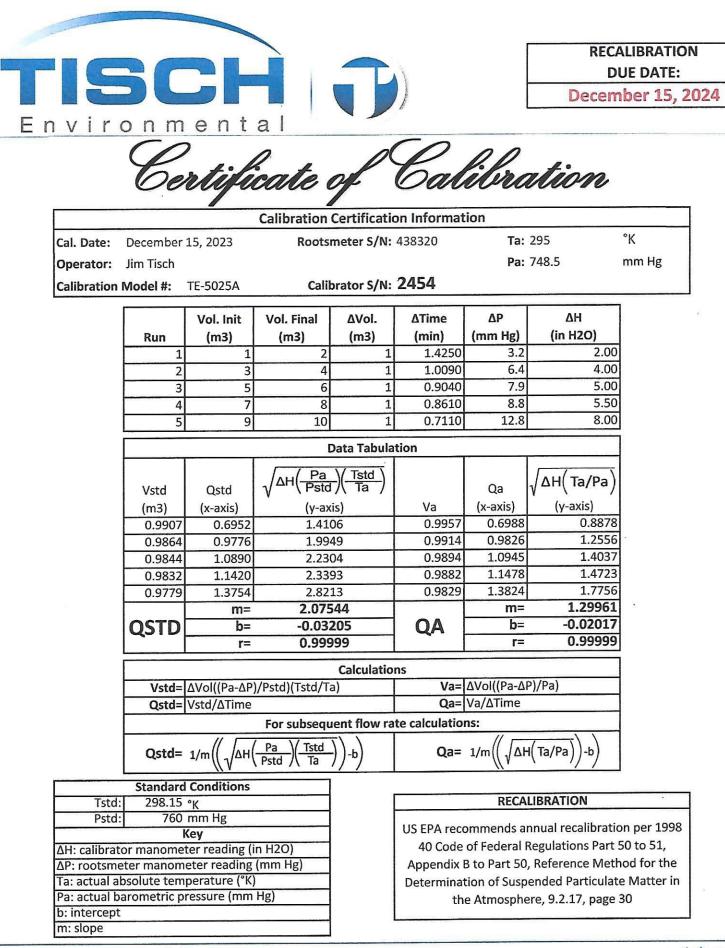
Calibration Orifice and Standar	d Calibrati	on Relationship
Serial Number	:	2454
Next Calibration Date	:	15 December 2024
Slope (m)	:	2.07544
Intercept (b)	:	-0.03205
Correlation Coefficient(r)	:	0.99999
Standard Condition		
Pstd (hpa)	:	1013
Tstd (K)	:	298.18

Calibration Condition		
Pa (hpa)	:	1019
Ta(K)	:	300

Resi	stance Plate	dH [green liquid]	Z	X=Qstd	IC	Y
		(inch water)		(cubic meter/min)	(chart)	(corrected)
1	18 holes	10.0	3.161	1.539	56	55.99
2	13 holes	8.2	2.863	1.395	50	49.99
3	10 holes	6.0	2.449	1.195	42	41.99
4	7 holes	4.2	2.049	1.003	34	33.99
5	5 holes	2.4	1.549	0.762	20	19.99

Notes:Z=SQRT{dH(Pa/Pstd)(Tstd/Ta)}, X=Z/m-b, Y(Corrected Flow)=IC*{SQRT(Pa/Pstd)(Tstd/Ta)}

Sampler Calibration Relationship


Slope(m):<u>45.471</u> In

Intercept(b):-13.205

Correlation Coefficient(r): 0.9962

Checked by: Magnum Fan

Date: 08/11/2024

Tisch Environmental, Inc. 145 South Miami Avenue

Village of Cleves, OH 45002

<u>www.tisch-env.com</u> TOLL FREE: (877)263-7610 FAX: (513)467-9009

		olume TSP Sampler Calibration Record
Location Calibrated by Date	: : :	AM1(ICC) K.T.Ho 06/01/2025
<u>Sampler</u> Model Serial Number	:	TE-5170 S/N 0767

Calibration Orifice and Standar	d Calibrati	on Relationship
Serial Number	:	2454
Next Calibration Date	:	02 December 2025
Slope (m)	:	2.08315
Intercept (b)	:	-0.04938
Correlation Coefficient(r)	:	0.99985
<u>Standard Condition</u> Pstd (hpa) Tstd (K)	:	1013 298.18
Calibration Condition		
Pa (hpa)	:	1019
Ta(K)	:	294

Resi	esistance Plate dH [green liquid]		Z	X=Qstd	IC	Y
		(inch water)		(cubic meter/min)	(chart)	(corrected)
1	18 holes	11.2	3.383	1.647	58	58.62
2	13 holes	8.2	2.894	1.413	50	50.54
3	10 holes	6.2	2.517	1.232	42	42.45
4	7 holes	4.4	2.120	1.041	32	32.34
5	5 holes	2.6	1.630	0.806	20	20.21

Notes:Z=SQRT{dH(Pa/Pstd)(Tstd/Ta)}, X=Z/m-b, Y(Corrected Flow)=IC*{SQRT(Pa/Pstd)(Tstd/Ta)}

Sampler Calibration Relationship

Slope(m):46.205

Intercept(b):-15.906

Correlation Coefficient(r): 0.9960

Checked by: Magnum Fan

Date: 08/01/2025

			al	7			DL	ALIBRATION UE DATE: nber 2, 202	
-	Ce	rtifa	cate e				ntion		
			Calibration	Certification	on Informati	ion			
Cal. Date:	December	2.2024	Roots	meter S/N:	438320	Та:	293	°К	
	Jim Tisch	-,		Additional and second				mm Hg	
· · · · · · · · · · · · · · · · · · ·		Contraction of the second states of the	0.17	C /NI.	04F4		737.7		
Calibration I	Model #:	TE-5025A	Calin	brator S/N:	2454				
7		Vol. Init	Vol. Final	ΔVol.	ΔTime	ΔΡ	ΔΗ	í .	
9	Dun	T para usang t	(m3)	Δvol. (m3)	(min)	(mm Hg)	(in H2O)	i i	
1	Run 1	(m3) 1	(m3) 2	(m3) 1		(mm rig) 3.2	2.00	I	
/	2	3	4	<u>1</u>	1.4200	6.4	4.00	Ê	
1	3	N23		<u>1</u>	0.9090	7.9	5.00	l	
1	4		8	1		8.8		ľ	
1	5			1		12.8		l	
2								i i i i i i i i i i i i i i i i i i i	
1			Г	Data Tabula	ition	1		É –	
	Vstd	Qstd	√∆H(<u>Pa</u> Pstd)(<u>Tstd</u>)		Qa	√∆H(Ta/Pa)	l	
1	(m3)	(x-axis)	y (1 stu (y-axi		Va	(x-axis)	y (y-axis)	I.	
/	(m3) 1.0093				0.9958	0.7013	0.8796	1	
7	1.0093	0.7108	2.013		0.9938	0.9750		l	
1	1.0031	1.1035	Company of the company of the contract of the company of the compa		0.9896	1.0886	1.3907	í	
/	1.0031	l	and the second se		0.9884	1.1361	1.4586	l l	
1	0.9965				0.9831	1.3769	1.7592	l	
1		m=				m=		1 -	
1	QSTD	and the second sec			QA	b=		i The second sec	
1	Qu'	r=	and the second se	and the second se		r=		l	
the second se	<u> </u>			and the second secon				í.	λ.
1		I//D= AD	1/= · 1/T-+/T	Calculatio			21/D-1	i	
1)/Pstd)(Tstd/Ta	<u>a) (</u>		ΔVol((Pa-ΔP Va/ΔTime	//Pa)	ŀ	
/	Usta-	Vstd/∆Time	and the second s					i	
/	L	·/		ent flow ra	ate calculation	1S:		l	
	Qstd=	1/m((√∆H((<u>Pa</u>)(<u>Tstd</u>) Pstd)(Ta)	-))-b)	Qa=	1/m((√∆H	l(Та/Ра))-b)		
Γ	Standard	Conditions							
Tstd:	298.15	°К		i – – I		RECA	LIBRATION		
Pstd:	760	mm Hg		1 1				1008	
	K	Key		1 1	Charles and the second s		nnual recalibratio		
		ter reading (in		i 1	25 - 15 - 15 - 15 - 15 - 15 - 15 - 15 -		Regulations Part 5	concernance and a second second	
		neter reading		1 1	0.000		, Reference Meth		
		perature (°K) pressure (mm		1 1	THE REPORT OF THE CONTRACTOR OF THE		ended Particulate		a.
b: intercept		ressure (min	ng)	1 1	the	e Atmospne	ere, 9.2.17, page 3	30	
m: slope				1 1	L				
111. 51000			 The second s						

Tisch Environmental, Inc. 145 South Miami Avenue

Village of Cleves, OH 45002

<u>www.tisch-env.com</u> TOLL FREE: (877)263-7610 FAX: (513)467-9009

ALS Technichem (HK) Pty Ltd

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

SUB-CONTRACTING REPORT

CONTACT	: MR MAGNUM FAN	WORK ORDER HK2417958
CLIENT	ENVIROTECH SERVICES CO.	
ADDRESS	: RM 712, 7/F, MY LOFT 9 HOI WING ROAD,	SUB-BATCH : 1
	TUEN MUN, N.T. HK	DATE RECEIVED : 8-MAY-2024
		DATE OF ISSUE : 14-MAY-2024
PROJECT	:	NO. OF SAMPLES : 1
		CLIENT ORDER +

General Comments

- · Sample information (Project name, Sample ID, Sampling date/time, etc.) is provided by client.
- Result(s) of sample(s) is/are reported on as received basis, unless otherwise specified. The result(s) is/are related only to the item(s) tested.
- Sample(s) was/ were submitted by client. Sample(s) arrived laboratory in ambient condition.
- Calibration was subcontracted to Envirotech Services Company.

Signatories

This document has been signed by those names that appear on this report and are the authorised signatories

Signatories	Position		
K. Said Jong			
Richard Fung	Managing Director	4	

This report supersedes any previous report(s) with the same work order number.

All pages of this report have been checked and approved for release.

ALS Technichem (HK) Pty Ltd Part of the ALS Laboratory Group

11/F Chung Shun Knitting Centre 1 - 3 Wing Yip Street Kwai Chung N T. Hong Kong Tel. +852 2610 1044 Fax. +852 2610 2021 www.alsglobal.com WORK ORDER SUB-BATCH : HK2417958 [:] 1 ALS

4

CLIENT PROJECT ENVIROTECH SERVICES CO.

ALS Lab ID	Client's Sample ID	Sample Type	Sample Date	External Lab Report No.	
HK2417958-001	Sibata LD-5R (841724)	Equipments	30-Apr-2024	S/N: 841724	a sector and sector and

Envirotech Services Co.

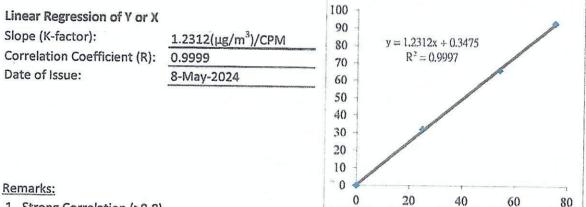
Rm. 712, 7/5 My Loft, 9 Hoi Wing Road, 7 Juan Mun, H.K. 7al : 2560 8450 Fax : 2560 8553 E mail: anvirosach@netvigstor.com

Equipment Verification Report (TSP)

Equipment Calibrated:

Type:	Laser Dust Monitor
Manufacturer:	Sibata LD-5R
Serial No.:	841724
Equipment Ref.:	N/A
ALS Job Order:	HK2416892

Standard Equipment


Standard Equipment:	High Volume Sampler (TSP)
Location :	Envirotech Room (Calibration Room)
Equipment Ref.:	HVS 8162
Last Calibration Date:	25-Mar-2024

Equipment Verification Results:

Verification Date:

30-Apr-2024

Hour	Time	Mean Temp ^o C	Mean Pressure (hpa)	Concentration in µg/m ³ (Standard Equipment) (Y-Axis)	Concentration in µg/m ³ (Calibrated Equipment) (X-Axis)
1hr 00mins	0845-0945	28.5	1005	32	25
2hr 00mins	0950-1150	28.5	1005	66	54
3hr 00mins	1315-1615	29.6	1005	93	75

1. Strong Correlation (>0.8)

2. Factor 1.2312 (µg/m³)/CPM should be applied for TSP monitoring

*If R<0.5, repair or verification is required for the equipment

Operator:	P.F.Yeung	Signature	Trai	Date:	08 May 2024
QC Reviewer:	K.F.Ho	Signature	at	Date:	08 May 2024

TSP SAMPLER CALIBRATION CACULATION SPREADSHEET

HVS ID:			oft, Tuen M HVS Mod	el TE-5170	Contractive of the second second	Date of Cal Next Calibr Operator:	the trackt for
Sea Level Pressure (hpa) Temperature (°C) CA Make:					I	Temperature ORIFICE Qstd Slope	2.07544
			Serial#:	TE-5025A 2454 CALIBRA]	Qstd Intercep	-0.03205
DI	Inna	lane (CLUDIO.	TION	g - templetine and the second	
Plate		H20(R)	H2O	Qstd	I	IC	LINEAR
<u>No.</u> 18	(in) 6.7	(in)	(in)	(m3/min)	(chart)	(corrected)	REGRESSION
13	5.5	6.8 5.6	13.5	1.790	60	60.15	Slope= 30.471
10	4.3	4.5	11.1	1.625	55	55.13	Intercept= 5.514
7	2.5	2.7	8.8 5.2	1.448	49	49.12	Corr. Coeff.= 0.9994
5	1.5	1.7	3.2	1.117 0.879	40 32	40.10 32.08	
C = I[Sqrt(I)] $Std = stand$ $C = correcte$ $= actual ch$ $= calibrate$ $= calibrate$ $a = actual te$ $a = actual p$ or subseque $n((I)[Sqrt(I)])$	Sqrt(H2O() Pa/Pstd)(Ts ard flow ra ed chart res art respons or Qstd slo or Qstd slo or Qstd inte ressure dun nt calculat 298/Tav)(P	std/Ta)] ute sponse e ppe ercept e during ca ting calibra	std/Ta))-b] libration (de, ation (mm H apler flow:)				Flow Rate
= sampler = sampler	0.21			15	and the second second		and a supervised of the state of the
= chart resp				10	1	<u> </u>	
v = daily av v = daily av	erage tem				7 0.8 0	0.9 1.0 1.1	1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 Qstd(m3/min)

nvir			ai	7			D	ALIBRATION UE DATE: aber 15, 2024
	Ce	rtifa	cate				ntion	
			Calibration	Certificatio	on Informat	ion		
Cal. Date:	December	15, 2023	Roots	meter S/N:	438320	Ta:	295	°K
Operator:	Jim Tisch					Pa:	748.5	mm Hg
		TE FOREA	0.11		2151			
Calibration	viodel #:	TE-5025A	Call	brator S/N:	2434			
		Vol. Init	Vol. Final	ΔVol.	∆Time	ΔΡ	ΔΗ	
	Run	(m3)	(m3)	(m3)	(min)	(mm Hg)	(in H2O)	
	1	1	2	1	1.4250	3.2	2.00	
	2	3	4	1	1.0090	6.4	4.00	
	- 3	5	6	1	0.9040	7.9	5.00	
	4	7	8	1	0.8610	8.8	5.50	
	5	9	10	1	0.7110	12.8	8.00	
				Joto Tobula	tion			
			1	Data Tabulat	uon	Т		
	Vstd	Qstd	√∆H(<u>Pa</u>)(<u>Tstd</u>) Ta)		Qa	$\sqrt{\Delta H (Ta/Pa)}$	
	(m3)	(x-axis)	(y-ax	is)	Va	(x-axis)	(y-axis)	
	0.9907	0.6952	1.41	06	0.9957	0.6988	0.8878	
	0.9864	0.9776	1.994		0.9914	0.9826	1.2556	*
	0.9844	1.0890	2.23		0.9894	1.0945	1.4037	
	0.9832	1.1420	2.33		0.9882	1.1478	1.4723	
	0.9779	1.3754	2.82		0.9829	1.3824	1.7756 1.29961	
	OCTO	m=	2.075		^	m= b=	-0.02017	
	QSTD	b=	-0.032		QA	r=	0.99999	
		r=	0.995				0.55555	\$
				Calculation				
			/Pstd)(Tstd/Ta	a)	and the second se	ΔVol((Pa-Δl	P)/Pa)	
	Qstd=	Vstd/∆Time				Va/∆Time		
			For subsequ	ent flow rat	te calculatio	ns:		
	Qstd=	1/m ((\\ \[\Lambda H (Pa <u>Tstd</u> Pstd Ta	-))-b)	Qa=	1/m ((√∆H	I(Та/Ра))-b)	
	Standard	Conditions						a.
Tstd:	298.15			a [RECA	LIBRATION	
Pstd:		mm Hg		ľ	110 554	10.20	anual manifest	n nor 1000
		Key					nnual recalibration	10 mm - 10
		ter reading (i					Regulations Part	and a second sec
		eter reading					, Reference Meth	
		perature (°K) ressure (mm					ended Particulat	
b: intercept	a officeric pi	i coour e (min			th	e Atmosphe	ere, 9.2.17, page	50
D. Intercent								

Tisch Environmental, Inc. 145 South Miami Avenue

Village of Cleves, OH 45002

<u>www.tisch-env.com</u> TOLL FREE: (877)263-7610 FAX: (513)467-9009

ALS Technichem (HK) Pty Ltd

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

SUB-CONTRACTING REPORT HK2419604 WORK ORDER : MR MAGNUM FAN CONTACT ENVIROTECH SERVICES CO. CLIENT SUB-BATCH : 1 : RM 712, 7/F, MY LOFT 9 HOI WING ROAD, ADDRESS DATE RECEIVED 20-MAY-2024 TUEN MUN, N.T. HK DATE OF ISSUE 24-MAY-2024 NO. OF SAMPLES : 1 PROJECT : CLIENT ORDER

General Comments

- Sample Information (Project name, Sample ID, Sampling date/time, etc.) is provided by client.
- Result(s) of sample(s) is/are reported on as received basis, unless otherwise specified. The result(s) is/are related only to the item(s) tested.
- Sample(s) was/ were submitted by client. Sample(s) arrived laboratory in ambient condition.
- Calibration was subcontracted to Envirotech Services Company.

Signatories

This document has been signed by those names that appear on this report and are the authorised signatories

Signatories	Position		
Redout Frag			
Richard Fung	Managing Director		3
Contraction of the second s			

This report supersedes any previous report(s) with the same work order number. All pages of this report have been checked and approved for release.

ALS Technichem (HK) Pty Ltd Part of the ALS Laboratory Group

11/F Chung Shun Knitting Centre 1 - 3 Wing Yip Street Kwai Chung N T Hong Kong Tel. +852 2610 1044 Fax. +852 2610 2021 www.alsglobal.com
 WORK ORDER
 : HK2419604

 SUB-BATCH
 : 1

 CLIENT
 : ENVIROTECH SERVICES CO.

 PROJECT
 : ---

ALS Lab	Client's Sample ID	Sample . Type	Sample Date	External Lab Report No.	
HK2419604-001	Sibata LD-3B (235786)	Equipments	11-May-2024	S/N: 235786	

----- END OF REPORT -----

1

Envirotech Services Co.

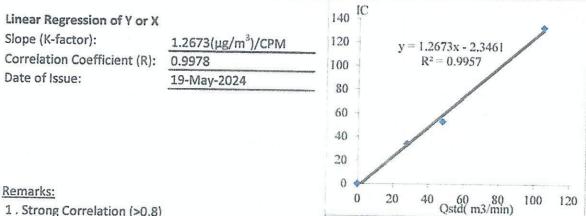
Ren. 712, 7/8 RTE FAN 17. Ny Loit, 9 Hoi Wing Road, 7 Lien Riun, F K. 7 ai - 2680 8650 Fax - 2680 8553 E mail: projedisch@r ton corn 4534

Equipment Verification Report (TSP)

Equipment Calibrated:

Type:	Laser Dust Monitor
Manufacturer:	Sibata LD-3B
Serial No.:	235786
Equipment Ref.:	N/A
ALS Job Order:	HK2418944

Standard Equipment


Standard Equipment:	High Volume Sampler (TSP)
Location :	Envirotech Room (Calibration Room)
Equipment Ref.:	HVS 8162
Last Calibration Date:	25-Mar-2024

Equipment Verification Results:

Verification Date:

11-May-2024

Hour	Time	Mean Temp [°] C	Mean Pressure (hpa)	Concentration in µg/m ³ (Standard Equipment) (Y-Axis)	Concentration in µg/m ³ (Calibrated Equipment) (X-Axis)
1hr 00mins	0830-0930	26.8	1015	34	28
2hr 00mins	0935-1135	28.5	1015	53	48
3hr 00mins	1310-1610	29,5	1016	133	105

1. Strong Correlation (>0.8)

2. Factor 1.2673(µg/m³)/CPM should be applied for TSP monitoring *If R<0.5, repair or verification is required for the equipment

Operator:	P.F.Yeung	Signature	Fai	Date:	19 May 2024
QC Reviewer:	K.F.Ho	Signature	100	Date:	19 May 2024

Location: Rm. 712, My Loft, Tuen Mun Date of Calibration: 25-Mar-24 HVS ID: 8162 Next Calibration Date: 24-May-24 Name and Model: TISCH HVS Model TE-5170 Operator: P.F.Yeung CONDITIONS Sea Level Pressure (hpa) 1016 Corrected Pressure (mm Hg) 762.1 Temperature (°C) 24.5 Temperature (K) 297.5 CALIBRATION ORIFICE Make: TISCH Qstd Slope 2.07544 Model: TE-5025A **Qstd** Intercept -0.03205 Serial#: 2454 CALIBRATION Plate H2O(L) H20(R) H₂O Qstd I IC LINEAR No. (in) (in) (in) (m3/min)(chart) (corrected) REGRESSION 18 6.7 6.8 13.5 1.790 60 60.15 Slope= 30.471 13 5.5 5.6 11.1 1.625 55 55.13 Intercept= 5.514 10 4.3 4.5 8.8 1.448 49 49.12 Corr. Coeff.= 0.9994 7 2.5 2.7 5.2 1.117 40 40.10 5 1.5 1.7 3.2 0.879 32 32.08 Calulations: IC Flow Rate Qstd = 1/m[Sqrt(H2O(Pa/Pstd)(Tstd/Ta))-b] 65 IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)] 60 Qstd = standard flow rate 55 IC = corrected chart response 50 I = actual chart response m = calibrator Qstd slope 45 b = calibrator Qstd intercept 40 Ta = actual temperature during calibration (deg K) Pa = actual pressure during calibration (mm Hg) 35 30 For subsequent calculation of sampler flow: 25 1/m((I)[Sqrt(298/Tav)(Pav/760)]-b) 20 m = sampler slope15 b = sampler intercept I = chart response 10 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 Tav = daily average temperature Pav = daily average pressure Qstd(m3/min)

TSP SAMPLER CALIBRATION CACULATION SPREADSHEET

nvir			ai	7			D	ALIBRATION UE DATE: 1ber 15, 20	
	Ce	rtifa	cate	/			tion		
			Calibration	Certificatio	on Informat	ion		and the second second	
Cal. Date:	December	15, 2023	Rootsi	meter S/N:	438320	Ta:	295	°K	
Operator:	Jim Tisch					Pa:	748.5	mm Hg	
Calibration I	Model #•	TE-5025A	Calif	prator S/N:	2454				
calibration	viouei #.	TE-JOZJA	Can		2101				
		Vol. Init	Vol. Final	ΔVol.	∆Time	ΔP	ΔН		
	Run	(m3)	(m3)	(m3)	(min)	(mm Hg)	(in H2O)		
	1	1	2	1	1.4250	3.2	2.00		
	2	3	4	1	1.0090	6.4	4.00		
	3	5	6	1	0.9040	7.9	5.00		
	4	7	8	1	0.8610	8.8	5.50		
	5	9	10	1	0.7110	12.8	8.00		
			ſ	Data Tabula	tion			1	
			L		uon				i
	Vstd	Qstd	√∆H(<u>Pa</u> Pstd)(<u>Tstd</u>) Ta)		Qa	$\sqrt{\Delta H (Ta/Pa)}$		
	(m3)	(x-axis)	(y-ax	is)	Va	(x-axis)	(y-axis)		
	0.9907	0.6952	1.410	06	0.9957	0.6988	0.8878		
	0.9864	0.9776	1.994		0.9914	0.9826	1.2556	•	
	0.9844	1.0890	2.230		0.9894	1.0945	1.4037		
	0.9832	1.1420	2.339		0.9882	1.1478	1.4723		
	0.9779	1.3754	2.823		0.9829	1.3824	1.7756	59	
	ACTO		2.075		0.0	m=	1.29961	<i>.</i>	
	QSTD	b=	-0.032		QA	b=	-0.02017 0.99999		
		r=	0.999	199		r=	0.999999		12
				Calculatio	ns				
	Vstd=	ΔVol((Pa-ΔP))/Pstd)(Tstd/Ta	a)	Va= ΔVol((Pa-ΔP)/Pa)				
	Qstd=	Vstd/∆Time			Qa= Va/ΔTime				
	For subsequent flow rate calculations:								
	Qstd=	1/m ((\[\[\[\] \] H (Pa <u>Tstd</u> Pstd Ta	-))-b)	Qa=	1/m ((√∆⊦	l(Ta/Pa))-b)		
	Standard	Conditions	1	-					
Tstd:	298.15					RECA	LIBRATION	•	
Pstd:									
	1	(ey					nnual recalibratio	5	
		ter reading (i					Regulations Part		
		eter reading			PERTONE MERCENSION AND AND AND AND AND AND AND AND AND AN		, Reference Meth		
		perature (°K)		•			ended Particulat		
	rometric p	ressure (mm	ng)		th	e Atmosphe	ere, 9.2.17, page	30	
b: intercept									
m: slope									

Tisch Environmental, Inc. 145 South Miami Avenue

Village of Cleves, OH 45002

<u>www.tisch-env.com</u> TOLL FREE: (877)263-7610 FAX: (513)467-9009

ALS Technichem (HK) Pty Ltd

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

SUB-CONTRACTING REPORT

CONTACT	: MR MAGNUM FAN	WORK ORDER HK2448121
CLIENT	ENVIROTECH SERVICES CO.	
ADDRESS	: RM 712, 7/F, MY LOFT 9 HOI WING ROAD, TUEN MUN, N.T. HK	SUB-BATCH:1DATE RECEIVED:13-NOV-2024DATE OF ISSUE:20-NOV-2024
PROJECT	:	NO. OF SAMPLES : 1 CLIENT ORDER :

General Comments

- Sample information (Project name, Sample ID, Sampling date/time, etc.) is provided by client. •
- Result(s) of sample(s) is/are reported on as received basis, unless otherwise specified. The result(s) is/are related only to the • item(s) tested.
- Sample(s) was/ were submitted by client. Sample(s) arrived laboratory in ambient condition.
- Calibration was subcontracted to Envirotech Services Company. •

Signatories

This document has been signed by those names that appear on this report and are the authorised signatories

Signatories	Position
Kidand Jony.	
Richard Fung	Managing Director

This report supersedes any previous report(s) with the same work order number.

All pages of this report have been checked and approved for release. ALS Technichem (HK) Pty Ltd

Part of the ALS Laboratory Group

11/F. Chung Shun Knitting Centre 1 - 3 Wing Yip Street Kwai Chung N.T. Hong Kong Tel. +852 2610 1044 Fax. +852 2610 2021 www.alsglobal.com

: HK2448121 WORK ORDER SUB-BATCH [:] 1 : ENVIROTECH SERVICES CO. CLIENT

PROJECT

:

ALS Lab ID	Client's Sample ID	Sample Type	Sample Date	External Lab Report No.
HK2448121-001	Sibata LD-3B (245834)	Equipments	09-Nov-2024	S/N: 245834

----- END OF REPORT ------

Envirotech Services Co.

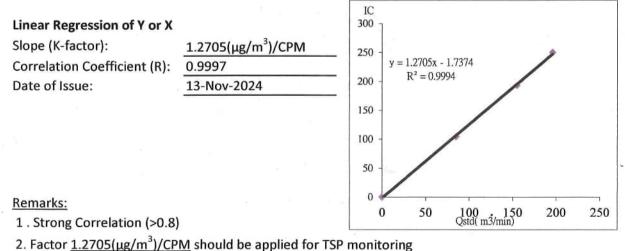
Rm. 712, 7/F My Loft, 9 Hoi Wing Road, Tuen Mun, H.K. Tel : 2560 8450 Fax : 2560 6553 E-mail: envirotech@netvigator.com

Equipment Verification Report (TSP)

Equipment Calibrated:

Туре:	Laser Dust Monitor
Manufacturer:	Sibata LD-3B
Serial No.:	245834
Equipment Ref.:	N/A
ALS Job Order:	HK2446853

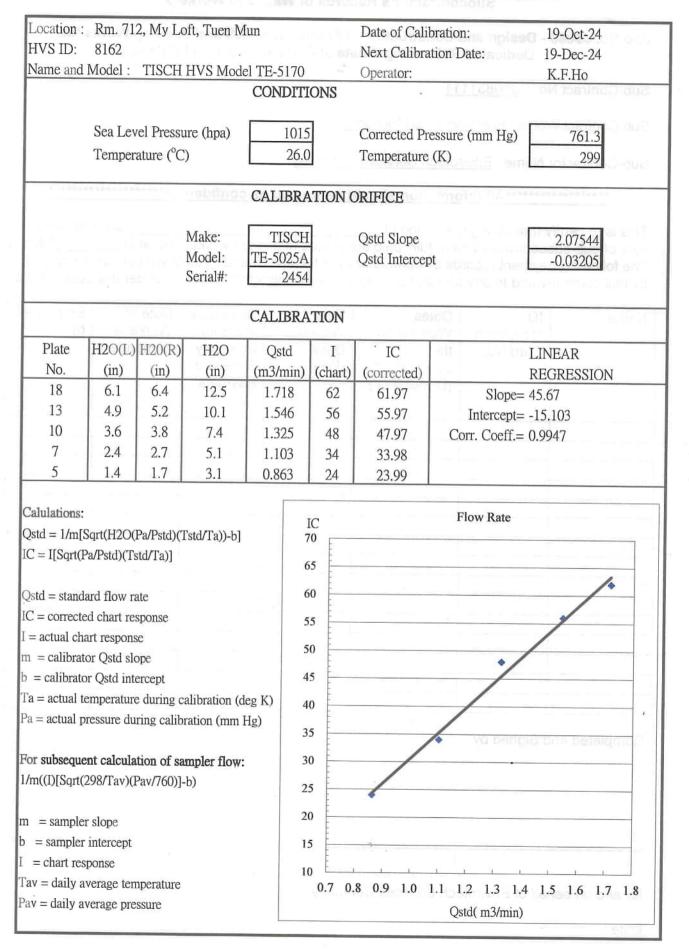
Standard Equipment


Standard Equipment:	High Volume Sampler (TSP)
Location :	Envirotech Room (Calibration Room)
Equipment Ref.:	HVS 8162
Last Calibration Date:	19-Oct-2024

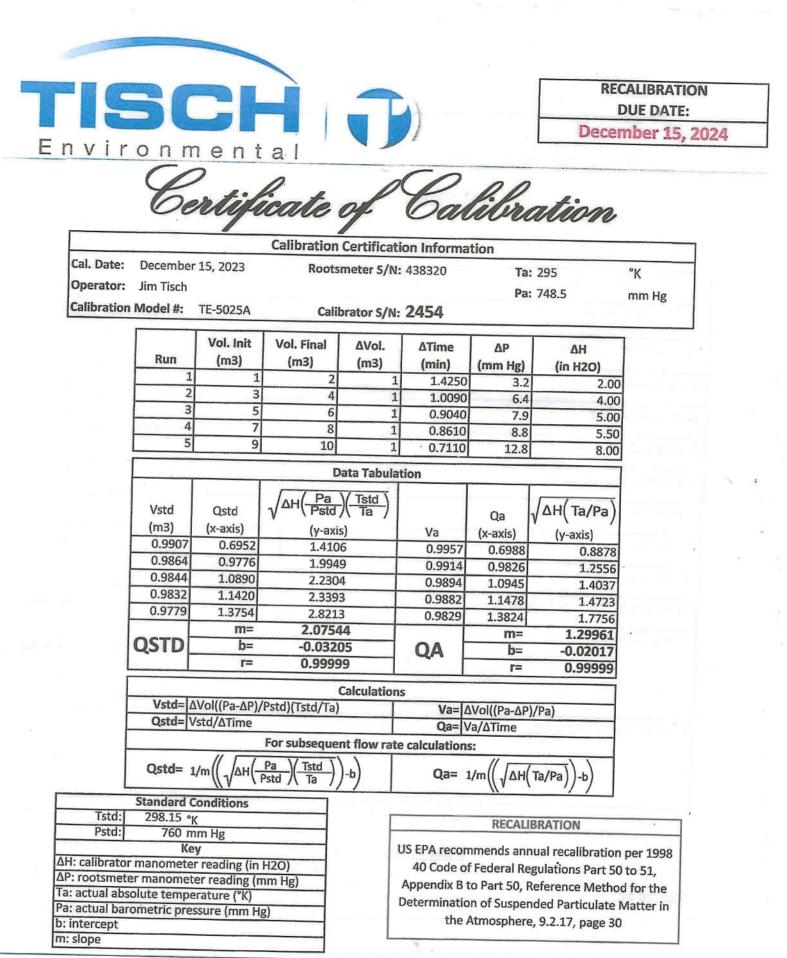
Equipment Verification Results:

Verification Date:

9-Nov-2024


Hour	Time	Mean Temp ^o C	Mean Pressure (hpa)	Concentration in µg/m ³ (Standard Equipment) (Y-Axis)	Concentration in µg/m ³ (Calibrated Equipment) (X-Axis)
1hr 00mins	0905-1005	24.9	1013	85	104
2hr 00mins	1015-1215	25.2	1014	155	193
3hr 00mins	1430-1730	25.6	1014	196	250

*If R<0.5, repair or verification is required for the equipment


Operator:	P.F.Yeung	Signature	Fai	Date:	11 Nov 2024
QC Reviewer:	K.F.Ho	Signature	at	Date:	11 Nov 2024

TSP SAMPLER CALIBRATION CACULATION SPREADSHEET

ele 2011 Meter a Sube Suber a Desta Parte

MUSU/ -

sch Environmental, Inc.

15 South Miami Avenue

llage of Cleves, OH 45002

www.tisch-env.com TOLL FREE: (877)263-7610 FAX: (513)467-9009

Certificate of Calibration

for

Description:	Sound Level Meter
Manufacturer:	RION
Type No.:	NL-52 (Serial No.: 00643040)
Microphone:	PCB 377B02 (Serial No.: 172764)
Preamplifier:	NH-25 (Serial No.:21757)

Submitted by:

Customer: Envirotech Services Co. Address: Rm.712, 7/F., My Loft, 9 Hoi Wing Road, Tuen Mun, Hong Kong

Upon receipt for calibration, the instrument was found to be:

✓ Within (31.5Hz – 8kHz)
□ Outside

the allowable tolerance.

The test equipment used for calibration are traceable to National Standards via:

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory

Date of receipt: 25 September 2024

Date of calibration: 27 September 2024

Date of NEXT calibration: 26 September 2025

Calibrated by: Calibration Technician

Date of issue: 27 September 2024

Certified by:

Mr. Ng Yan Wa Laboratory Manager

Page 1 of 4

Certificate No.: APJ24-072-CC001

Room 422,Leader Industrial Centre,57-59 Au Pui Wan Street ,Fo Tan, Shatin,N.T.,Hong Kong Tel: (852) 2668 3423 Fax:(852) 2668 6946 Homepage: http://www.aa-lab.com E-mail : inquiry@aa-lab.com

1. Calibration Precaution:

- The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 24 hours, _ and switched on to warm up for over 10 minutes before the commencement of the test.
- The results presented are the mean of 3 measurements at each calibration point. _

2. **Calibration Conditions:**

24.9 °C
1006 hPa
54.5 %

Calibration Equipment: 3.

	Туре	Serial No.	Calibration Report Number	Traceable to	
Multifunction Calibrator	B&K 4226	2288467	AV240081	HOKLAS	

Calibration Results 4.

Sound Pressure Level

Reference Sound Pressure Level

Setting of Unit-under-test (UUT)		App	Applied value		IEC 61672 Class 1		
Range, dB	Freq. W	eighting	Time Weighting	Level, dB	Frequency, Hz	dB	Specification, dB
30-130	dBA	SPL	Fast	94	1000	94.0	±0.4

Linearity

Setting of Unit-under-test (UUT)			Applied value		UUT Reading,	IEC 61672 Class 1	
Range, dB	Freq.	Weighting	Time Weighting	Level, dB	Frequency, Hz	dB	Specification, dB
				94		94.0	Ref
30-130	dBA	SPL	Fast	104	1000	104.0	±0.3
				114		114.0	±0.3

Time Weighting

Setting of Unit-under-test (UUT)			Applied value		UUT Reading,	IEC 61672 Class 1		
Range, dB	Freq. W	/eighting	Time Weighting	Level, dB	Frequency, Hz	dB	Specification, dB	
20.120	10.4	GDI	Fast		0.4 1000	1000	94.0	Ref
30-130 c	dBA	SPL	Slow	94	1000	94.0	±0.3	

Page 2 of 4

Certificate No.: APJ24-072-CC001

Frequency Response

Linear Response

Setting of Unit-under-test (UUT)			Appl	Applied value		IEC 61672 Class	
Range, dB	Freq. We	eighting	Time Weighting	Level, dB	Frequency, Hz	dB	Specification, dB
					31.5	93.8	±2.0
					63	93.9	±1.5
				125	93.9	±1.5	
		dB SPL	Fast		250	93.9	±1.4
30-130	dB			94	500	93.9	±1.4
					1000	94.0	Ref
					2000	94.0	±1.6
					4000	94.5	±1.6
					8000	91.8	+2.1; -3.1

A-weighting

Setting of Unit-under-test (UUT)			Applied value		UUT Reading,	IEC 61672 Class 1	
Range, dB	Freq.	Weighting	Time Weighting	Level, dB	Frequency, Hz	dB	Specification, dB
					31.5	54.4	-39.4 ±2.0
				_	63	67.8	-26.2 ±1.5
					125	77.8	-16.1±1.5
	a chur Star		250	85.3	-8.6±1.4		
30-130	dBA	SPL	Fast	94	500	90.7	-3.2 ± 1.4
지나님					1000	94.0	Ref
					2000	95.2	$+1.2\pm1.6$
				4000	95.5	`+1.0±1.6	
					8000	90.8	-1.1+2.1; -3.1

C-weighting

Setting of Unit-under-test (UUT)			Applied value		UUT Reading,	IEC 61672 Class 1	
Range, dB	Freq. W	eighting	Time Weighting	Level, dB	Frequency, Hz	dB	Specification, dB
					31.5	90.8	-3.0±2.0
					63	93.1	-0.8 ± 1.5
			125	93.7	-0.2±1.5		
						250	93.9
30-130	dBC	SPL	Fast	94	500	93.9	-0.0±1.4
					1000	94.0	Ref
					2000	93.8	-0.2±1.6
이 사람은 것이 하나요?				4000	93.7	-0.8±1.6	
					8000	89.0	-3.0 +2.1: -3.1

Page 3 of 4

Certificate No.: APJ24-072-CC001

5. Calibration Results Applied

The results apply to the particular unit-under-test only. All calibration points are within manufacture's specification as IEC 61672 Class 1.

94 dB	31.5 Hz	± 0.15
	63 Hz	± 0.10
	125 Hz	± 0.10
	250 Hz	± 0.05
	500 Hz	\pm 0.10
	1000 Hz	± 0.05
	2000 Hz	± 0.05
	4000 Hz	± 0.05
	8000 Hz	± 0.10
104 dB	1000 Hz	± 0.05
114 dB	1000 Hz	± 0.05

Uncertainties of Applied Value:

The uncertainties are evaluated for a 95% confidence level.

Note:

The values given in this certification only related to the values measured at the time of the calibration and any uncertainties quoted will not allow for the equipment long-term drift, variations with environmental changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the calibration. (A+A)*L shall not be liable for any loss or damage resulting from the use of the equipment.

Page 4 of 4

Certificate No.: APJ24-072-CC001

Room 422,Leader Industrial Centre,57-59 Au Pui Wan Street ,Fo Tan, Shatin,N.T.,Hong Kong Tel: (852) 2668 3423 Fax:(852) 2668 6946 Homepage: http://www.aa-lab.com E-mail : inquiry@aa-lab.com

輝創工程有限公司 Sun Creation Engineering Limited

Calibration & Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. : C237046 證書編號

6.3 Frequency Weighting

6.3.1 A-Weighting

UUT Setting			Applied Value		UUT	IEC 61672	
Range (dB)	Function	Frequency Weighting	Time Weighting	Level (dB)	Freq.	Reading (dB)	Class 1 Limit (dB)
30 - 130	L _A	A	Fast	94.00	63 Hz	66.9	-26.2 ± 1.5
					125 Hz	77.0	-16.1 ± 1.5
					250 Hz	84.5	-8.6 ± 1.4
					500 Hz	89.9	-3.2 ± 1.4
					1 kHz	93.2	Ref.
					2 kHz	94.4	$+1.2 \pm 1.6$
			2		4 kHz	94.2	$+1.0 \pm 1.6$
					8 kHz	92.1	-1.1 (+2.1 ; -3.1)
					16 kHz	85.2	-6.6 (+3.5 ; -17.0)

6.3.2 C-Weighting

UUT Setting			Applied Value		UUT	IEC 61672	
Range (dB)	Function	Frequency Weighting	Time Weighting	Level (dB)	Freq.	Reading (dB)	Class 1 Limit (dB)
30 - 130	L _C	C	Fast	94.00	63 Hz	92.3	-0.8 ± 1.5
					125 Hz	93.0	-0.2 ± 1.5
					250 Hz	93.2	0.0 ± 1.4
					500 Hz	93.2	0.0 ± 1.4
					1 kHz	93.2	Ref.
					2 kHz	93.0	-0.2 ± 1.6
					4 kHz	92.4	-0.8 ± 1.6
					8 kHz	90.2	-3.0 (+2.1;-3.1)
					16 kHz	83.3	-8.5 (+3.5 ; -17.0)

The test equipment used for calibration is traceable to the National Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

輝創工程有限公司

Sun Creation Engineering Limited

Calibration & Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. : C237046 證書編號

Remarks : - UUT Microphone Model No. : UC-59 & S/N : 16651

- Mfr's Limit : IEC 61672 Class 1

- Uncertainties of Applied Value :	94 dB :	63 Hz - 125 Hz 250 Hz - 500 Hz 1 kHz 2 kHz - 4 kHz 8 kHz	$\pm 0.35 \text{ dB}$ $\pm 0.30 \text{ dB}$ $\pm 0.20 \text{ dB}$ $\pm 0.35 \text{ dB}$ $\pm 0.45 \text{ dB}$
		16 kHz	$:\pm 0.70 \text{ dB}$
	104 dB :	1 kHz	: ± 0.10 dB (Ref. 94 dB)
	114 dB :	1 kHz	: \pm 0.10 dB (Ref. 94 dB)

- The uncertainties are for a confidence probability of not less than 95 %.

Note :

Only the original copy or the laboratory's certified true copy is valid.

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration is traceable to the National Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

輝創工程有限公司

Sun Creation Engineering Limited **Calibration & Testing Laboratory**

Certificate of Calibration 校正證書

Certificate No. : C242738 證書編號

TENT TESTED / 2010	項目 (Job No. / 序引編號: IC24-0781) Date of Receipt / 收件日期: 3 May 2024
Description / 儀器名稱	: Precision Acoustic Calibrator	
Manufacturer / 製造商	: LARSON DAVIS	<i>t.</i>
Model No. / 型號	: CAL200 : 11334	
Serial No. / 編號 Supplied By / 委託者	: Envirotech Services Co.	
Supplied By / Hell'A	Room 712, 7/F, My Loft, 9 Hoi Wi	ing Road, Tuen Mun,
	New Territories, Hong Kong	
TEST CONDITIONS /	測試條件	5.
Temperature / 溫度 :	$(23 \pm 2)^{\circ}C$	Relative Humidity / 相對濕度 : (50 ± 25)%
Line Voltage / 電壓 :		
TEST SPECIFICATIO	DNS / 測試規範	
Calibration check		
DATE OF TEST / 測記	t日期 : 19 May 2024	
	式日期 : 19 May 2024	,
TEST RESULTS / 測記	战結果	
The results apply to the pa	成結果 rticular unit-under-test only.	•
The results apply to the pa	成結果 rticular unit-under-test only. specified limits.	ces as requested by the customer.
The results apply to the pa	太結果 rticular unit-under-test only. specified limits. facturer's published or user's specified toleran	ces as requested by the customer.
The results apply to the pa The results do not exceed a These limits refer to manu The results are detailed in	忒結果 rticular unit-under-test only. specified limits. facturer's published or user's specified toleran the subsequent page(s).	
The results apply to the pa The results do not exceed a These limits refer to manuar The results are detailed in The test equipment used for - The Government of The	武結果 rticular unit-under-test only. specified limits. facturer's published or user's specified toleran the subsequent page(s). or calibration are traceable to National Standa Hong Kong Special Administrative Region S	rds via :
The results apply to the pa The results do not exceed a These limits refer to manuar The results are detailed in The test equipment used for - The Government of The - Hottinger Brüel & Kjær	武結果 rticular unit-under-test only. specified limits. facturer's published or user's specified toleran the subsequent page(s). or calibration are traceable to National Standa Hong Kong Special Administrative Region S Calibration Laboratory, Denmark	rds via :
The results apply to the pa The results do not exceed a These limits refer to manuar The results are detailed in The test equipment used for - The Government of The - Hottinger Brüel & Kjær - Agilent Technologies / H	た結果 rticular unit-under-test only. specified limits. facturer's published or user's specified toleran the subsequent page(s). or calibration are traceable to National Standa Hong Kong Special Administrative Region S Calibration Laboratory, Denmark Keysight Technologies	rds via :
The results apply to the pa The results do not exceed a These limits refer to manuar The results are detailed in The test equipment used for - The Government of The - Hottinger Brüel & Kjær	た結果 rticular unit-under-test only. specified limits. facturer's published or user's specified toleran the subsequent page(s). or calibration are traceable to National Standa Hong Kong Special Administrative Region S Calibration Laboratory, Denmark Keysight Technologies	rds via :
The results apply to the pa The results do not exceed a These limits refer to manuar The results are detailed in The test equipment used for - The Government of The - Hottinger Brüel & Kjær - Agilent Technologies / H	た結果 rticular unit-under-test only. specified limits. facturer's published or user's specified toleran the subsequent page(s). or calibration are traceable to National Standa Hong Kong Special Administrative Region S Calibration Laboratory, Denmark Keysight Technologies	rds via :
The results apply to the pa The results do not exceed a These limits refer to manuar The results are detailed in The test equipment used for - The Government of The - Hottinger Brüel & Kjær - Agilent Technologies / H - Fluke Everett Service Co	成結果 rticular unit-under-test only. specified limits. facturer's published or user's specified toleran the subsequent page(s). or calibration are traceable to National Standa Hong Kong Special Administrative Region S Calibration Laboratory, Denmark Keysight Technologies enter, USA	rds via :
The results apply to the pa The results do not exceed a These limits refer to manuar The results are detailed in The test equipment used for - The Government of The - Hottinger Brüel & Kjær - Agilent Technologies / H - Fluke Everett Service Co Tested By :	式結果 rticular unit-under-test only. specified limits. facturer's published or user's specified toleran the subsequent page(s). or calibration are traceable to National Standa Hong Kong Special Administrative Region S Calibration Laboratory, Denmark Keysight Technologies enter, USA	rds via :
The results apply to the pa The results do not exceed a These limits refer to manuar The results are detailed in The test equipment used for - The Government of The - Hottinger Brüel & Kjær - Agilent Technologies / H - Fluke Everett Service Co	ticular unit-under-test only. specified limits. facturer's published or user's specified toleran the subsequent page(s). or calibration are traceable to National Standa Hong Kong Special Administrative Region S Calibration Laboratory, Denmark Ceysight Technologies enter, USA H T Wong	rds via :
The results apply to the pa The results do not exceed a These limits refer to manuar The results are detailed in The test equipment used for - The Government of The - Hottinger Brüel & Kjær - Agilent Technologies / H - Fluke Everett Service Co Tested By :	式結果 rticular unit-under-test only. specified limits. facturer's published or user's specified toleran the subsequent page(s). or calibration are traceable to National Standa Hong Kong Special Administrative Region S Calibration Laboratory, Denmark Keysight Technologies enter, USA	rds via :
The results apply to the pa The results do not exceed a These limits refer to manu: The results are detailed in The test equipment used fo - The Government of The - Hottinger Brüel & Kjær - Agilent Technologies / H - Fluke Everett Service Co Tested By : 測試	ticular unit-under-test only. specified limits. facturer's published or user's specified toleran the subsequent page(s). or calibration are traceable to National Standa Hong Kong Special Administrative Region S Calibration Laboratory, Denmark Ceysight Technologies enter, USA H T Wong	rds via : tandard & Calibration Laboratory
The results apply to the pa The results do not exceed : These limits refer to manu: The results are detailed in The test equipment used fo - The Government of The - Hottinger Brüel & Kjær - Agilent Technologies / H - Fluke Everett Service Co Tested By : 測試	ticular unit-under-test only. specified limits. facturer's published or user's specified toleran the subsequent page(s). or calibration are traceable to National Standa Hong Kong Special Administrative Region S Calibration Laboratory, Denmark Ceysight Technologies enter, USA H T Wong Assistant Engineer	rds via : tandard & Calibration Laboratory
The results apply to the pa The results do not exceed a These limits refer to manu The results are detailed in The test equipment used fo - The Government of The - Hottinger Brüel & Kjær - Agilent Technologies / H - Fluke Everett Service Co Tested By : 測試	ticular unit-under-test only. specified limits. facturer's published or user's specified toleran the subsequent page(s). or calibration are traceable to National Standa Hong Kong Special Administrative Region S Calibration Laboratory, Denmark Ceysight Technologies enter, USA H T Wong	rds via : tandard & Calibration Laboratory Date of Issue : 20 May 2024

written approval of this laboratory. 本證書所載校正用之測試器材均可溯源至國際標準。局部後印本證書需先獲本實驗所書面批准。

輝創工程有限公司

Sun Creation Engineering Limited

Calibration & Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.: C242738 證書編號

- 1. The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours before the commencement of the test.
- 2. The results presented are the mean of 3 measurements at each calibration point.
- 3. Test equipment :

Equipment IDDescriptionCertificate No.CL130Universal CounterC233799CL281Multifunction Acoustic CalibratorCDK2302738TST150AMeasuring AmplifierC241879

- Test procedure : MA100N.
- 5. Results :
- 5.1 Sound Level Accuracy

sound as of the set of			
UUT	Measured Value	User's Limit	Uncertainty of Measured Value
Nominal Value	(dB)	(dB)	(dB)
94 dB, 1 kHz	93.60	± 0.5	± 0.20
114 dB, 1 kHz	113.60		

5.2 Frequency Accuracy

UUT Nominal Value	Measured Value	Mfr's	Uncertainty of Measured Value
(kHz)	(kHz)	Limit	(Hz)
1	1.000	$1 \text{ kHz} \pm 1 \%$	± 1

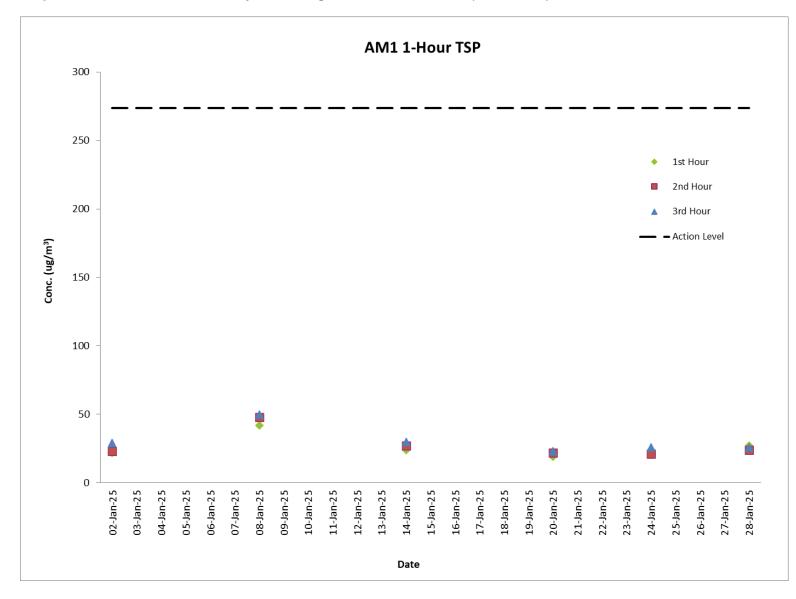
Remarks : - The user's limit is a customer pre-defined operating tolerance of the UUT, suitable for one's own intended use.

- The uncertainties are for a confidence probability of not less than 95 %.

Note :

Only the original copy or the laboratory's certified true copy is valid.

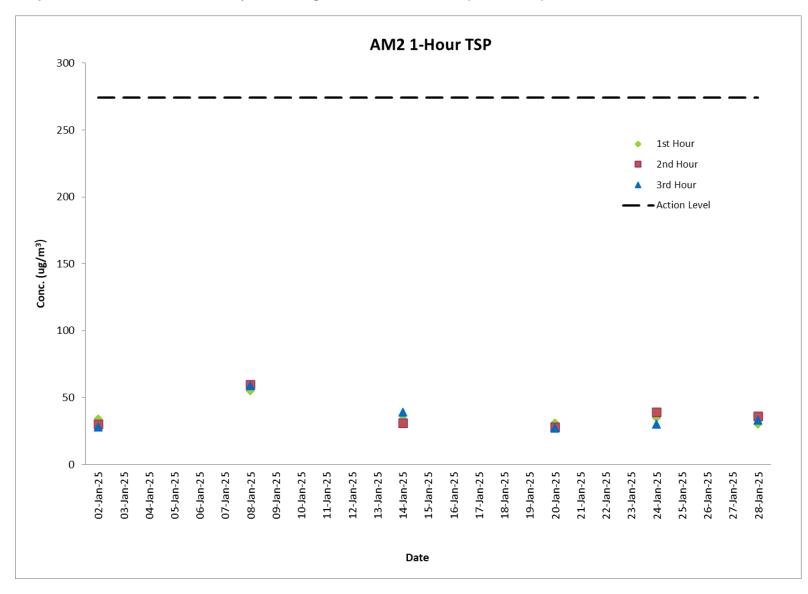
The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.


本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

The test equipment used for calibration is traceable to the National Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

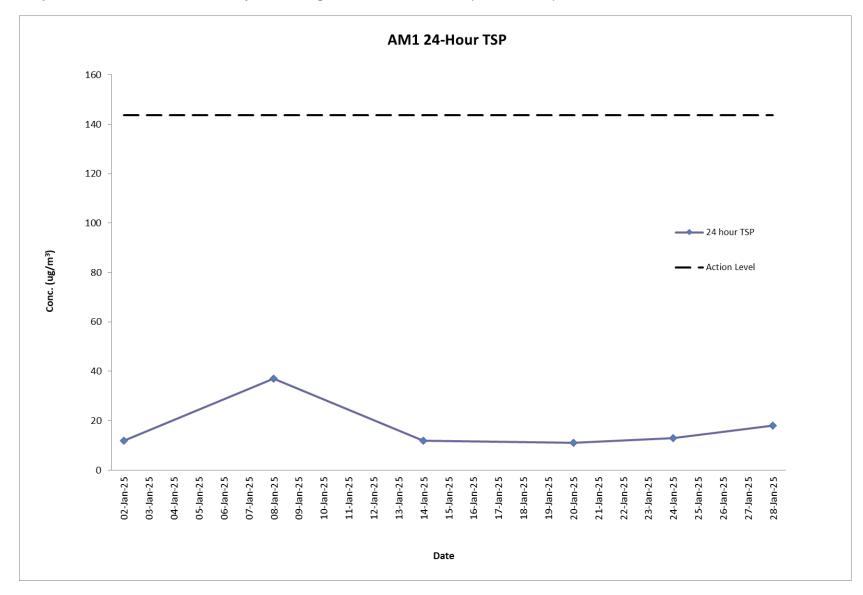
G. Graphical Plots of the Monitoring Results

	Weather			Conc. (µg/m ³))	Action Level	Limit Level
Date	Condition	Time	1 st Hour	2 nd Hour	3 rd Hour	(µg/m³)	(µg/m³)
2-Jan-25	Cloudy	8:33 - 11:33	22	23	29	273.7	500
8-Jan-25	Cloudy	8:34 - 11:34	42	48	50	273.7	500
14-Jan-25	Cloudy	8:33 - 11:33	24	27	30	273.7	500
20-Jan-25	Sunny	8:31 - 11:31	19	22	23	273.7	500
24-Jan-25	Sunny	8:33 - 11:33	24	21	26	273.7	500
28-Jan-25	Sunny	8:23 - 11:23	27	24	26	273.7	500


Air Quality Monitoring Result at Station AM1 (1-hour TSP)

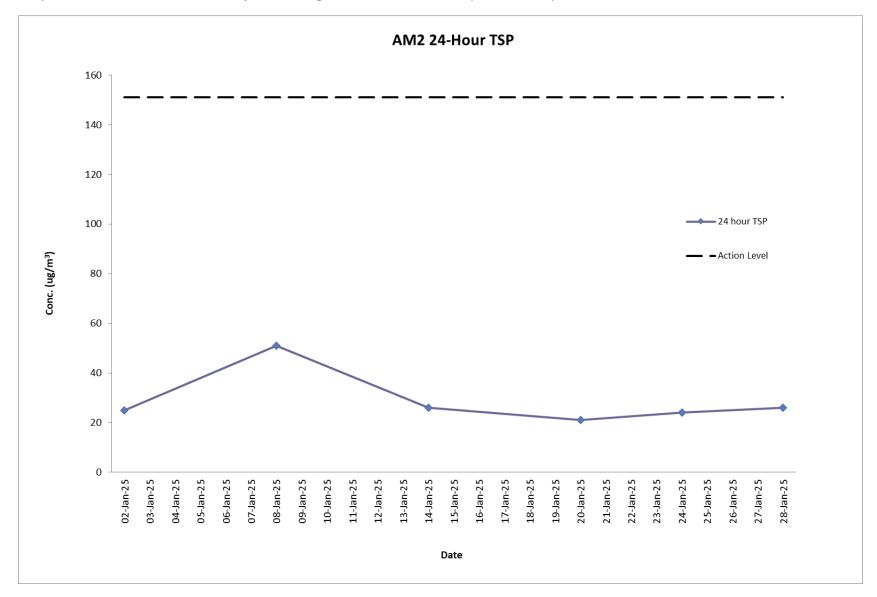
Graphical Presentation of Air Quality Monitoring Result at Station AM1 (1-hour TSP)

	Weather			Conc. (µg/m ³))	Action Level	Limit Level
Date	Condition	Time	1 st Hour	2 nd Hour	3 rd Hour	(µg/m³)	(µg/m³)
2-Jan-25	Cloudy	8:48 - 11:48	34	30	28	274.2	500
8-Jan-25	Cloudy	8:50 - 11:50	55	60	59	274.2	500
14-Jan-25	Cloudy	8:49 - 11:49	34	31	39	274.2	500
20-Jan-25	Sunny	8:47 - 11:47	31	28	27	274.2	500
24-Jan-25	Sunny	8:49 - 11:49	35	39	30	274.2	500
28-Jan-25	Sunny	8:38 - 11:38	30	36	33	274.2	500


Air Quality Monitoring Result at Station AM2 (1-hour TSP)

Graphical Presentation of Air Quality Monitoring Result at Station AM2 (1-hour TSP)

Sta	rt	Finis	sh	Filter W	eight (g)		d Time ding	Sampling	Flow	Rate (m ³ /mir	ı)	Conc.	Weather	Action	Limit
Date	Time	Date	Time	Initial	Final	Initial	Final	Time (hrs)	Initial	Final	Average	(µg/m ³)	Condition	Level	Level
2-Jan-25	8:30	3-Jan-25	8:30	2.8267	2.8475	29116.38	29140.38	24	1.22	1.22	1.22	12	Cloudy	143.6	260
8-Jan-25	8:31	9-Jan-25	8:31	2.8116	2.8660	29140.38	29164.38	24	1.02	1.02	1.02	37	Cloudy	143.6	260
14-Jan-25	8:30	15-Jan-25	8:30	2.8042	2.8220	29164.38	29188.38	24	1.02	1.02	1.02	12	Cloudy	143.6	260
20-Jan-25	8:28	21-Jan-25	8:28	2.8082	2.8245	29188.38	29212.38	24	1.02	1.02	1.02	11	Sunny	143.6	260
24-Jan-25	8:30	25-Jan-25	8:30	2.8158	2.8350	29212.38	29236.38	24	1.02	1.02	1.02	13	Sunny	143.6	260
28-Jan-25	8:20	29-Jan-25	8:20	2.8010	2.8272	29236.38	29260.38	24	1.02	1.02	1.02	18	Sunny	143.6	260


Air Quality Monitoring Result at Station AM1 (24-hour TSP)

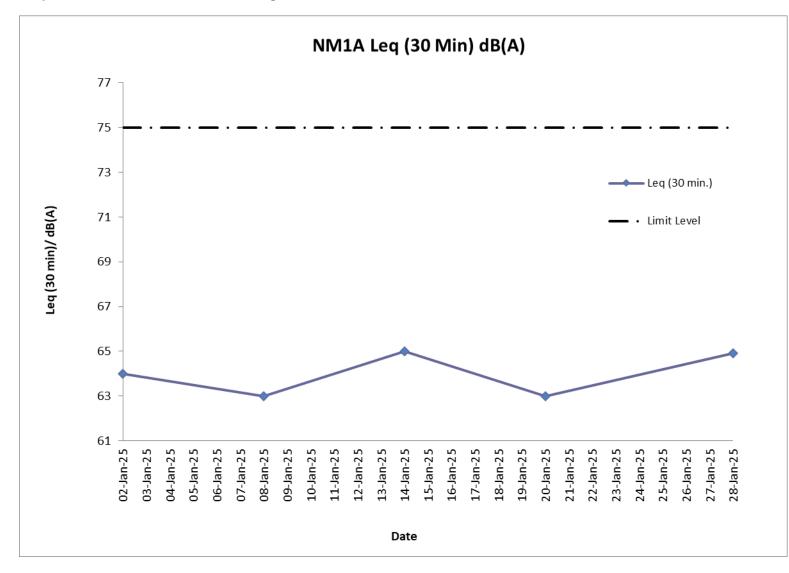
Graphical Presentation of Air Quality Monitoring Result at Station AM1 (24-hour TSP)

Sta	rt	Finis	sh	Sampling	Conc.	Weather	Action	
Date	Time	Date	Time	Time (hrs)	(µg/m ³)	Condition	Level	Limit Level
2-Jan-25	8:45	3-Jan-25	8:45	24	25	Cloudy	151.1	260
8-Jan-25	8:47	9-Jan-25	8:47	24	51	Cloudy	151.1	260
14-Jan-25	8:46	15-Jan-25	8:46	24	26	Cloudy	151.1	260
20-Jan-25	8:44	21-Jan-25	8:44	24	21	Sunny	151.1	260
24-Jan-25	8:46	25-Jan-25	8:46	24	24	Sunny	151.1	260
28-Jan-25	8:36	29-Jan-25	8:36	24	26	Sunny	151.1	260

Air Quality Monitoring Result at Station AM2 (24-hour TSP)

Graphical Presentation of Air Quality Monitoring Result at Station AM2 (24-hour TSP)

Noise Monitoring Result at Sta	ation NM1A
--------------------------------	------------


Date	Time	Measured L ₁₀ , dB(A)	Measured L ₉₀ , dB(A)	L _{eq} (30 min.)*, dB(A)
2-Jan-25	9:33	62.5	58.6	
2-Jan-25	9:38	61.2	57.0	
2-Jan-25	9:43	61.7	57.3	64
2-Jan-25	9:48	63.0	59.7	04
2-Jan-25	9:53	62.8	58.9	
2-Jan-25	9:58	63.6	59.6	
8-Jan-25	9:34	61.5	57.6	
8-Jan-25	9:39	62.7	58.3	
8-Jan-25	9:44	62.2	58.0	63
8-Jan-25	9:49	63.8	59.9	05
8-Jan-25	9:54	61.0	57.7	
8-Jan-25	9:59	62.6	58.5	
14-Jan-25	9:34	65.5	61.6	
14-Jan-25	9:39	64.8	60.3	
14-Jan-25	9:44	63.2	59.0	65
14-Jan-25	9:49	64.7	60.9	<u>ح</u> م
14-Jan-25	9:54	62.0	58.7	
14-Jan-25	9:59	62.6	58.6	
20-Jan-25	9:32	60.5	56.6	
20-Jan-25	9:37	61.2	57.3	
20-Jan-25	9:42	61.8	57.0	63
20-Jan-25	9:47	62.7	58.9	63
20-Jan-25	9:52	63.0	59.4	
20-Jan-25	9:57	62.9	58.1	1
28-Jan-25	9:23	65.5	61.3	
28-Jan-25	9:28	64.2	60.6	
28-Jan-25	9:33	63.7	59.0	
28-Jan-25	9:38	63.9	59.9	65
28-Jan-25	9:43	62.0	58.7	
28-Jan-25	9:48	63.6	59.4	1

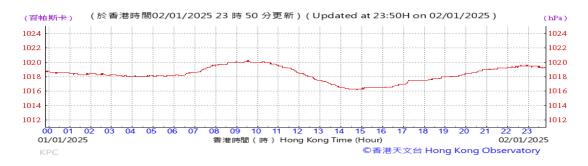
Remarks:

* +3dB (A) correction was applied to free-field measurement.

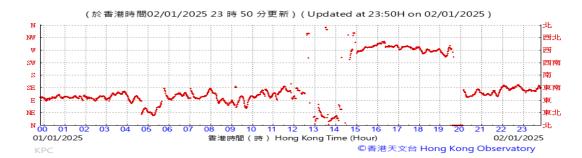
The station set-up of a free-field measurement at Station NM1A.

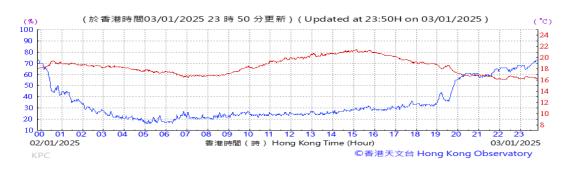
Graphical Presentation Noise Monitoring Result at Station NM1A

H. Meteorological Data Extracted from Hong Kong Observatory

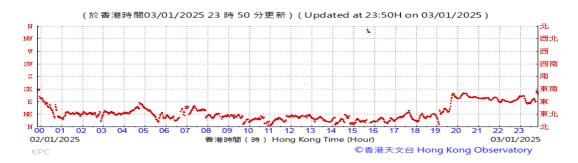

Extract of Meteorological Observations for King's Park Automatic Weather Station

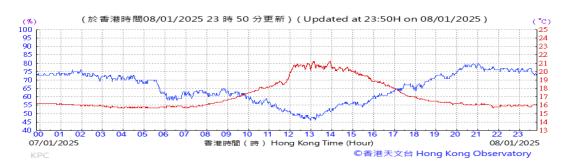
January 2025

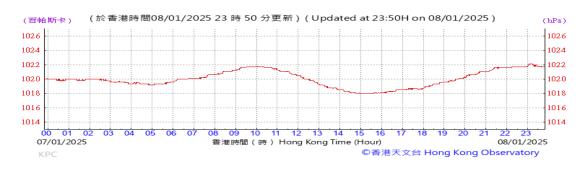

Temperature/Humidity:

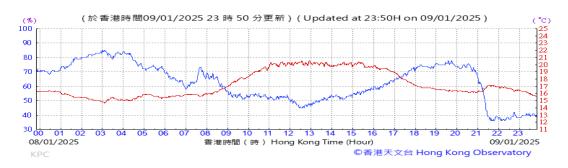

Pressure:

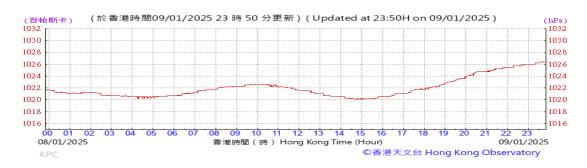
Wind Direction:

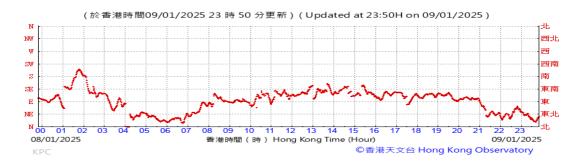


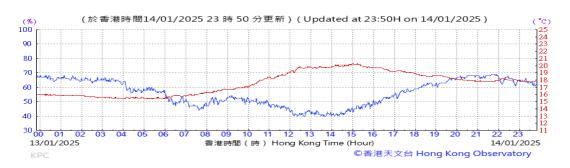

Pressure:


Wind Direction:

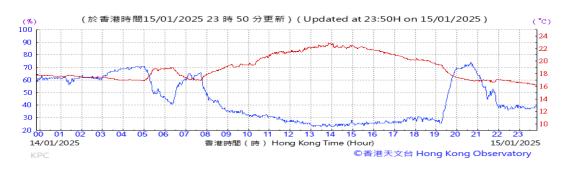

Pressure:


Wind Direction:

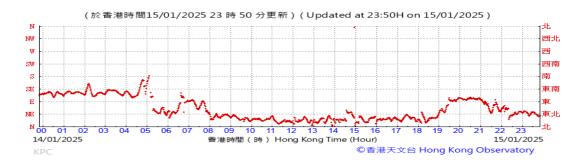


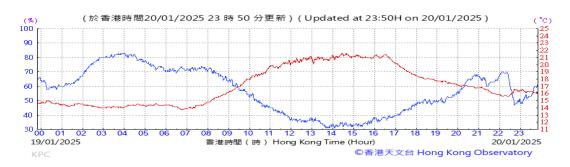

Pressure:

Wind Direction:

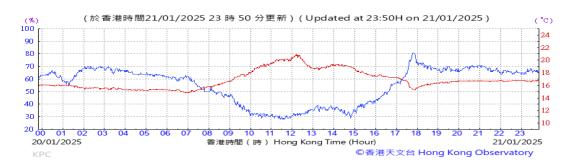

Pressure:

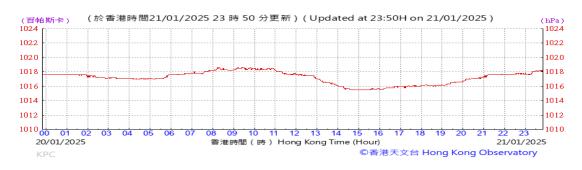

Wind Direction:




Pressure:

Wind Direction:


Pressure:


Wind Direction:

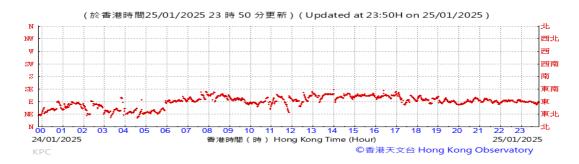


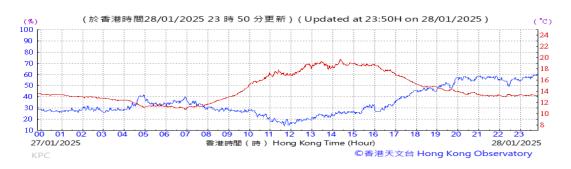
Pressure:

Wind Direction:

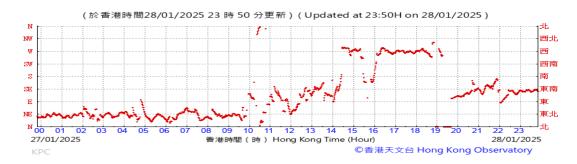
Pressure:

Wind Direction:



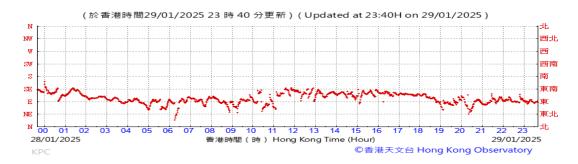

Pressure:


Wind Direction:



Pressure:

Wind Direction:



Pressure:

Wind Direction:

I. Waste Flow Table

		Actual Qu	antities of Ine	rt C&D Mater	rials Generate	d Monthly			Actual Quant	ities of C&D \	Nastes Gener	ated Monthly	,
Month	Total Quantity Generated	Hard Rocks and Large Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Disposed to Sorting Facilty	Imported Fill	Metals	Paper/ Cardboard Packaging	Plastics	Wood/ Timber	Chemical Waste	Others, e.g. General Refuse
	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)
2016		-	-			-			-	-		-	-
Mar	2702.1	0.0	0.0	0.0	2702.1	0.0	0.0	4.5	0.1	0.0	0.0	0.0	30.6
Apr	8631.5	0.0	0.0	0.0	8631.5	0.0	0.0	16.0	0.0	0.0	0.0	0.0	19.2
May	12487.8	0.0	0.0	0.0	12487.8	0.0	0.0	34.0	0.0	0.0	0.0	0.7	60.5
Jun	8600.8	0.0	0.0	0.0	8600.8	0.0	0.0	31.4	0.2	0.0	0.0	0.5	13.5
Jul	12624.2	0.0	0.0	0.0	12624.2	0.0	0.0	19.6	0.0	0.0	0.0	2.0	9.9
Aug	14419.9	0.0	0.0	0.0	14419.9	0.0	0.0	43.9	0.0	0.0	0.0	0.0	11.1
Sep	13671.3	0.0	0.0	0.0	13671.3	0.0	0.0	59.8	0.0	0.0	0.0	1.6	12.4
Oct	13088.9	0.0	0.0	0.0	13088.9	0.0	0.0	36.9	0.2	1.5	0.0	0.0	15.2
Nov	12424.7	0.0	0.0	0.0	12424.7	0.0	0.0	74.7	0.0	0.0	0.0	1.4	10.2
Dec	12487.6	0.0	0.0	0.0	12487.6	0.0	0.0	13.9	0.0	0.0	0.0	1.3	9.0
Sub-total (2016)	111138.8	0.0	0.0	0.0	111138.8	0.0	0.0	334.5	0.4	1.5	0.0	7.6	191.6
2017	-	•			-						-		•
Jan	9607.8	0.0	0.0	0.0	9607.8	0.0	0.0	29.5	0.0	0.0	0.0	0.0	7.3
Feb	9108.2	0.0	0.0	0.0	9108.2	0.0	0.0	50.2	0.2	0.0	0.0	0.7	9.8
Mar	11361.7	0.0	0.0	0.0	11361.7	0.0	0.0	16.1	0.0	0.0	0.0	1.4	8.5
Apr	2591.5	0.0	0.0	0.0	2591.5	0.0	0.0	35.7	0.0	0.0	0.0	0.0	4.7
May	2579.3	0.0	0.0	99.0	2480.3	0.0	0.0	20.9	0.1	0.0	0.0	0.5	10.0
Jun	476.0	0.0	0.0	341.0	129.7	5.3	0.0	0.0	0.0	0.0	0.0	0.0	7.6
Jul	3419.0	0.0	0.0	804.0	2615.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	17.8
Aug	3730.9	0.0	0.0	1377.5	2353.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4.4
Sep	2108.2	0.0	0.0	1133.5	974.7	0.0	0.0	34.6	0.2	0.0	0.0	0.0	10.8
Oct	9159.0	0.0	0.0	7868.0	1291.0	0.0	0.0	0.0	0.0	0.0	0.0	0.7	9.3
Nov	5095.4	0.0	0.0	4352.0	725.2	18.1	0.0	0.0	0.0	0.0	0.0	0.0	38.8
Dec	3856.2	0.0	0.0	3076.0	780.2	0.0	0.0	0.0	0.2	0.0	0.0	0.4	8.4
Sub-total (2017)	63093.1	0.0	0.0	19051.0	44018.7	23.4	0.0	187.1	0.7	0.0	0.0	3.8	137.3

		Actual Qu	antities of Ine	rt C&D Mater	ials Generate	d Monthly		Actual Quantities of C&D Wastes Generated Monthly					
Month	Total Quantity Generated	Hard Rocks and Large Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Disposed to Sorting Facilty	Imported Fill	Metals	Paper/ Cardboard Packaging	Plastics	Wood/ Timber	Chemical Waste	Others, e.g. General Refuse
	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)
2018													
Jan	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Feb	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.5
Mar	6120.2	0.0	0.0	5782.0	338.2	0.0	0.0	0.0	0.0	1.0	0.0	0.5	17.6
Apr	14460.3	0.0	0.0	12484.1	1976.3	0.0	0.0	0.0	0.0	0.2	0.0	0.0	7.6
May	59783.7	0.0	0.0	46989.0	12794.7	0.0	0.0	59.6	0.0	0.0	0.0	0.0	9.4
Jun	53117.5	0.0	0.0	37642.8	15474.7	0.0	0.0	51.5	0.2	0.0	0.0	0.0	12.8
Jul	89901.5	0.0	0.0	85317.1	4584.4	0.0	165.1	114.6	0.0	0.0	0.0	0.0	41.3
Aug	35137.3	0.0	0.0	33731.6	1405.7	0.0	214.3	148.1	0.0	0.0	0.0	0.0	48.5
Sep	4924.3	0.0	0.0	4641.2	196.1	87.0	174.6	40.0	0.0	0.0	0.0	0.0	179.2
Oct	19099.9	0.0	0.0	11301.0	7642.8	156.1	0.0	106.3	0.4	0.0	0.0	0.0	528.5
Nov	104168.0	0.0	0.0	79811.6	24351.0	5.3	0.0	54.5	0.0	0.6	0.0	0.0	31.5
Dec	62989.9	0.0	0.0	51284.4	11699.9	5.6	0.0	95.1	0.0	0.6	0.0	0.0	65.9
Sub-total (2018)	449702.6	0.0	0.0	368984.8	80463.7	254.0	553.9	669.7	0.5	2.4	0.0	0.5	943.7
2019													
Jan	74479.1	0.0	0.0	69249.5	5229.7	0.0	318.0	326.7	0.2	0.0	0.0	0.0	76.3
Feb	21969.9	0.0	0.0	17723.9	4246.0	0.0	16.5	55.2	0.0	0.0	0.0	0.0	26.7
Mar	19311.9	0.0	0.0	8569.9	10742.0	0.0	337.8	61.5	0.0	0.0	0.0	0.0	36.3
Apr	28559.9	0.0	0.0	21280.3	7279.6	0.0	0.0	32.6	0.0	0.8	0.0	0.0	24.9
May	45418.0	0.0	0.0	11200.6	34217.4	0.0	0.0	27.4	0.2	0.5	0.0	0.0	33.7
Jun	66633.4	0.0	0.0	23874.5	42748.0	10.9	59.2	11.9	0.0	0.9	0.0	0.0	35.3
Jul	36619.6	0.0	0.0	1632.7	34960.9	26.0	64.4	120.7	0.0	0.0	0.0	0.0	57.9
Aug	2526.8	0.0	0.0	0.0	2499.0	27.8	31.9	40.2	0.0	0.8	0.0	0.0	66.3
Sep	4117.6	0.0	0.0	0.0	4088.7	28.9	95.2	19.0	0.0	0.6	0.0	0.0	127.4
Oct	6974.2	0.0	0.0	0.0	6948.1	26.1	15.9	11.4	0.2	1.0	0.0	0.6	223.6
Nov	5334.4	0.0	0.0	0.0	5304.1	30.3	0.0	8.9	0.0	0.0	0.0	0.0	151.6
Dec	6236.8	0.0	0.0	0.0	6236.8	0.0	0.0	70.6	0.0	0.0	0.0	0.0	98.9
Sub-total (2019)	318181.6	0.0	0.0	153531.3	164500.1	150.1	938.9	785.8	0.6	4.6	0.0	0.6	959.0

		Actual Qu	antities of Ine	rt C&D Mater	ials Generate	d Monthly			Actual Quant	ities of C&D \	Wastes Gener	rated Monthly	
Month	Total Quantity Generated	Hard Rocks and Large Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Disposed to Sorting Facilty	Imported Fill	Metals	Paper/ Cardboard Packaging	Plastics	Wood/ Timber	Chemical Waste	Others, e.g. General Refuse
	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)
2020													
Jan	7089.9	0.0	0.0	0.0	7089.9	0.0	0.0	39.6	0.2	0.0	0.0	0.0	65.7
Feb	16822.3	0.0	0.0	0.0	16822.3	0.0	0.0	240.5	0.1	0.0	0.0	0.0	66.3
Mar	6559.0	0.0	0.0	0.0	6559.0	0.0	110.4	63.1	0.0	0.9	0.0	0.0	138.3
Apr	4997.9	0.0	0.0	1615.7	3382.2	0.0	159.2	1129.2	1.9	0.0	0.0	0.0	113.2
May	2236.0	0.0	0.0	452.3	1783.6	0.0	0.0	412.3	0.0	0.0	0.0	0.0	188.8
Jun	1134.3	0.0	0.0	0.0	1134.3	0.0	31.5	328.7	0.2	0.6	0.0	0.0	210.6
Jul	148.8	0.0	0.0	0.0	148.8	0.0	31.5	502.2	0.5	0.0	0.0	0.0	220.0
Aug	540.7	0.0	0.0	0.0	540.7	0.0	0.0	393.4	0.0	0.0	0.0	0.0	238.3
Sep	1432.3	0.0	0.0	0.0	1432.3	0.0	0.0	835.6	0.2	0.0	0.0	0.0	291.9
Oct	1381.5	0.0	0.0	0.0	1381.5	0.0	0.0	756.1	0.2	0.0	0.0	0.0	400.2
Nov	1444.1	0.0	0.0	0.0	1437.4	6.7	475.8	567.8	0.2	0.5	0.0	0.0	377.8
Dec	793.8	0.0	0.0	0.0	793.8	0.0	0.0	503.4	0.2	0.0	0.0	0.0	435.8
Sub-total (2020)	44580.6	0.0	0.0	2068.1	42505.8	6.7	808.3	5771.9	3.7	2.0	0.0	0.0	2746.8
2021		•									•		-
Jan	881.4	0.0	0.0	0.0	881.4	0.0	0.0	906.7	0.4	0.0	0.0	0.0	497.0
Feb	544.7	0.0	0.0	0.0	544.7	0.0	0.0	206.3	0.3	0.0	0.0	0.0	504.7
Mar	406.1	0.0	0.0	0.0	406.1	0.0	0.0	1235.0	0.3	0.0	0.0	0.0	881.7
Apr	633.0	0.0	0.0	0.0	633.0	0.0	0.0	480.8	0.7	0.0	0.0	0.0	613.0
May	1125.8	0.0	0.0	0.0	1125.8	0.0	0.0	382.8	0.2	0.1	0.0	0.0	355.2
Jun	877.3	0.0	0.0	0.0	877.3	0.0	0.0	163.7	0.2	0.0	0.0	0.4	420.3
Jul	8.9	0.0	0.0	0.0	0.0	8.9	0.0	56.5	2.0	0.0	0.0	0.0	278.2
Aug	1296.2	0.0	0.0	0.0	1296.2	0.0	0.0	270.0	0.0	0.0	0.0	0.0	459.1
Sep	1040.5	0.0	0.0	0.0	490.9	549.6	0.0	193.2	0.0	0.0	0.0	0.0	620.8
Oct	311.0	0.0	0.0	0.0	311.0	0.0	0.0	92.0	0.3	0.0	0.0	0.0	485.6
Nov	203.9	0.0	0.0	0.0	203.9	0.0	0.0	93.9	0.0	0.0	0.0	0.0	609.6
Dec	576.6	0.0	0.0	0.0	576.6	0.0	0.0	85.2	0.0	0.0	0.0	0.0	590.6
Sub-total (2021)	7905.3	0.0	0.0	0.0	7346.9	558.5	0.0	4165.9	4.4	0.1	0.0	0.4	6315.9

		Actual Qu	antities of Ine	rt C&D Mater	ials Generate	d Monthly		Actual Quantities of C&D Wastes Generated Monthly					
Month	Total Quantity Generated	Hard Rocks and Large Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Disposed to Sorting Facilty	Imported Fill	Metals	Paper/ Cardboard Packaging	Plastics	Wood/ Timber	Chemical Waste	Others, e.g. General Refuse
	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)
2022													
Jan	579.3	0.0	0.0	0.0	579.3	0.0	0.0	41.3	0.4	0.0	0.0	0.0	565.5
Feb	58.9	0.0	0.0	0.0	58.9	0.0	0.0	85.7	0.0	0.0	0.0	0.0	172.2
Mar	412.8	0.0	0.0	0.0	412.8	0.0	0.0	87.1	0.3	0.0	0.0	0.0	339.8
Apr	390.2	0.0	0.0	0.0	390.2	0.0	0.0	44.7	0.0	0.0	0.0	0.0	390.9
May	357.3	0.0	0.0	0.0	350.1	7.2	0.0	99.4	0.3	0.0	0.0	0.0	401.9
Jun	200.4	0.0	0.0	0.0	200.4	0.0	0.0	134.7	0.0	0.0	0.0	1.1	447.8
Jul	166.8	0.0	0.0	0.0	166.8	0.0	0.0	15.3	0.3	0.0	0.0	0.7	343.9
Aug	150.9	0.0	0.0	0.0	150.9	0.0	0.0	9.6	0.4	0.2	0.0	0.0	410.6
Sep	437.6	0.0	0.0	0.0	437.6	0.0	0.0	11.5	0.3	0.0	0.0	0.0	348.3
Oct	708.0	0.0	0.0	0.0	708.0	0.0	0.0	13.8	0.0	0.0	0.0	0.0	353.0
Nov	244.1	0.0	0.0	0.0	244.1	0.0	0.0	47.3	0.3	0.0	0.0	0.0	427.4
Dec	337.4	0.0	0.0	0.0	337.4	0.0	0.0	28.1	0.0	0.0	0.0	0.0	385.3
Sub-total (2022)	4043.5	0.0	0.0	0.0	4036.3	7.2	0.0	618.3	2.3	0.3	0.0	1.8	4586.5
2023		•									•		
Jan	307.0	0.0	0.0	0.0	307.0	0.0	0.0	44.5	0.2	0.0	0.0	0.0	415.1
Feb	1087.8	0.0	0.0	0.0	1087.8	0.0	0.0	22.9	0.4	0.0	0.0	0.0	411.4
Mar	1944.0	0.0	0.0	0.0	1944.0	0.0	0.0	37.7	0.0	0.0	0.0	0.0	469.6
Apr	819.5	0.0	0.0	0.0	819.5	0.0	0.0	218.7	0.1	0.0	0.0	0.0	320.5
May	842.1	0.0	0.0	0.0	842.1	0.0	0.0	35.6	0.3	0.0	0.0	0.0	439.4
Jun	952.1	0.0	0.0	0.0	952.1	0.0	0.0	22.9	0.2	0.0	0.0	0.0	399.3
Jul	583.1	0.0	0.0	0.0	583.1	0.0	0.0	38.3	0.0	0.0	0.0	0.0	421.6
Aug	778.2	0.0	0.0	0.0	778.2	0.0	0.0	28.5	0.0	0.0	0.0	0.0	427.9
Sep	316.4	0.0	0.0	0.0	316.4	0.0	0.0	14.8	0.1	0.0	0.0	0.0	344.3
Oct	1253.3	0.0	0.0	0.0	1253.3	0.0	0.0	17.9	0.0	0.0	0.0	0.0	353.9
Nov	862.7	0.0	0.0	0.0	862.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	436.4
Dec	337.8	0.0	0.0	0.0	337.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	374.0
Sub-total (2023)	10084.0	0.0	0.0	0.0	10084.0	0.0	0.0	481.8	1.3	0.0	0.0	0.0	4813.3

			antities of Ine	rt C&D Mater	ials Generate	d Monthly	-		Actual Quant	ities of C&D \	Vastes Gener	rated Monthly	
Month	Total Quantity Generated	Hard Rocks and Large Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Disposed to Sorting Facilty	Imported Fill	Metals	Paper/ Cardboard Packaging	Plastics	Wood/ Timber	Chemical Waste	Others, e.g. General Refuse
	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)
2024													
Jan	256.8	0.0	0.0	0.0	256.8	0.0	0.0	11.1	0.6	0.0	0.0	0.0	448.6
Feb	321.4	0.0	0.0	0.0	321.4	0.0	0.0	9.4	0.6	0.0	0.0	0.0	263.4
Mar	1167.4	0.0	0.0	0.0	1167.4	0.0	0.0	445.3	0.2	0.0	0.0	0.0	360.9
Apr	283.5	0.0	0.0	0.0	283.5	0.0	0.0	0.0	0.2	0.0	0.0	0.0	467.1
May	534.3	0.0	0.0	0.0	534.3	0.0	0.0	16.9	0.7	0.0	0.0	0.0	376.3
Jun	175.1	0.0	0.0	0.0	175.1	0.0	0.0	73.5	0.0	0.0	0.0	0.0	339.3
Jul	1171.9	0.0	0.0	0.0	1171.9	0.0	0.0	43.6	0.0	0.0	0.0	0.0	408.4
Aug	1056.5	0.0	0.0	0.0	1056.5	0.0	0.0	0.0	0.2	0.0	0.0	0.0	354.2
Sep	286.0	0.0	0.0	0.0	286.0	0.0	0.0	8.9	0.5	0.0	0.0	0.0	383.6
Oct	433.3	0.0	0.0	0.0	433.3	0.0	0.0	93.1	0.0	0.0	0.0	0.0	520.4
Nov	599.0	0.0	0.0	0.0	599.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	708.8
Dec	291.0	0.0	0.0	0.0	291.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	646.5
Sub-total (2024)	6576.1	0.0	0.0	0.0	6576.1	0.0	0.0	701.7	3.0	0.0	0.0	0.0	5277.4
2025													
Jan	312.8	0.0	0.0	0.0	307.1	5.8	0.0	0.0	0.0	0.0	0.0	0.0	714.3
Sub-total (2025)	312.8	0.0	0.0	0.0	307.1	5.8	0.0	0.0	0.0	0.0	0.0	0.0	714.3
Total	1015618.3	0.0	0.0	543635.2	470977.4	1005.7	2301.1	13716.7	16.9	10.8	0.0	14.7	26685.7

Note:

- 241.96 tonnes, 65.09 tonnes and 0.0 tonne of inert C&D materials were disposed of as public fill to Tseung Kwan O Area 137 Public Fill, Tuen Mun Area 38 Public Fill and Chai Wan Public Fill Barging Point respectively in the reporting month.

J. Environmental Mitigation Measures – Implementation Status

Table J-1: Environmental Mitigation Measures Implementation Status (January 2025)

		Implementation Stage
EM&A Ref.	Recommendation Measures	L2
Air Quality	Impact (Construction)	
2.1 &	General Dust Control Measures	
10.3.1	Frequent water spraying for active construction areas (12 times a day or once every one hour), including Heavy construction activities such as construction of buildings or roads, drilling, ground excavation, cut and fill operations (i.e., earth moving)	Obs
2.1 &	Best Practice For Dust Control	
10.3.1	The relevant best practices for dust control as stipulated in the Air Pollution Control (construction Dust) Regulation should be adopted to further reduce the construction dust impacts from the Project. These best practices include:	
	Good Site Management	
	 Good site management is important to help reducing potential air quality impact down to an acceptable level. As a general guide, the Contractor should maintain high standard of housekeeping to prevent emission of fugitive dust. Loading, unloading, handling and storage of raw materials, wastes or by-products should be carried out in a manner so as to minimise the release of visible dust emission. Any piles of materials accumulated on or around the work areas should be cleaned up regularly. Cleaning, repair and maintenance of all plant facilities within the work areas should be carried out in a manner minimising generation of fugitive dust emissions. The material should be handled properly to prevent fugitive dust emission before cleaning. 	Rem
	Disturbed Parts of the Roads	
	 Each and every main temporary access should be paved with concrete, bituminous hardcore materials or metal plates and kept clear of dusty materials; or 	\checkmark
	 Unpaved parts of the road should be sprayed with water or a dust suppression chemical so as to keep the entire road surface wet. 	\checkmark
	Exposed Earth	
	 Exposed earth should be properly treated by compaction, hydroseeding, vegetation planting or seating with latex, vinyl, bitumen within six months after the last construction activity on the site or part of the site where the exposed earth lies. 	N/A No exposed earth in this project.
	Loading, Unloading or Transfer of Dusty Materials	
	 All dusty materials should be sprayed with water immediately prior to any loading or transfer operation so as to keep the dusty material wet. 	\checkmark
	Debris Handling	
	 Any debris should be covered entirely by impervious sheeting or stored in a debris collection area sheltered on the top and the three sides. 	\checkmark
	 Before debris is dumped into a chute, water should be sprayed so that it remains wet when it is dumped. 	\checkmark

		Implementation Stage
EM&A Ref.	Recommendation Measures	L2
	Transport of Dusty Materials	
	 Vehicle used for transporting dusty materials/spoils should be covered with tarpaulin or similar material. The cover should extend over the edges of the sides and tailboards. 	\checkmark
	Wheel washing	
	 Vehicle wheel washing facilities should be provided at each construction site exit. Immediately before leaving the construction site, every vehicle should be washed to remove any dusty materials from its body and wheels. 	\checkmark
	Use of vehicles	
	 The speed of the trucks within the site should be controlled to about 10km/hour in order to reduce adverse dust impacts and secure the safe movement around the site. 	\checkmark
	 Immediately before leaving the construction site, every vehicle should be washed to remove any dusty materials from its body and wheels. 	\checkmark
	 Where a vehicle leaving the construction site is carrying a load of dusty materials, the load should be covered entirely by clean impervious sheeting to ensure that the dusty materials do not leak from the vehicle. 	\checkmark
	Site hoarding	
	 Where a site boundary adjoins a road, street, service lane or other area accessible to the public, hoarding of not less than 2.4m high from ground level should be provided along the entire length of that portion of the site boundary except for a site entrance or exit. 	✓
2.1 &	Best Practicable Means for Cement Works (Concrete Batching Plant)	
10.3.1	The relevant best practices for dust control as stipulated in the Guidance Note on the Best Practicable Means for Cement Works (Concrete Batching Plant) BPM 3/2(93) should be followed and implemented to further reduce the construction dust impacts of the Project. These best practices include:	
	Exhaust from Dust Arrestment Plant	
	 Wherever possible the final discharge point from particulate matter arrestment plant, where is not necessary to achieve dispersion from residual pollutants, should be at low level to minimise the effect on the local community in the case of abnormal emissions and to facilitate maintenance and inspection 	N/A No concrete batching plant in th project.
	Emission Limits	
	• All emissions to air, other than steam or water vapour, shall be colourless and free from persistent mist or smoke	N/A No concrete batching plant in th project.
	Engineering Design/Technical Requirements	
	 As a general guidance, the loading, unloading, handling and storage of fuel, raw materials, products, wastes or by-products should be carried out in a manner so as to prevent the release of visible dust and/or other noxious or offensive emissions 	N/A No concrete batching plant in th project.

		Implementation Stage
EM&A Ref.	Recommendation Measures	L2
	Non-Road Mobile Machinery (NRMM):	
	All NRMMs operating on-site which are subject to emission control of Air Pollution Control (Non-road Mobile Machinery) (Emission) Regulation are approved/exempted (as the case may be) and affixed with the requisite approval/exemption labels.	\checkmark
Noise Impa	nct (Construction)	
3.1 &	Good Site Practice	
10.4.1	Good site practice and noise management can significantly reduce the impact of construction site activities on nearby NSRs. The following package of measures should be followed during each phase of construction:	
	 only well-maintained plant to be operated on-site and plant should be serviced regularly during the construction works; 	\checkmark
	• machines and plant that may be in intermittent use to be shut down between work periods or should be throttled down to a minimum	\checkmark
	• plant known to emit noise strongly in one direction, should, where possible, be orientated to direct noise away from the NSRs;	\checkmark
	 mobile plant should be sited as far away from NSRs as possible; and 	\checkmark
	• material stockpiles and other structures to be effectively utilised, where practicable, to screen noise from on-site construction activities.	\checkmark
3.1 &	Adoption of Quieter PME	
10.4.1	The recommended quieter PME adopted in the assessment were taken from the EPD's QPME Inventory and "Sound Power Levels of Other Commonly Used PME" are presented in Table 4.26 in the EIA report. It should be noted that the silenced PME selected for assessment can be found in Hong Kong.	✓
3.1 & 10.4.1	Use of Movable Noise Barriers	
	Movable noise barriers can be very effective in screening noise from particular items of plant when constructing the Project. Noise barriers located along the active works area close to the noise generating component of a PME could produce at least 10 dB(A) screening for stationary plant and 5 dB(A) for mobile plant provided the direct line of sight between the PME and the NSRs is blocked.	✓
3.1 &	Use of Noise Enclosure/ Acoustic Shed	
10.4.1	The use of noise enclosure or acoustic shed is to cover stationary PME such as air compressor and concrete pump. With the adoption of the noise enclosure, the PME could be completely screened, and noise reduction of 15 dB(A) can be achieved according to the EIAO Guidance Note No. 9/2010.	✓
3.1 &	Use of Noise Insulating Fabric	
10.4.1	Noise insulating fabric can also be adopted for certain PME (e.g. drill rig, pilling machine etc). The fabric should be lapped such that there are no openings or gaps on the joints. According to the approved Tsim Sha Tsui Station Northern Subway EIA report (AEIAR- 127/2008), a noise reduction of 10 dB(A) can be achieved for the PME lapped with the noise insulating fabric.	√

		Implementation Stage	
EM&A Ref.	Recommendation Measures	L2	
3.1 &	Scheduling of Construction Works outside School Examination Periods		
10.4.1	During construction phase, the contractor should liaise with the educational institutions (including NSRs LCS and CRGPS) to obtain the examination schedule and avoid the noisy construction activities during school examination periods.	N/A No educational institutions nearby the site.	
Water Qua	lity Impact (Construction)		
4.1 & 10.5.1	Construction site runoff and drainage		
	The site practices outlined in ProPECC Note PN 1/94 should be followed as far as practicable in order to minimise surface runoff and the chance of erosion. The following measures are recommended to protect water quality and sensitive uses of the coastal area, and when properly implemented should be sufficient to adequately control site discharges so as to avoid water quality impacts:		
	 At the start of site establishment, perimeter cut-off drains to direct off-site water around the site should be constructed with internal drainage works and erosion and sedimentation control facilities implemented. Channels, earth bunds or sand bag barriers should be provided on site to direct storm water to silt removal facilities. The design of the temporary on-site drainage system should be undertaken by the WKCDA's Contractor prior to the commencement of construction; 	~	
	 Sand/silt removal facilities such as sand/silt traps and sediment basins should be provided to remove sand/silt particles from runoff to meet the requirements of the TM standards under the WPCO. The design of efficient silt removal facilities should be based on the guidelines in Appendix A1 of ProPECC Note PN 1/94. Sizes may vary depending upon the flow rate. The detailed design of the sand/silt traps should be undertaken by the WKCDA's Contractor prior to the commencement of construction. 	~	
	• All drainage facilities and erosion and sediment control structures should be regularly inspected and maintained to ensure proper and efficient operation at all times and particularly during rainstorms. Deposited silt and grit should be regularly removed, at the onset of and after each rainstorm to ensure that these facilities are functioning properly at all times.	\checkmark	
	 Measures should be taken to minimize the ingress of site drainage into excavations. If excavation of trenches in wet periods is necessary, they should be dug and backfilled in short sections wherever practicable. Water pumped out from foundation excavations should be discharged into storm drains via silt removal facilities. 	\checkmark	
	 All vehicles and plant should be cleaned before leaving a construction site to ensure no earth, mud, debris and the like is deposited by them on roads. An adequately designed and sited wheel washing facility should be provided at construction site exit where practicable. Wash-water should have sand and silt settled out and removed regularly to ensure the continued efficiency of the process. The section of access road leading to, and exiting from, the wheel-wash bay to the public road should be paved with sufficient backfall toward the wheel-wash bay to prevent vehicle tracking of soil and silty water to public roads and drains. 	~	
	• Open stockpiles of construction materials or construction wastes on-site should be covered with tarpaulin or similar fabric during rainstorms. Measures should be taken to prevent the washing away of construction materials, soil, silt or debris into any drainage system.	4	
	• Manholes (including newly constructed ones) should be adequately covered and temporarily sealed so as to prevent silt, construction materials or debris being washed into the drainage system and stormwater runoff being directed into foul sewers.	\checkmark	

		Implementation Stage
EM&A Ref.	Recommendation Measures	L2
	 Precautions should be taken at any time of the year when rainstorms are likely. Actions should be taken when a rainstorm is imminent or forecasted and actions to be taken during or after rainstorms are summarized in Appendix A2 of ProPECC Note PN 1/94. Particular attention should be paid to the control of silty surface runoff during storm events, especially for areas located near steep slopes. 	\checkmark
	 Bentonite slurries used in piling or slurry walling should be reconditioned and reused wherever practicable. Temporary enclosed storage locations should be provided on-site for any unused bentonite that needs to be transported away after all the related construction activities are completed. The requirements in ProPECC Note PN 1/94 should be adhered to in the handling and disposal of bentonite slurries. 	N/A No bentonite slurries are used in this project.
	Barging facilities and activities	
	Recommendations for good site practices during operation of the proposed barging point include:	
	• All vessels should be sized so that adequate clearance is maintained between vessels and the seabed in all tide conditions, to ensure that undue turbidity is not generated by turbulence from vessel movement or propeller wash;	N/A No barging facilities in this project.
	• Loading of barges and hoppers should be controlled to prevent splashing of material into the surrounding water. Barges or hoppers should not be filled to a level that will cause the overflow of materials or polluted water during loading or transportation;	N/A No barging facilities in this project.
	All hopper barges should be fitted with tight fitting seals to their bottom openings to prevent leakage of material; and	N/A No barging facilities in this project.
	 Construction activities should not cause foam, oil, grease, scum, litter or other objectionable matter to be present on the water within the site. 	N/A No barging facilities in this project.
4.1 &	Sewage effluent from construction workforce	
10.5.1	Temporary sanitary facilities, such as portable chemical toilets, should be employed on-site where necessary to handle sewage from the workforce. A licensed contractor should be employed to provide appropriate and adequate portable toilets and be responsible for appropriate disposal and maintenance.	\checkmark
4.1 &	General construction activities	
10.5.1	 Construction solid waste, debris and refuse generated on-site should be collected, handled and disposed of properly to avoid entering any nearby storm water drain. Stockpiles of cement and other construction materials should be kept covered when not being used. 	\checkmark
	 Oils and fuels should only be stored in designated areas which have pollution prevention facilities. To prevent spillage of fuels and solvents to any nearby storm water drain, all fuel tanks and storage areas should be provided with locks and be sited on sealed areas, within bunds of a capacity equal to 110% of the storage capacity of the largest tank. The bund should be drained of rainwater after a rain event. 	Obs

		Implementation Stage
EM&A Ref.	Recommendation Measures	L2
Waste Man	agement Implications (Construction)	
6.1 &	Good Site Practices	
10.7.1	Recommendations for good site practices during the construction activities include:	
	 Nomination of an approved person, such as a site manager, to be responsible for good site practices, arrangements for collection and effective disposal to an appropriate facility, of all wastes generated at the site 	\checkmark
	 Training of site personnel in proper waste management and chemical handling procedures 	\checkmark
	 Provision of sufficient waste disposal points and regular collection of waste 	\checkmark
	 Appropriate measures to minimise windblown litter and dust/odour during transportation of waste by either covering trucks or by transporting wastes in enclosed containers 	\checkmark
	• Provision of wheel washing facilities before the trucks leaving the works area so as to minimise dust introduction to public roads	\checkmark
	 Well planned delivery programme for offsite disposal such that adverse environmental impact from transporting the inert or non- inert C&D materials is not anticipated 	√
6.1 &	Waste Reduction Measures	
0.7.1	Recommendations to achieve waste reduction include:	
	 Sort inert C&D material to recover any recyclable portions such as metals 	\checkmark
	 Segregation and storage of different types of waste in different containers or skips to enhance reuse or recycling of materials and their proper disposal 	\checkmark
	 Encourage collection of recyclable waste such as waste paper and aluminium cans by providing separate labelled bins to enable such waste to be segregated from other general refuse generated by the work force 	Obs
	 Proper site practices to minimise the potential for damage or contamination of inert C&D materials 	\checkmark
	• Plan the use of construction materials carefully to minimise amount of waste generated and avoid unnecessary generation of wastes	\checkmark
5.1 &	Inert and Non-inert C&D Materials	
10.7.1	In order to minimise impacts resulting from collection and transportation of inert C&D material for off-site disposal, the excavated materials should be reused on-site as fill material as far as practicable. In addition, inert C&D material generated from excavation works could be reused as fill materials in local projects that require public fill for reclamation.	\checkmark
	• The surplus inert C&D material will be disposed of at the Government's PFRFs for beneficial use by other projects in Hong Kong.	\checkmark
	 Liaison with the CEDD Public Fill Committee (PFC) on the allocation of space for disposal of the inert C&D materials at PFRF is underway. No construction work is allowed to proceed until all issues on management of inert C&D materials have been resolved and all relevant arrangements have been endorsed by the relevant authorities including PFC and EPD. 	\checkmark
	 The C&D materials generated from general site clearance should be sorted on site to segregate any inert materials for reuse or disposal of at PFRFs whereas the non-inert materials will be disposed of at the designated landfill site. 	\checkmark

		Implementation Stage
EM&A Ref.	Recommendation Measures	L2
	 In order to monitor the disposal of inert and non-inert C&D materials at respectively PFRFs and the designated landfill site, and to control fly-tipping, it is recommended that the Contractor should follow the Technical Circular (Works) No. 6/2010 for Trip Ticket System for Disposal of Construction & Demolition Materials issued by Development Bureau. In addition, it is also recommended that the Contractor should prepare and implement a Waste Management Plan detailing their various waste arising and waste management practices in accordance with the relevant requirements of the Technical Circular (Works) No. 19/2005 Environmental Management on Construction Site. 	✓
6.1 &	Chemical Waste	
10.7.1	 If chemical wastes are produced at the construction site, the Contractor will be required to register with the EPD as a chemical waste producer and to follow the guidelines stated in the "Code of Practice on the Packaging Labelling and Storage of Chemical Wastes". Good quality containers compatible with the chemical wastes should be used, and incompatible chemicals should be stored separately. Appropriate labels should be securely attached on each chemical waste container indicating the corresponding chemical characteristics of the chemical waste, such as explosive, flammable, oxidizing, irritant, toxic, harmful, corrosive, etc. The Contractor should use a licensed collector to transport and dispose of the chemical wastes at the approved Chemical Waste Treatment Centre or other licensed recycling facilities, in accordance with the Waste Disposal (Chemical Waste) (General) Regulation. 	1
	 Potential environmental impacts arising from the handling activities (including storage, collection, transportation and disposal of chemical waste) are expected to be minimal with the implementation of appropriate mitigation measures as recommended. 	
6.1 &	General Refuse	
10.7.1	General refuse should be stored in enclosed bins or compaction units separated from inert C&D materials. A reputable waste collector should be employed by the Contractor to remove general refuse from the site, separately from inert C&D materials. Preferably an enclosed and covered area should be provided to reduce the occurrence of 'wind blown' light material.	Obs
Land Cont	amination (Construction)	
7.1 & 10.8.1	The potential for land contamination issues at the TST Fire Station due to its future relocation will be confirmed by site investigation after land acquisition. Where necessary, mitigation measures for minimising potential exposure to contaminated materials (if any) or remediation measures will be identified. If contaminated land is identified (e.g., during decommissioning of fuel oil storage tanks) after the commencement of works, mitigation measures are proposed in order to minimise the potentially adverse effects on the health and safety of construction workers and impacts arising from the disposal of potentially contaminated materials. The following measures are proposed for excavation and transportation of contaminated material:	
	 To minimize the chance for construction workers to come into contact with any contaminated materials, bulk earth-moving excavation equipment should be employed; 	N/A TST Fire Station is out of this project boundary, no mitigation measure is required.

Implementation Stage

EM&A Ref.	Recommendation Measures	L2
	 Contact with contaminated materials can be minimised by wearing appropriate clothing and personal protective equipment such as gloves and masks (especially when interacting directly with contaminated material), provision of washing facilities and prohibition of smoking and eating on site; 	N/A TST Fire Station is out of this project boundary, no mitigation measure is required.
	Stockpiling of contaminated excavated materials on site should be avoided as far as possible;	N/A TST Fire Station is out of this project boundary, no mitigation measure is
	• The use of contaminated soil for landscaping purpose should be avoided unless pre-treatment was carried out;	required. N/A TST Fire Station is out of this project boundary, no mitigation measure is
	 Vehicles containing any contaminated excavated materials should be suitably covered to reduce dust emissions and/or release of contaminated wastewater; 	required. N/A TST Fire Station is out of this project boundary, no mitigation measure is
	Truck bodies and tailgates should be sealed to stop any discharge;	required. N/A TST Fire Station is out of this project boundary, no mitigation measure is required.
	Only licensed waste haulers should be used to collect and transport contaminated material to treatment/disposal site and should be equipped with tracking system to avoid fly tipping;	N/A TST Fire Station is out of this project boundary, no mitigation measure is required.
	Speed control for trucks carrying contaminated materials should be exercised;	N/A TST Fire Station is out of this project boundary, no mitigation measure is required.
	• Observe all relevant regulations in relation to waste handling, such as Waste Disposal Ordinance (Cap. 354), Waste Disposal (Chemical Waste) (General) Regulation (Cap. 354) and obtain all necessary permits where required; and	N/A TST Fire Station is out of this project boundary, no mitigation measure is required.

Implementation Stage

EM&A Ref.	Recommendation Measures	L2
	Maintain records of waste generation and disposal quantities and disposal arrangements.	N/A TST Fire Station is out of this project boundary, no mitigation measure is required.
Ecological	Impact (Construction)	
	No mitigation measure is required.	
Landscape	and Visual Impact (Construction)	
Table 9.1 & 10.8 (CM1)	Trees should be retained in situ on site as far as possible. Should tree removal be unavoidable due to construction impacts, trees will be transplanted or felled with reference to the stated criteria in the Tree Removal Applications to be submitted to relevant government departments for approval in accordance to ETWB TCW No. 29/2004 and 3/2006.	N/A No trees under this Contract.
Table 9.1 & 10.8 (CM2)	Compensatory tree planting shall be incorporated to the proposed project and maximize the new tree, shrubs and other vegetation planting to compensate tree felled and vegetation removed. Also, implementation of compensatory planting should be of a ratio not less than 1:1 in terms of quality and quantity within the site.	N/A Compensatory tree planting is being reviewed.
Table 9.1 & 10.8 (CM3)	Buffer trees for screening purposes to soften the hard architectural and engineering structures and facilities.	N/A Roof garden is designed to be built, but it has not been completed yet.
Table 9.1 & 10.8 (CM4)	Softscape treatments such as vertical green wall panel /planting of climbing and/or weeping plants, etc, to maximize the green coverage and soften the hard architectural and engineering structures and facilities.	N/A Climbing or weeping plants are designed to be planted, but proposal is being reviewed for the planting location.
Table 9.1 & 10.8 (CM5)	Roof greening by means of intensive and extensive green roof to maximize the green coverage and improve aesthetic appeal and visual quality of the building/structure.	N/A Roof garden is designed to be built, but it has not been completed yet.
Table 9.1 & 10.8 (CM6)	Sensitive streetscape design should be incorporated along all new roads and streets.	N/A Greening along the seafront is proposed, but it has not been completed yet.
Table 9.1 & 10.8 (CM7)	Structure, ornamental planting shall be provided along amenity strips to enhance the landscape quality.	N/A Gardens are designed to be built, but it has not been completed yet.

Implementation Stage

EM&A Ref.	Recommendation Measures	L2
Table 9.1 & 10.8 (CM8)	Landscape design shall be incorporated to architectural and engineering structures in order to provide aesthetically pleasing designs.	N/A Roof garden is designed to be built, but it has not been completed yet.
Table 9.1 (CM9)	Minimize the structure of marine facilities to be built on the seabed and foreshore in order to minimize the affected extent to the waterbody	N/A No marine facilities for this project.
Table 9.2 & 10.9 (MCP1)	Use of decorative screen hoarding/boards	\checkmark
Table 9.2 & 10.9 (MCP2)	Early introduction of landscape treatments	N/A No landscape treatments during this stage.
Table 9.2 & 10.9 (MCP3)	Adoption of light colour for the temporary ventilation shafts for the basement during the transition period.	N/A No ventilation shafts for this project.
Table 9.2 & 10.9 (MCP4)	Control of night time lighting	N/A
Table 9.2 & 10.9 (MCP5)	Use of greenery such as grass cover for the temporary open areas will help achieve the visual balance and soften the hard edges of the structures.	N/A No temporary open areas for this project.

N/A - Not Applicable

✓ - Implemented

Obs - Observed

Rem - Reminder

K. Cumulative Statistics on Complaints, Notifications of Summons and Successful Prosecutions

Cumulative statistics for complaints, notifications of summons and successful prosecutions for the Project account for period starting from the date of commencement of construction works to the end of the reporting month are summarised in the **Table K-1** below respectively.

Table K-1: Statistics for complaints, notifications of summons and successful prosecutions for Lyric Theatre Complex

Reporting Period	Cumulative Statistics		
	Complaints	Notifications of summons	Successful prosecutions
This reporting month	1	0	0
From 1 March 2016 to end of the reporting month (Jan 2025)	62	0	0

END OF PART-1

Part-2: EM&A for ELS Works for The Integrated Basement and Underground Road in Zones 2A, 2B & 2C

ELS Works for The Integrated Basement and Underground Road in Zones 2A, 2B & 2C

APEX TESTING & CERTIFICATION LIMITED Unit D6A, 10/F, TML Plaza, 3 Hoi Shing Road, Tsuen Wan, N.T. Hong Kong Tel: (852) 39733585 Fax: (852) 30079385 Email: info@apextestcert.com

The information supplied and contained within this report is, to the best of our knowledge, correct at time of printing

Contents

Exe	ecutive	summary	1
1	Intro	duction	3
	1.1	Background	3
	1.2	Project Organisation	3
	1.3	Construction Works Status in the Reporting Period	3
	1.4	Summary of EM&A Requirements and Alternative Monitoring Locations	4
		1.4.1 EM&A Requirements	4
		1.4.2 Alternative Monitoring Locations	4
2	Impa	act Monitoring Methodology	7
	2.1	Introduction	7
	2.2	Air Quality	7
		2.2.1 Monitoring Parameters, Frequency and Duration	7
		2.2.2 Monitoring Locations	7
		2.2.3 Monitoring Equipment	7
		2.2.4 Monitoring Methodology	8
	2.3	Noise	10
		2.3.1 Monitoring Parameters, Frequency and Duration	10
		2.3.2 Monitoring Location	10
		2.3.3 Monitoring Equipment	10
		2.3.4 Monitoring Methodology	11
	2.4	Landscape and Visual	11
		2.4.1 Monitoring Program	11
3	Mon	itoring Results	12
	3.1	Impact Monitoring	12
	3.2	Air Quality Monitoring	12
		3.2.1 1-hour TSP	12
		3.2.2 24-hour TSP	12
	3.3	Noise Monitoring	13
	3.4	Landscape and Visual Impact	14
4	Site	Environmental Management	15
	4.1	Site Inspection	15
		4.1.1 Zones 2A, 2B & 2C (Contract No.: CC/2023/2B/095)	15
	4.2	Advice on the Solid and Liquid Waste Management Status	15
		4.2.1 Zones 2A, 2B & 2C (Contract No.: CC/2023/2B/095)	15
	4.3	Status of Environmental Licenses and Permits	16
		4.3.1 Zones 2A, 2B & 2C (Contract No.: CC/2023/2B/095)	16

	4.4	Recommended Mitigation Measures 4.4.1 Zones 2A, 2B & 2C (Contract No.: CC/2023/2B/095)	16 16
5	Com	pliance with Environmental Permit	18
6		ort in Non-compliance, Complaints, Notification of Summons and essful Prosecutions	19
	6.1	Record on Non-compliance of Action and Limit Levels	19
	6.2 6.3	Record on Environmental Complaints Received Record on Notifications of Summons and Successful Prosecution	19 19
	0.0		13
7	Futu	re Key Issues	20
	7.1	Construction Works for the Coming Month(s)	20
	7.2	Key Issues for the Coming Month	20
	7.3	7.2.1 Zones 2A, 2B & 2C (Contract No.: CC/2023/2B/095) Monitoring Schedule for the Coming Month	20 20
8	Cond	clusions and Recommendations	21
	8.1	Conclusions	21
	8.2	Recommendations	21
Figu	ire 1	Site Layout Plan and Monitoring Stations	22
Арр	endice	\$S	23
A.	Proje	ect Organisation	24
В.	Tenta	ative Construction Programme	25
C.	Actio	n and Limit Levels for Construction Phase	26
D	Even	t and Action Blan for Air Quality, Naisa, Landscape, and Visual	
D.	Impa	it and Action Plan for Air Quality, Noise, Landscape and Visual ct	27
E.	Moni	toring Schedule	28
F.	Calib	pration Certifications	29
1.1	Jan		20
G.	Grap	hical Plots of the Monitoring Results	30
Н.	Meteorological Data Extracted from Hong Kong Observatory		

I.	Waste Flow table	32
J.	Environmental Mitigation Measures – Implementation Status	33
K.	Cumulative Statistics on Complaints, Notifications of Summons and Successful Prosecutions	34

Executive summary

Apex Testing & Certification Limited (Apex) was commissioned to undertake the Environmental Team (ET) services (including environmental monitoring and audit (EM&A) for the construction activities in Zone 2A, consisting of Foundation, Excavation and Lateral Support Works for Integrated Basement and Underground Road (Contract No.: GW/2020/05/073); Zone 2B & 2C consisting of Piling Works for Integrated Basement and Underground Road (Contract No.: CC/2020/2B/088); and Zones 2A, 2B & 2C consisting of Excavation and Lateral Support Works (Stages 1 & 2) for The Integrated Basement and Underground Road (Contract No.: CC/2023/2B/095) at WKCD. The construction works and EM&A programme for Zone 2A (Contract No.: GW/2020/05/073) was commenced on 03 October 2020 and handed over on 31 March 2023; while the construction works and EM&A programme for Zone 2B & 2C (Contract No.: CC/2020/2B/088) was commenced on 30 September 2021 and handed over on 05 July 2024. The construction works and EM&A programme for Zones 2A, 2B & 2C (Contract No.: CC/2023/2B/095) was commenced on 05 July 2024.

The Project Proponent is the West Kowloon Cultural District Authority (WKCDA). The overall works for the WKCD fall under two separate categories of Designated Project (DP) of the Environmental Impact Assessment Ordinance (EIAO), namely an "engineering feasibility study of urban development projects with a study area covering more than 20 ha or involving a total population of more than 100 000" (Item 1 of Schedule 3) and "an underpass more than 100m in length under the built areas" (Item A.9, Part I, Schedule 2). An Environmental Permit No. EP-453/2013/A (EP) was issued with respect to the "Underpass Road and Austin Road Flyover Serving the West Kowloon Cultural District" which specifically includes the abovementioned category of DP under Item A.9, Part I, Schedule 2 of the EIAO.

This Monthly EM&A Report presents the monitoring works at Zones 2A, 2B & 2C from 01 to 31 January 2025.

Exceedance of Action and Limit Levels

There was no breach of Action or Limit levels for Air Quality (1-hour TSP and 24-hour TSP) and Construction Noise in this reporting month.

Implementation of Mitigation Measures

Construction phase weekly site inspections were carried out on 08, 15, 22 and 27 January 2025 for Excavation and Lateral Support Works in Zones 2A, 2B & 2C to confirm the implementation measures undertaken by the Contractors in the reporting month. The outcomes are presented in Section 4 and the status of implementation of mitigation measures in the site is shown in **Appendix J**.

Landscape and visual impact inspections were conducted as part of the above-mentioned weekly site inspections during the reporting month. No adverse comment on landscape and visual aspects was made during these inspections.

Record of Complaints

One environmental complaint was recorded in the reporting month.

1

Record of Notifications of Summons and Successful Prosecutions

No notifications of summons and successful prosecutions were recorded in the reporting month.

Future Key Issues

The major site works for Zones 2A, 2B & 2C scheduled to be commissioned in the coming month include:

• Bored Pile, Pipe Pile and King Post Works

Potential environmental impacts due to the construction activities, including air, noise, water quality, waste, landscape and visual, will be monitored or reviewed. The recommended environmental mitigation measures shall be implemented on site and regular inspections as required will be carried out to ensure that the environmental conditions are acceptable.

1 Introduction

1.1 Background

Apex Testing & Certification Limited (Apex) was commissioned to undertake the Environmental Team (ET) services (including environmental monitoring and audit (EM&A)) for the construction activities in Zone 2A, consisting of Foundation, Excavation and Lateral Support Works for Integrated Basement and Underground Road (Contract No.: GW/2020/05/073); Zone 2B & 2C consisting of Piling Works for Integrated Basement and Underground Road (Contract No.: CC/2020/2B/088); and Zones 2A, 2B & 2C consisting of Excavation and Lateral Support Works (Stages 1 & 2) for The Integrated Basement and Underground Road (Contract No.: CC/2023/2B/095) at WKCD. The purpose of the development in Zone 2A and Zone 2B & 2C is to reserve for Integrated Basement (IB) and Underground Road (UR). The Zone 2A construction activities involve the foundation, excavation and lateral support (ELS) works, road works, drainage diversion works, and temporary car parking. The Zone 2B & 2C construction activities involve the piling works. The construction works and EM&A programme for Zone 2A (Contract No.: GW/2020/05/073) was commenced on 03 October 2020 and handed over on 31 March 2023: while the construction works and EM&A programme for Zone 2B & 2C (Contract No.: CC/2020/2B/088) was commenced on 30 September 2021 and handed over on 05 July 2024. The construction works and EM&A programme for Zones 2A, 2B & 2C (Contract No.: CC/2023/2B/095) was commenced on 05 July 2024.

The overall works for the WKCD fall under two separate categories of Designated Project (DP) of the Environmental Impact Assessment Ordinance (EIAO), namely an "engineering feasibility study of urban development projects with a study area covering more than 20 ha or involving a total population of more than 100 000" (Item 1 of Schedule 3) and "an underpass more than 100m in length under the built areas" (Item A.9, Part I, Schedule 2). An Environmental Permit No. EP-453/2013/A (EP) was issued with respect to the "Underpass Road and Austin Road Flyover Serving the West Kowloon Cultural District" which specifically includes the abovementioned category of DP under Item A.9, Part I, Schedule 2 of the EIAO. The captioned projects include part of the abovementioned underpass road located within the site boundary falls under this same category.

The Monthly EM&A Report is prepared in accordance with the Condition 3.4 of the Environmental Permit No. EP-453/2013/A. This Monthly EM&A Report presents the monitoring works at 2A, 2B & 2C from 01 to 31 January 2025. The purpose of this report is to summarise the findings in the EM&A of the project over the reporting period.

1.2 **Project Organisation**

The organisation chart and lines of communication with respect to the on-site environmental management structure together with the contact information of the key personnel are shown in **Appendix A**.

1.3 Construction Works Status in the Reporting Period

During the reporting period, construction works at Zones 2A, 2B & 2C undertaken include:

• Bored Pile, Pipe Pile and King Post Works

The Construction Works Programme of Zones 2A, 2B & 2C is provided in **Appendix B**. A layout plan of the Project is provided in **Figure 1**. Please refer to **Table 4.3** on the status of the environmental licenses.

1.4 Summary of EM&A Requirements and Alternative Monitoring Locations

1.4.1 EM&A Requirements

The EM&A programme requires environmental monitoring of air quality, noise, landscape and visual as specified in the approved EM&A Manual.

A summary of impact EM&A requirements is presented in Table 1.1.

Parameters	Descriptions	Locations	Frequencies
	24-Hours TSP	AM3-The Victoria Towers Tower 1	At least once every 6 days
	1-Hour TSP	AM3-The Victoria Towers Tower 1	At least 3 times every 6 days
Air Quality	24-Hours TSP	AM4-Canton Road Government Primary School	At least once every 6 days
All Quality	1-Hour TSP	AM4-Canton Road Government Primary School	At least 3 times every 6 days
	24-Hours TSP	AM5-Topside Developments at West Kowloon Terminus Site	At least once every 6 days
	1-Hour TSP	AM5-Topside Developments at West Kowloon Terminus Site	At least 3 times every 6 days
	Leq, 30 minutes	NM2-The Arch, Sun Tower	Weekly
	Leq, 30 minutes	NM3-The Victoria Towers Tower 1	Weekly
Noise	Leq, 30 minutes	NM4-Canton Road Government Primary School	Weekly
	Leq, 30 minutes	NM5-Development next to Austin Station	Weekly
Landscape & Visual	Monitor implementation of proposed mitigation measures during the construction stage	As described in Table 9.1 and 9.2 of the EM&A Manual	Bi-Weekly

Table 1.1: Summary of Impact EM&A Requirements

1.4.2 Alternative Monitoring Locations

The EM&A programme for the Project should require 5 noise monitoring station and 5 air quality monitoring stations located closest to the Project area. With regard to the monitoring activities at M+ Museum and the Lyric Complex, three monitoring stations had been considered, including AM1 (International Commerce Centre), AM2 (The Harbourside Tower 1) for air monitoring, and NM1 (The Harbourside Tower 1) for noise monitoring.

In the context of the construction activities in Zone 2A and Zone 2B & 2C, all other monitoring locations including AM3 (The Victoria Towers Tower 1), AM4 (Canton Road Government Primary School), and AM5 (Topside Developments at West Kowloon Terminus Site) for air monitoring; and NM2 (The Arch, Sun Tower), NM3 (The Victoria Towers Tower 1), NM4 (Canton Road Government Primary School) and NM5 (Development next to Austin Station) for noise monitoring,

have been taken into account. However, access to all these originally designated monitoring stations was declined as described below point-by-point.

The Arch management office and owners' committee have formally declined the proposal of setting up noise monitoring instrument on its premises at the podium level of Sun Tower (NM2) on 24 July 2014. Thus, alternative noise monitoring location was identified at the ground floor in front of The Arch – Sun Tower (NM2A), which is at the same location as stated in the EM&A Manual for consistency. No management approval is required at the ground floor for conducting the noise monitoring. This alternative air monitoring location was approved by EPD on 29 September 2020.

The Victoria Towers management office formally declined the proposal of setting up air quality and noise monitoring instruments on its premises at the podium area of Tower 1 (AM3/NM3) on 16 June 2020. Alternative air monitoring location was identified at ground floor at the Northeast corner of West Kowloon Station's station box (AM3A), in the same direction to the area of major construction site activities in Zone 2A. This alternative air monitoring location was identified at the ground floor in front of the Xiqu Centre (NM3A), which is set closer to the construction site boundary with more direct line sight to the major site activities and higher exposure to the construction noise with no disturbance to the premises' occupants during noise monitoring activities. No management approval is required at the ground floor for conducting the noise monitoring. This alternative air monitoring location was approved by EPD on 29 September 2020.

Canton Road Government Primary School formally declined the proposal of setting up air quality and noise monitoring instruments on its premise at the podium level (AM4/NM4) on 16 June 2020. Alternative air monitoring location was identified at ground floor at the Southeast corner of West Kowloon Station's station box (AM4A), in same direction to the area of major construction site activities in Zone 2A. This alternative air monitoring location was approved by EPD on 29 September 2020. An alternative noise monitoring location was identified at the ground floor next to Tsim Sha Tsui Fire Station (NM4A), which is set closer to the construction site boundary with more direct line sight to the major site activities and higher exposure to the construction noise with no disturbance to the premises' occupants during noise monitoring activities. No management approval is required at the ground floor for conducting the noise monitoring. This alternative air monitoring location was approved by EPD on 29

MTR also formally declined the access to the designated AM5 location (topside developments at West Kowloon Terminus Site) on 15 July 2020. Alternative air monitoring location was identified at ground floor at the North of West Kowloon Station's station box (AM5A), in same direction to the area of major construction site activities in Zone 2A. This alternative air monitoring location was approved by EPD on 29 September 2020.

Grand Austin property management office formally declined our proposal of setting up noise monitoring instrument on its premises at the podium level (NM5) on 10 July 2020. Alternative noise monitoring location was identified at the Pedestrian road (ground floor) outside West Kowloon Station (NM5A), which is set closer to the construction site boundary with more direct line sight to the major site activities and higher exposure to the construction noise with no disturbance to the premises' occupants during noise monitoring activities. No management approval is required at the ground floor for conducting the noise monitoring. This alternative air monitoring location was approved by EPD on 29 September 2020.

The Environmental Quality Performance Limits for air quality and noise are shown in **Appendix C**.

The Event and Action Plan for air quality, construction noise, and landscape and visual are shown in **Appendix D**.

The EM&A programme followed the recommended mitigation measures in the EM&A Manual. The EM&A requirements as well as the summary of implementation status of the environmental mitigation measures are provided in **Appendix J**.

2 Impact Monitoring Methodology

2.1 Introduction

Air quality and noise monitoring methodology, including the monitoring locations, equipment used, parameters, frequency and duration etc., are described in this Section. The environmental monitoring schedules for the reporting period and the tentative monitoring Schedule for the coming month are provided in **Appendix E**.

The relevant EM&A monitoring requirements and details for landscape and audit impact, are also presented in this Section.

2.2 Air Quality

2.2.1 Monitoring Parameters, Frequency and Duration

Table 2.1 summarizes the monitoring parameters, frequency and duration of the TSP monitoring.

Table 2.1:	Air Quality Monitoring Parameters, Frequency and Duration		
Parameter	Frequency	Duration	
24-hour TSP	At least once in every six-days	24 hours	
1-hour TSP	At least 3 times every six-days	60 minutes	

2.2.2 Monitoring Locations

Monitoring stations and locations are given in Table 2.2 and shown in Figure 1.

Table 2.2: Air Quality Monitoring Station

Monitoring Station	Location Description
AM3A	Northeast corner of West Kowloon Station's station box (G/F)
AM4A	Southeast corner of West Kowloon Station's station box (G/F)
AM5A	North of West Kowloon Station's station box (G/F)

2.2.3 Monitoring Equipment

Continuous 24-hour TSP air quality monitoring was conducted using High Volume Sampler (HVS) (Model: TE-5170) located at the designated monitoring station. The HVS meets all the requirements stated in of the EM&A Manual. Portable direct reading dust meter was used to carry out the 1-hour TSP monitoring. **Table 2.3** summarizes the equipment used in the impact air quality monitoring. Copies of the calibration certificates for the HVS, calibration kit and portable dust meters are attached in **Appendix F**.

Table 2.3: TSP Monitoring Equipment

Equipment	Model
24-hour TSP monitoring	
High Volume Sampler	TE-5170 (Serial No.: 4340; 3998; 4344)

Equipment	Model
Calibrator TE-5025A (Orifice I.D.: 4088)	
1-hour TSP monitoring	
Portable direct reading dust meter	Sibata-LD-3B (Serial No.: 276004, 336338, 476672)

Calibration of the HVS (five-point calibration) using Calibration Kit was carried out every two months. The HVS calibration orifice will be calibrated annually. Calibration certificate of the TE-5025A Calibration Kit and the HVS are provided in **Appendix F**.

The 1-hour TSP monitoring should be determined periodically (e.g. annually) by the HVS to check the validity and accuracy of the results measured by direct reading method.

2.2.4 Monitoring Methodology

24-hour TSP Monitoring

Installation

The HVS was installed at the site boundary. The following criteria were considered in the installation of the HVS.

- A horizontal platform with appropriate support to secure the sampler against gusty wind was provided.
- The distance between the HVS and any obstacles, such as buildings, was at least twice the height that the obstacle protrudes above the HVS.
- A minimum of 2 metres separation from walls, parapets and penthouse was required for rooftop sampler.
- A minimum of 2 metres separation from any supporting structure, measured horizontally was required.
- No furnace or incinerator flues or building vent were nearby.
- Airflow around the sampler was unrestricted.
- The sampler has been more than 20 metres from any drip line.
- Permission was obtained to set up the sampler and to obtain access to the monitoring station.
- A secured supply of electricity is needed to operate the sampler.

Preparation of Filter Papers

- Glass fibre filters were labelled and sufficient filters that were clean and without pinholes were selected.
- The filters used are specified to have a minimum collection efficiency of 99 percent for 0.3 µm (DOP) particles.
- All filters were equilibrated in the conditioning environment for 24 hours before weighing. The conditioning environment temperature was around 25 °C and not variable by more than ±3 °C with relative humidity (RH) < 50% and was not variable by more than ±5 %. A convenient working RH was 40%. All preparation of filters was done by Hong Kong Laboratory Accreditation Scheme (HOKLAS) accredited laboratory.

Field Monitoring Procedures

- The power supply was checked to ensure the HVS works properly.
- The filter holder and the area surrounding the filter were cleaned.

- The filter holder was removed by loosening the four bolts and a new filter, with stamped number upward, on a supporting screen was aligned carefully.
- The filter was properly aligned on the screen so that the gasket formed an airtight seal on the outer edges of the filter.
- The swing bolts were fastened to hold the filter holder down to the frame. The pressure applied should be sufficient to avoid air leakage at the edges.
- The shelter lid was closed and was secured with the aluminium strip.
- The HVS was warmed-up for about 5 minutes to establish run-temperature conditions.
- A new flow rate record sheet was set into the flow recorder.
- The flow rate of the HVS was checked and adjusted at around 1.3 m³/min. The range specified in the EM&A Manual was between 0.6-1.7 m³/min.
- The programmable timer was set for a sampling period of 24 hours, and the starting time, weather condition and the filter number were recorded.
- The initial elapsed time was recorded.
- At the end of sampling, the sampled filter was removed carefully and folded in half length so that only surfaces with collected particulate matter were in contact.
- It was then placed in a clean plastic envelope and sealed.
- All monitoring information was recorded on a standard data sheet.
- Filters were sent to a Hong Kong Laboratory Accreditation Scheme (HOKLAS) accredited laboratory for analysis.

Maintenance and Calibration

- The HVS and its accessories are maintained in good working condition, such as replacing motor brushes routinely and checking electrical wiring to ensure a continuous power supply.
- HVSs were calibrated upon installation and thereafter at bi-monthly intervals. The calibration kits were calibrated annually.
- Calibration records for HVS and calibration kit are shown in Appendix F.

1-hour TSP Monitoring

Field Monitoring

The measuring procedures of the 1-hour dust meter are in accordance with the Manufacturer's Instruction Manual as follows:

- Turn the power on.
- Close the air collecting opening cover.
- Push the "TIME SETTING" switch to [BG].
- Push "START/STOP" switch to perform background measurement for 6 seconds.
- Turn the knob at SENSI ADJ position to insert the light scattering plate.
- Leave the equipment for 1 minute upon "SPAN CHECK" is indicated in the display.
- Push "START/STOP" switch to perform automatic sensitivity adjustment. This measurement takes 1 minute.
- Pull out the knob and return it to MEASURE position.
- Setting time period of 1 hour for the 1-hour TSP measurement.
- Push "START/STOP" to start the 1-hour TSP measurement.
- Regular checking of the time period setting to ensure monitoring time of 1 hour.

Maintenance and Calibration

- The 1-hour dust meter would be checked at 3-month intervals and calibrated at 1-year intervals throughout all stages of the air quality monitoring.
- Calibration records for direct dust meters are shown in Appendix F.

Weather Condition

 Meteorological data extracted from Hong Kong Observatory for the reporting month is provided in Appendix H.

2.3 Noise

2.3.1 Monitoring Parameters, Frequency and Duration

Table 2.4 summarizes the monitoring parameters, frequency and duration of noise monitoring. The noise in A-weighted levels L_{eq} , L_{10} and L_{90} are recorded in a 30-minute interval between 0700 and 1900 hours.

Table 2.4: Noise Monitoring Parameters, Period and Frequency

Location

Time Period	Parameters	Frequency
Daytime on normal weekdays	L _{eq} (30 min), L ₉₀ (30 min) & L ₁₀ (30 min)	Once every week
(0700-1900 hours)		
Nate: *70 dD/A) for ashaala and CE	$dD(\Lambda)$ during a share a symptomization mariada	

Note: *70 dB(A) for schools and 65 dB(A) during school examination periods.

If works are to be carried out during restricted hours, the conditions stipulated in the Construction Noise Permit (CNP) issued by the Noise Control Authority have to be followed.

2.3.2 Monitoring Location

Manifaring Ctation

Noise monitoring stations and locations are given in Table 2.5 and shown in Figure 1.

Table 2.5: Noise Monitoring Station

Monitoring Station	Location
NM2A	The Arch – Sun Tower (G/F)
NM3A	Xiqu Centre (G/F)
NM4A	Next to Tsim Sha Tsui Fire Station (G/F)
NM5A	Pedestrian road (G/F) outside West Kowloon Station

2.3.3 Monitoring Equipment

Integrating Sound Level Meter was used for noise monitoring. It was a Type 1 sound level meter capable of giving a continuous readout of the noise level readings including equivalent continuous sound pressure level (L_{Aeq}) and percentile sound pressure level (L_x). They comply with International Electrotechnical Commission Publications 651:1979 (Type 1) and 804:1985 (Type 1). **Table 2.6** summarizes the noise monitoring equipment model being used.

Table 2.6: Noise Monitoring Equipment

Equipment Model	
Integrating Sound Level Meter	Calibrator
AWA5661 (Serial No.: 304718)	Quest QC-10 (Serial No.: Q19010183)

2.3.4 Monitoring Methodology

Field Monitoring

- The microphone of the Sound Level Meter was set at least 1.2 m above the ground.
- Free Field measurement was made at NM5A monitoring location.
- The battery condition was checked to ensure the correct functioning of the meter.
- Parameters such as frequency weighting, the time weighting and the measurement time were set as follows:
 - frequency weighting: A
 - time weighting: Fast
 - time measurement: 30 minutes intervals (between 0700-1900 on normal weekdays)
- Prior to and after each noise measurement, the meter was calibrated using a Calibrator for 94 dB at 1 kHz. If the difference in the calibration level before and after measurement was more than 1 dB, the measurement would be considered invalid and has to be repeated after re-calibration or repair of the equipment.
- During the monitoring period, the L_{eq}, L₁₀ and L₉₀ were recorded. In addition, any site observations and noise sources were recorded on a standard record sheet.
- A correction of +3dB(A) was made to the free field measurements.

Maintenance and Calibration

- The microphone head of the sound level meter and calibrator is cleaned with soft cloth at quarterly intervals.
- The sound level meter and calibrator are sent to the supplier or HOKLAS laboratory to check and calibrate at yearly intervals.
- Calibration records are shown in **Appendix F**.

Weather Condition

 Meteorological data extracted from Hong Kong Observatory for the reporting month is provided in **Appendix H**.

2.4 Landscape and Visual

2.4.1 Monitoring Program

Table 2.7 details the monitoring program (as proposed in the WKCD EIA report) for landscape and visual impact during the construction phase.

Table 2.7:Monitoring Program for Landscape and Visual Impact during ConstructionPhase

Stage	Monitoring Task	Frequency	Report	Approval
Construction	Monitor implementation of proposed mitigation measures during the construction stage.	Bi-weekly	ET to report on Contractor's compliance	Counter- signed by IEC

During the landscape and visual impact monitoring, any changes in relation to the landscape and visual amenity should be monitored with reference to the baseline conditions of the site. In addition, mitigation measures were proposed in the WKCD EIA report to minimise the landscape and visual impacts during the construction phase. The proposed mitigation measures as shown in Table 9.1 and Table 9.2 of the EM&A Manual should be checked for proper implementation.

3 Monitoring Results

3.1 Impact Monitoring

Air quality, noise and landscape and visual impact monitoring was undertaken in compliance with the EM&A Manual during the reporting month.

3.2 Air Quality Monitoring

3.2.1 1-hour TSP

Results of 1-hour TSP are summarised in **Table 3.1**. Graphical plots of the monitoring results are shown in **Appendix G**.

Monitoring	Monitoring	Start	1-hour TSP (µg/m3)			Range	Action	Limit
Station	Date	Time	1st Result	2nd Result	3rd Result	(µg/m3)	Level (µg/m3)	Level (µg/m3)
	06-Jan-25	08:00	36	45	40			
	11-Jan-25	14:07	37	39	35			
AM3A	17-Jan-25	08:03	46	46	43	35-56	280.4	500
	23-Jan-25	14:05	54	52	56			
	28-Jan-25	08:08	51	42	47			
	06-Jan-25	08:08	42	49	45			
	11-Jan-25	14:15	38	36	33			
AM4A	17-Jan-25	08:11	46	43	42	33-57	278.5	500
	23-Jan-25	14:13	54	52	57			
	28-Jan-25	08:16	44	48	50			
	06-Jan-25	08:23	44	45	41			
	11-Jan-25	14:32	38	40	44			
AM5A	17-Jan-25	08:26	51	51	46	38-55	275.4	500
	23-Jan-25	14:30	55	54	53			
	28-Jan-25	08:31	44	45	44			

Table 3.1: Summary of 1-hour TSP monitoring results

3.2.2 24-hour TSP

Results of 24-hour TSP are summarised in **Table 3.2**. Graphical plots of the monitoring results are shown in **Appendix G**.

Table 3.2:	Summary of 24-hour TSP monitoring results

Monitoring Station	Monitoring Date	Start Time	Monitoring Results (µg/m³)	Range (µg/m³)	Action Level (µg/m³)	Limit Level (µg/m³)
	06-Jan-25	10:00	36		450.4	
A.M.O.A	11-Jan-25	10:00	34	34-50		260
AM3A	17-Jan-25	10:00	41		152.4	
	23-Jan-25	10:00	50			

Monitoring Station	Monitoring Date	Start Time	Monitoring Results (μg/m³)	Range (µg/m³)	Action Level (μg/m³)	Limit Level (µg/m³)
	28-Jan-25	10:00	46			
	06-Jan-25	10:00	42			
	11-Jan-25	10:00	34			
AM4A	17-Jan-25	10:00	42	34-52	152.6	260
	23-Jan-25	10:00	52			
	28-Jan-25	10:00	46			
	06-Jan-25	10:00	41			
	11-Jan-25	10:00	39			
AM5A	17-Jan-25	10:00	47	39-51	141.1	260
	23-Jan-25	10:00	51			
	28-Jan-25	10:00	42			

No exceedance of 1-hour and 24-hour TSP (Action or Limit Level) was recorded in the reporting period.

3.3 Noise Monitoring

The construction noise monitoring results are summarized in **Table 3.3**. Graphical plots of the monitoring data and the station set-up as façade and free-field measurements are shown in **Appendix G**.

Table 3.3:	Summary of noise	monitoring results	during normal weekdays

Monitoring Stations	Monitoring Date	Start Time	End Time	L _{eq} (30 mins) dB(A)	Limit Level for L _{eq} (dB(A))
	06-Jan-25	08:00	08:30	63.1	
-	11-Jan-25	14:07	14:37	62.4	
NM2A	17-Jan-25	08:03	08:33	62.6	75
	23-Jan-25	14:05	14:35	62.8	
_	28-Jan-25	08:08	08:38	62.5	
_	06-Jan-25	09:30	10:00	61.0	
	11-Jan-25	15:40	16:10	61.0	
NM3A	17-Jan-25	09:33	10:03	60.8	75
	23-Jan-25	15:47	16:17	61.1	
	28-Jan-25	09:47	10:17	60.6	
_	06-Jan-25	10:05	10:35	58.1	
_	11-Jan-25	16:15	16:45	58.3	
NM4A	17-Jan-25	10:08	10:38	58.3	70/65^#
_	23-Jan-25	16:22	16:52	58.2	
	28-Jan-25	10:22	10:52	58.2	
	06-Jan-25	08:50	09:20	63.3	
	11-Jan-25	14:59	15:29	63.5	
_	17-Jan-25	08:53	09:23	63.5	75
NM5A*	23-Jan-25	14:57	15:36	63.3	
	28-Jan-25	08:58	09:37	63.9	

Remarks:

- * +3dB (A) correction was applied to free-field measurement.
- ^ 70 dB(A) for schools and 65 dB(A) during school examination periods.
- [#] No school examination was conducted during reporting period.

No exceedance of Construction Noise (Action or Limit Level) was recorded in the reporting month

Construction Noise Permits for the works carried out during restricted hours were obtained and listed in **Table 4.3**.

3.4 Landscape and Visual Impact

Landscape and visual impact inspections were conducted as part of the weekly site inspections on 08 and 22 January 2025 for Zones 2A, 2B & 2C during the reporting month. As reviewed by the registered Landscape Architect, no adverse comment on landscape and visual aspects was made during these inspections.

The landscape and visual mitigation measures were implemented during the reporting period. The summary of implementation status of the environmental mitigation measures is provided in **Appendix J**.

4 Site Environmental Management

4.1 Site Inspection

4.1.1 Zones 2A, 2B & 2C (Contract No.: CC/2023/2B/095)

Construction phase weekly site inspections were carried out on 08, 15, 22 and 27 January 2025 at Zones 2A, 2B & 2C. The joint site inspection with IEC, ET, ER and Contractor for Zones 2A, 2B & 2C was held on 08 January 2025. All observations have been recorded in the site inspection checklist and passed to the Contractor together with the appropriate recommended mitigation measures where necessary.

The key observations from the site inspections and associated recommendations are summarized in **Table 4.**

Inspecti on Date	Parameter	Observation / Recommendation	Contactor's Responses / Action(s) Undertaken	Close-out (Date)
08-Jan-25	Waste Management	The contractor was reminded to have better housekeeping and dispose general refuse frequently at designated area and to avoid accumulation on site which may lead to hygiene problem.	The mixed general refuse was sorted and disposed.	10-Jan-25
15-Jan-25	Air Quality	The contractor was reminded that NRMM label shall be provided for all regulated machineries on site.	NRMM label was properly displayed.	17-Jan-25
27-Jan-25	Water Quality	The contractor was reminded that fuel drum shall not be stored in designated area which have pollution prevention facilities or drip trays with adequate capacity.	Fuel drum was removed	03-Feb-25

Table 4.1:Summary of Site Inspections and Recommendations for Zones 2A, 2B &2C

4.2 Advice on the Solid and Liquid Waste Management Status

The Contractors have been registered as a chemical waste producer for the Project. Construction and demolition (C&D) material sorting will be carried out on site. A sufficient number of receptacles were available for general refuse collection.

4.2.1 Zones 2A, 2B & 2C (Contract No.: CC/2023/2B/095)

As advised by the Zones 2A, 2B & 2C Contractor, 2391.44 tonne and 0.0 tonne of inert C&D material were disposed of as public fill to Tseung Kwan O Area 137 Public Fill and Tuen Mun Area 38 Public Fill respectively, while 29.39 tonne of general refuse were disposed of at SENT landfill. 0.0 tonne of metals, 0.0 tonne of paper/cardboard packaging, 0.0 tonne of plastics and 0.0 tonne of timber was collected by recycling contractors in the reporting month. 0.00 tonne of inert C&D material were reused on site. 2090.69 tonne of inert C&D material were reused in other projects and 0.0 tonne of inert C&D material was imported for reuse at site in the reporting month.

18.42 tonne of inert C&D material was disposed to sorting facility and 0.0 tonne of chemical waste was collected by licensed contractors in the reporting period.

The cumulative waste generation records for Zones 2A, 2B & 2C are shown in Appendix I.

4.3 Status of Environmental Licenses and Permits

The environmental permits, licenses, and/or notifications on environmental protection for this Project which were valid during the period are summarised in **Table 4.3**.

4.3.1 Zones 2A, 2B & 2C (Contract No.: CC/2023/2B/095)

The environmental permits, licenses, and/or notifications on environmental protection for this Project which were valid during the period are summarised in **Table 4.**.

Table 4.3:Status of Environmental Submissions, Licenses and Permits for Zones2A, 2B & 2C

Permit / License	Valid	Period	_	
No. / Notification / Reference No.	From	То	Status	Remarks
Chemical Waste Produ	cer Registration	-		
WPN5117-256- V1011-40	11-Jul-24		Valid	
Billing Account Constr	uction Waste Dispo	sal		
7051739	01-Aug-24		Account Active	
Construction Noise Pe	rmit			
GW-RE0098-25	01-Feb-25	31-Jul-25	Valid	-
PP-RE0002-25	17-Feb-25	16-Aug-25	Valid	
Wastewater Discharge	License			
WT00045374-2024	24-Oct-24	31-Oct-2029	Valid	
Notification under Air F	Pollution Control (Co	onstruction Dust) Regu	Ilation	
10006790	11-Jul-24		Notified	

4.4 Recommended Mitigation Measures

The EM&A programme followed the recommended mitigation measures in the EM&A Manual. The EM&A requirements as well as the summary of implementation status of the environmental mitigation measures are provided in **Appendix J**. In particular, the following mitigation measures were brought to attention during the site inspections:

4.4.1 Zones 2A, 2B & 2C (Contract No.: CC/2023/2B/095)

Water Quality

 Better storage of fuel drums in the designated area that has pollution prevention facilities or drip trays with adequate capacity.

Waste Management

 Site housekeeping shall be strengthened to prevent the accumulation of materials, which could lead to hygiene issues

Air Quality

- NRMM label shall be provided for all regulated machineries on site.

5 Compliance with Environmental Permit

The status of the required submission under the EP during the reporting period is summarized in **Table 5.1**.

EP Condition	Submission	Submission Date
Condition 3.4	Monthly EM&A Report for December 2024	14 January 2025

6 Report in Non-compliance, Complaints, Notification of Summons and Successful Prosecutions

6.1 Record on Non-compliance of Action and Limit Levels

There was no breach of Action or Limit levels for Air Quality (1-hour TSP and 24-hour TSP) and Construction Noise in this reporting month.

6.2 Record on Environmental Complaints Received

One environmental complaint was received in the reporting month.

On 13 January 2025, the WKCD hotline received a complaint from Mr. So, who was calling from the security control room of The Harbourside. The complaint was regarding noise issues arising from construction activities and vehicles between the Xigu Centre and M+ in the afternoon on 11 January 2025 (Saturday) with no specific time mentioned. After the investigation, the major construction activities for Zone 2A, 2B & 2C Sites were carried out between 7:00 a.m. and 19:00 p.m. which is compliant with the statutory requirement. Preventive and mitigation measures are well-deployed and maintained by the Contractor, including noise enclosure on concrete breaking work, noise enclosure for RCD as well as noise barrier hanging on top of hoarding. Prompt actions are taken after receiving a complaint notification, such as installing noise barrier shielding to isolate the drilling works from the public, and constructing noise enclosures around the motor parts of the plants. Regarding the regular noise monitoring results, the results were well below the action/limit levels. It was concluded that the concerned environmental impacts should might be due to the construction works, especially the drilling works for grout curtains adjacent to the Austin Road West, at Zones 2A, 2B & 2C Sites. On-site mitigation measures have already been implemented and maintained, and prompt actions have been taken. We will keep maintain good practice on site, and strengthen the implementation of mitigation measures to further reduce impacts on the nearby neighbors.

The cumulative statistics on complaints were provided in Appendix K.

6.3 Record on Notifications of Summons and Successful Prosecution

No notifications of summons or successful prosecutions were received this month. The cumulative statistics on notifications of summons and successful prosecutions were provided in **Appendix** K.

7 Future Key Issues

7.1 Construction Works for the Coming Month(s)

The major site works for Zones 2A, 2B & 2C scheduled to be commissioned in the coming month include:

• Bored Pile, Pipe Pile and King Post Works

7.2 Key Issues for the Coming Month

7.2.1 Zones 2A, 2B & 2C (Contract No.: CC/2023/2B/095)

Key issues to be considered in the coming month include:

- · Generation of dust from construction works;
- Noise impact from piling works;
- · Generation of site surface runoffs and wastewater from activities on-site;
- Management of stockpiles and slopes, particularly on rainy days;
- Sorting, recycling, storage and disposal of general refuse and construction waste; and
- Management of chemicals and avoidance of oil spillage on-site.

7.3 Monitoring Schedule for the Coming Month

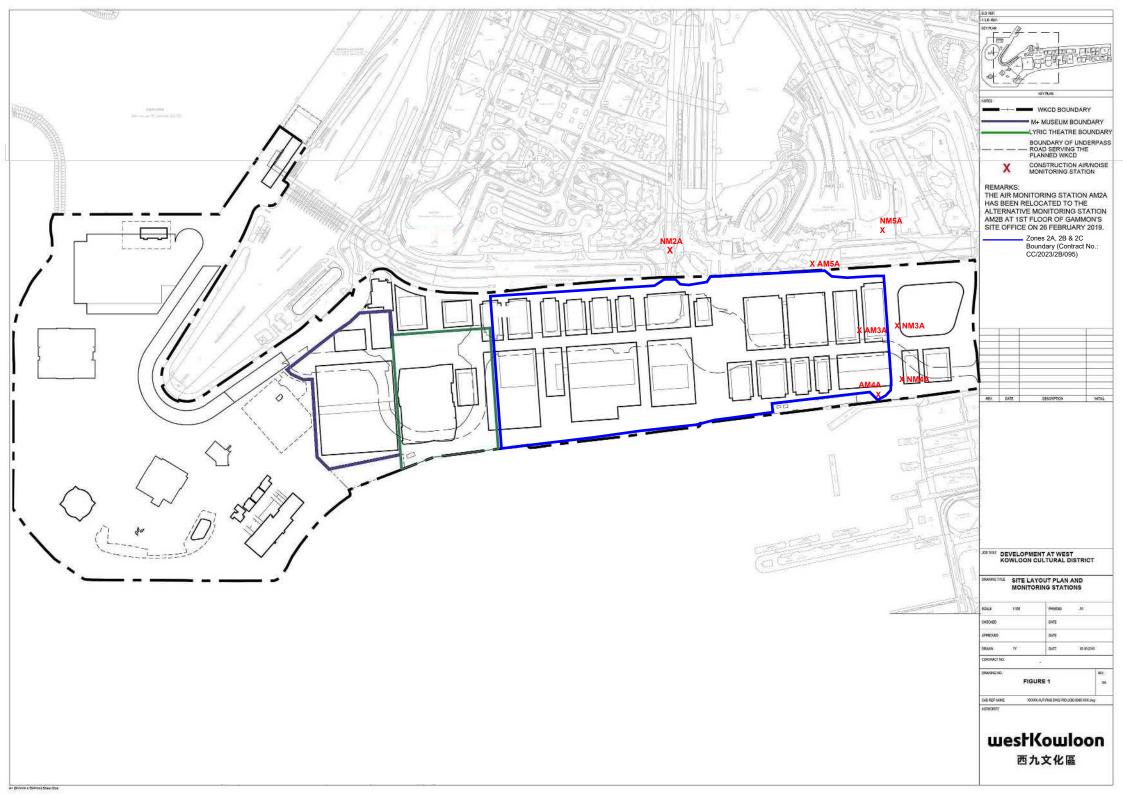
The environmental site inspection and environmental monitoring will be continued in the coming month. The tentative monitoring schedule for the coming month is shown in the **Appendix E**.

8 Conclusions and Recommendations

8.1 Conclusions

The EM&A programme as recommended in the EM&A Manual has been undertaken. The construction works and EM&A programme for Zone 2A (Contract No.: GW/2020/05/073) was commenced on 03 October 2020 and handed over on 31 March 2023; while the construction works and EM&A programme for Zone 2B & 2C (Contract No.: CC/2020/2B/088) was commenced on 30 September 2021 and handed over on 05 July 2024. The construction works and EM&A programme for Zones 2A, 2B & 2C (Contract No.: CC/2023/2B/095) was commenced on 05 July 2024.

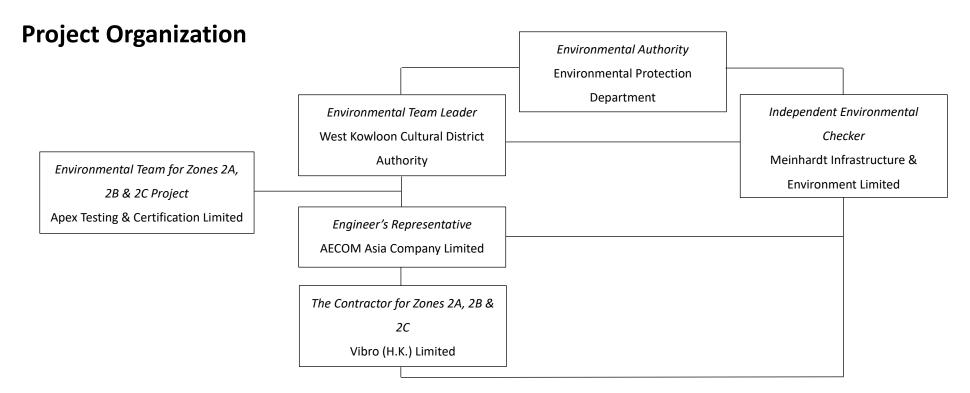
Monitoring of air quality and noise with respect to the Projects is underway. In particular, the 1-hour TSP, 24-hour TSP, Noise Level (as L_{eq}, 30 minutes) under monitoring have been checked against established Action and Limit levels. There was no breach of Action or Limit levels for Air Quality (1-hour TSP and 24-hour TSP) and Construction Noise in this reporting month.


One environmental complaint was recorded in the reporting month. No notifications of summons or successful prosecutions were received during the reporting month.

Weekly construction phase site inspections and bi-weekly landscape and visual impact inspections were conducted during the reporting month as required. It was observed that the Contractors had implemented all possible and feasible mitigation measures to mitigate the potential environmental impacts during construction phase works.

8.2 **Recommendations**

Potential environmental impacts due to the construction activities, including air quality, noise, water quality, waste, landscape and visual, will be monitored or reviewed. The recommended environmental mitigation measures shall be implemented on site and regular inspections as required will be carried out to ensure that the environmental conditions are acceptable.


Figure 1 Site Layout Plan and Monitoring Stations

Appendices

- A. Project Organisation
- B. Tentative Construction Programme
- C. Action and Limit Levels for Construction Phase
- D. Event and Action Plan for Air Quality, Noise, Landscape and Visual Impact
- E. Monitoring Schedule
- F. Calibration Certifications
- G. Graphical Plots of the Monitoring Results
- H. Meteorological Data Extracted from Hong Kong Observatory
- I. Waste Flow table
- J. Environmental Mitigation Measures Implementation Status
- K. Cumulative Statistics on Complaints, Notifications of Summons and Successful Prosecutions

A. Project Organisation

Table A-1: Contract Information

Company Name	Role	Name	Telephone	Email
West Kowloon Cultural District Authority	WKCDA Representative & Project ETL	Mr. Max LEE	2200 0782	max.sl.lee@wkcda.hk
Meinhardt Infrastructure & Environment Limited	Independent Environmental Checker	Ms. Claudine LEE	2859 5409	claudinelee@meinhardt.com.hk
AECOM Asia Company Limited	Assistant Resident Engineer (Zones	Mr. Laurence	5791 8711	cheuklunlaurence.wong@aecom.com
	2A, 2B & 2C)	WONG		
Vibro (H.K.) Limited	Environmental Sustainability Manager	Mr. Tony YAM	2137 5586	tony_yam@vibro.com.hk
Apex Testing & Certification Limited	Contractor's Environmental Team	Mr. Calvin LUI	9629 9718	calvinlui@apextestcert.com
	Leader			

B. Tentative Construction Programme

		ELS Works (Stages 1 & 2) for Inte	grated				derg		oad in Z	ones 2/				t K	0
Ac	ctivity ID	Activity Name			4th Draft Start	4th Draft Finish	Dur	Forecast /Actual Start	Forecast /Actual Finish	% Complete		2024	Jan 7		Ţ
	ELS Works (Stages 1 &	& 2) for IBUR in Zones 2A, 2B and 2C of the West K	owloc		05-Jul-24	04-Jan-27	914	05-Jul-24 A	04-Jan-27	1	366				-
	Contract Dates			55	31-Jan-25	27-Mar-25	55	31-Jan-25	27-Mar-25		0				
	Access Dates			55	31-Jan-25	27-Mar-25	55	31-Jan-25	27-Mar-25		0				
	Tentative Access Date			0	31-Jan-25	31-Jan-25	0	31-Jan-25	31-Jan-25		0				
	WKCDA-#AD-01020	Tentative Access to Portion B06			31-Jan-25	07.14 05	0	31-Jan-25*	07.14 05	0%				2	\$
	Late Access Date WKCDA-#AD-02020	Late Access to Portion B06			27-Mar-25 27-Mar-25	27-Mar-25	0	27-Mar-25 27-Mar-25*	27-Mar-25	0%	0				-
	BD Statutory Submissions			-	14-Aug-24	12-Feb-25	68	25-Jan-25	02-Apr-25	070	1008			Í	
	Consent BA8 and BA10 Su				14-Aug-24	12-Feb-25	68	25-Jan-25	02-Apr-25		1008				ļ
	Zone 2B				09-Jan-25	12-Feb-25	35	27-Feb-25	02-Apr-25		-49				ļ
		Submission and Consent for King Post				12-Feb-25	35	27-Feb-25	02-Apr-25		-49				-
	WKCDA-BD-STA-01160	BA8 for king post at Zone 2B(Consent 9)			09-Jan-25	05-Feb-25	28	27-Feb-25	26-Mar-25	0%	-			<u> </u>	-
	WKCDA-BD-STA-01170 Zone 2A-1	BA10 for king post at Zone 2B(Consent 9)			06-Feb-25	12-Feb-25 17-Sep-24	7	27-Mar-25 25-Jan-25	02-Apr-25 28-Feb-25	0%	-49 1041				ļ
	BD Submission and Conser	nt for King Post			14-Aug-24	17-Sep-24	35	25-Jan-25	28-Feb-25		1041				
	WKCDA-BD-STA-01120	BA8 for King post at Zone 2A-1(Consent 7)		28	14-Aug-24	10-Sep-24	28	25-Jan-25	21-Feb-25	0%	1041			—	÷
	WKCDA-BD-STA-01130	BA10 for King post at Zone 2A-1(Consent 7)			11-Sep-24	17-Sep-24	7	22-Feb-25	28-Feb-25	0%	1041				ļ
		ries, General Requirements			02-Aug-24	25-Jun-25	370	05-Jul-24 A	09-Jul-25		910				
	General Submission and P	rocurement			02-Aug-24	08-Apr-25	283	17-Jul-24 A	25-Apr-25		985				ł
	Submission and Approval Contingency Management	Dian			02-Aug-24 02-Aug-24	08-Apr-25 29-Aug-24	282 193	17-Jul-24 A 17-Jul-24 A	24-Apr-25 25-Jan-25		78 134				- -
	WKCDA-A-SUB-01140	Review and approve submission of Contingency Management Plan			02-Aug-24	29-Aug-24 29-Aug-24	193	17-Jul-24 A	25-Jan-25	96.43%				Rev	vie
		Traffic Impact Assessment (including marine traffic activity field surve	ey)		02-Nov-24	29-Nov-24	123	25-Sep-24 A	25-Jan-25		10			1.01	-
	WKCDA-A-SUB-01380	Review and approve submission of Operation Plan and Marine Traffic In Assessment by CA and Relevant Authorities		28	02-Nov-24	29-Nov-24	123	25-Sep-24 A	25-Jan-25	96.43%	10			Rev	vie
	Authority Department Subm				02-Nov-24	30-Jan-25	125	23-Sep-24 A	25-Jan-25		148				:
	WKCDA-A-SUB-01440	Application to EPD and obtain permit for marine dumping			02-Nov-24	30-Jan-25	125	23-Sep-24 A	25-Jan-25	98.89%	148			>	1
	TTMS scheme including for WKCDA-A-SUB-01640	Trial run and implementation of TTMS scheme			06-Dec-24 06-Dec-24	12-Dec-24 12-Dec-24	1	02-Jan-25 A 02-Jan-25 A	02-Jan-25 A 02-Jan-25 A	100%			Trial run and implementation	optot	tin l
		the water-tightness of ELS for Zones 2A-1 and 2A-2-1			09-Jan-25	08-Apr-25	90	25-Jan-25	24-Apr-25	10070	78		nanun anu mpe	Bilal	U
	WKCDA-A-SUB-01460	Prepare and submit Joint Written Guarantee for the water-tightness of E Zones 2A-1 and 2A-2-1	ELS for	90	09-Jan-25	08-Apr-25	90	25-Jan-25	24-Apr-25	0%	78				
	Procurement and Delivery or				09-Oct-24	08-Apr-25	157	20-Nov-24 A	25-Apr-25		985				
	Interlocking Pipe Pile mate WKCDA-A-PRO-1250	rials Delivery of Interlocking interlocking pipe pile (15th Batch)		0			21	31-Dec-24 A 31-Dec-24 A	20-Jan-25 A 31-Dec-24 A	100%			Delivery of Interlocking	a inter	
	WKCDA-A-PRO-1250	Delivery of Interlocking interlocking pipe pile (15th Batch)		0			1	06-Jan-25 A	06-Jan-25 A	100%			 Delivery of Inter 		:
	WKCDA-A-PRO-1270	Delivery of Interlocking interlocking pipe pile (17th Batch)		0			1	13-Jan-25 A	13-Jan-25 A	100%			 Delivery c 		
	WKCDA-A-PRO-1280	Delivery of Interlocking interlocking pipe pile (18th Batch)		0			1	20-Jan-25 A	20-Jan-25 A	100%			∎ D∉	livery	of
	King Post Materials				09-Oct-24	05-Nov-24	94	20-Nov-24 A	21-Feb-25		1048			l	:
	WKCDA-A-PRO-2020	Delivery of King Post Material for Zone 2A-2-1 (ELS and Steel Platform)		14	19-Oct-24	01-Nov-24	67	20-Nov-24 A	25-Jan-25	92.86%	1075			Deli	ive
	WKCDA-A-PRO-2080	Procurement of King Post material for Zone 2B & 2A-1 (ELS and Steel	Platform)	14	09-Oct-24	22-Oct-24	14	25-Jan-25	07-Feb-25	0%	-9				
	WKCDA-A-PRO-2100	Delivery of King Post Material for Zone 2B & 2A-1 (ELS and Steel Platform	om)	14	23-Oct-24	05-Nov-24	14	08-Feb-25	21-Feb-25	0%	-9				
	Steel Platform Material				09-Jan-25	08-Apr-25	90	26-Jan-25	25-Apr-25		-10			_	
	WKCDA-A-PRO-2120	Procurement of Steel Platform material for Zone 2B & 2A-1			09-Jan-25	08-Apr-25	90	26-Jan-25	25-Apr-25	0%					-
	Coordination	the second s			30-Aug-24 30-Aug-24	25-Jun-25 25-Jun-25	300	05-Jul-24 A 05-Jul-24 A	30-Apr-25 30-Apr-25		980 980				-
	Interface Contractors and Ot WKCDA-A-CIC-01040	Coordination with Contract no.CC/2017/3A/030 L1 Works of the Lyric Th	neatre		30-Aug-24 30-Aug-24	25-Jun-25 25-Feb-25	300 205	05-Jul-24 A 05-Jul-24 A	25-Jan-25	99.44%					-
		Complex and Extended basement in Zone 3B			007 mg = 1				20 00.1 20						-
	WKCDA-A-CIC-01060	Coordination with MTRCL, other Project Contractors and Future PIW We Contractor	orks	300	30-Aug-24	25-Jun-25	300	05-Jul-24 A	30-Apr-25	68%	135				-
	WKCDA-A-CIC-01050	Coordination with Contract no.CC/2017/3A/031 L2 Contract for Lyric The Complex and Extended basement project	eatre	180	30-Aug-24	25-Feb-25	205	05-Jul-24 A	25-Jan-25	99.44%	1075			<u> </u>	
	Construction Preliminaries, Site Accomm	modation and Facilities			07-Sep-24 07-Sep-24	16-Apr-25 16-Apr-25	278 278	01-Aug-24 A 01-Aug-24 A	09-Jul-25		741 741				
	WKCDA-A-MOB-01100				13-Sep-24	04-Nov-24	147	01-Aug-24 A	25-Jan-25	97.62%				Rer	no
	WKCDA-A-MOB-01080 Hydrographic survey and submission of hydrographic survey report			21	07-Sep-24	03-Oct-24	21	25-Jan-25	21-Feb-25	0%	-15				1
(2ABC.4D.0124(2) 03-Feb-25_17:33 Page 1 of 7			Thr	ee Mont		CC/2023/2 ling Prog	2B/095 ramme as	s of 25-J	lan-2	25		17-	-D	

(owloon Cultural District											
1	202 Feb	5 Mai	r	Apr								
	8	9		10								
		1										
		n 1 1										
-												
		5 5 5										
ķ	Tentative Access to Portic	n B06										
-		n 1 1										
-			ጰ Late A	ccess to Portion B0								
		1										
		F F F										
	_											
-		- 	BA8 to	or king post at Zone								
		1		BA10 for king post a								
	BA8	for King post at 2	Zone 2A-1(Conse	nt 7)								
			post at Zone 2A-									
		F F										
		5 5 5										
V	iew and approve submissic	on of Contingency	Management Pl	an								
				FF 1 1 1								
V	iew and approve submissic	on of Operation P	lan and Marine Ir	aπic impact Assessi								
		1										
	Application to EPD and ot	tain permit for m	arine dumpind									
-	••											
İ	on of TTMS scheme											
1		F F F										
		- 										
1		- -										
	ocking pipe pile (15th Batch	1										
۰,	interlocking pipe pile (16th											
	locking interlocking pipe pile of Interlocking interlocking p	1.1	tch)									
			ion)									
i. Jie	very of King Post Material f	or 7000 00_01 /	I S and Stool Di	utform)								
d) ;	very of ming rost waterial l	יי בטוו כ בא-ב-ו (E		aonn <i>j</i>								
1	Procurement of K	ing Post material	for Zone 2B & 2A	-1 (ELS and Steel P								
	Deliv	ery of King Post	Material for Zone	2B & 2A-1 (ELS an								
		, , 										
1		1										
		1										
-		1 1										
1		Coordination with	Contract no.CC/2	017/3A/030 L1 Wor								
1			1									
		:	>									
			Orantar I OCT	047/04/004/00								
			Contract no.CC/2	017/3A/031 L2 Con								
		1 1										
			1									
n	ovation of CA and RSS site	office and faciliti	ies including T&C									
2				f hydrographic surve								
-	Date Re	vision	Checked	Approved								
-	Dec-24 4th Draft		KL									

		ELS Works (Stages 1 & 2) for Integra	ated Ba	Se	ement	and Un	derg	round Ro	oad in Zo	ones 2/	A, 2E	Вa	n <u>d 2C of W</u> e	est K	0
Ac	ivity ID	Activity Name	4th Draft	141 tS	Ith Draft	4th Draft Finish	Dur	Forecast /Actual Start	Forecast /Actual	% Complete	Total	2024	4 Jan		Ţ
	WKCDA-A-MOB-01140	Mobilization of plant and equipment for construction of barging point and preparation works	21	·	80-Nov-24	24-Dec-24	21	22-Feb-25	Finish 18-Mar-25	0%	-15		1		-
	WKCDA-A-MOB-01160	Construction of barging point, inspection and ready for operation	90) 2	27-Dec-24	16-Apr-25	90	19-Mar-25	09-Jul-25	0%	-15				ł
	Cost Centre B & I - Genera	al, Hoarding and Monitoring Works	266	6 0)5-Jul-24	27-Mar-25	152	25-Jan-25	25-Jun-25		924				
	General Submission		266	6 0)5-Jul-24	27-Mar-25	103	25-Jan-25	07-May-25		204				-
	Submission and Approval		266	6 0)5-Jul-24	27-Mar-25	103	25-Jan-25	07-May-25		204				Ì
	Method statement for hoard	ling, covered walkway and gantries modification)5-Jul-24	29-Aug-24	56	25-Jan-25	21-Mar-25		108				į
	WKCDA-B-SUB-01080	Prepare and submit method statement for hoarding, covered walkway and gantries modification)5-Jul-24	01-Aug-24	28	25-Jan-25	21-Feb-25	0%					
	WKCDA-B-SUB-01100	Review and approve submission of method statement for hoarding, covered walkway and gantries modification	28	3 0)2-Aug-24	29-Aug-24	28	22-Feb-25	21-Mar-25	0%	108				
	As-built record of drainage				28-Feb-25	27-Mar-25	28	10-Apr-25	07-May-25		204				
	WKCDA-B-SUB-01160	Prepare and submit as-built record of drainage works to CA and DSD		_	28-Feb-25	27-Mar-25	28	10-Apr-25	07-May-25	0%					i
	Construction)5-Jul-24	27-Feb-25	152	25-Jan-25	25-Jun-25		924				÷
	General and Monitoring Wor General	KS)5-Jul-24)5-Jul-24	27-Feb-25 14-Aug-24	152 35	25-Jan-25 25-Jan-25	25-Jun-25 10-Mar-25		924 838				
	WKCDA-B-MOB-01000	Site mob., take-over existing hoardings, covered walkway, gantries, gate & chainlink fence, prep. works & Site clearance		_)5-Jul-24	14-Aug-24	35	25-Jan-25	10-Mar-25	0%					-
	Relocate water check mete		115	5 0')3-Sep-24	21-Jan-25	96	25-Jan-25	27-May-25		-4				i
	WKCDA-B-MOB-01100	r cabinet Site clearance, break up and removal of existing road pavement and light pos signages			26-Sep-24	06-Dec-24	60	25-Jan-25	09-Apr-25	0%					
	WKCDA-B-MOB-01240	Relocation of check water meter cabinet at Zone 2A East gantry	24	1 0)3-Sep-24	02-Oct-24	24	25-Jan-25	25-Feb-25	0%	32	-			i
	WKCDA-B-MOB-01260	Demolition for existing road barrier, road sign and chainlink fence at Zone 2A gantry)7-Dec-24	21-Jan-25	36	10-Apr-25	27-May-25	0%					
	Monitoring Works with MTF		75	5 2	25-Sep-24	23-Dec-24	75	25-Jan-25	30-Apr-25		-34				ł
	WKCDA-B-MOB-01200	Coordination with WSD and MTRC			25-Sep-24	23-Dec-24	75	25-Jan-25	30-Apr-25	0%		+			÷
	Monitoring Works with HyD			_	25-Sep-24	20-Feb-25	120	25-Jan-25	25-Jun-25		-28				÷
	WKCDA-B-MOB-01160	Coordination with highways department(HyD)			25-Sep-24	05-Dec-24	60	25-Jan-25	09-Apr-25	0%					÷
	WKCDA-B-MOB-01180	Relocation of existing light post at Zone 2A East gantry)6-Dec-24	20-Feb-25	60	10-Apr-25	25-Jun-25	0%	-28				;
	Monitoring Works with drai	nage diversion	156	5 2	25-Sep-24	27-Feb-25	75	25-Jan-25	09-Apr-25		43				ł
	WKCDA-B-MOB-01120	Coordination with relevant authorities for drainage diversion) 2	25-Sep-24	23-Nov-24	60	25-Jan-25	25-Mar-25	0%	41	_			-
	WKCDA-B-MOB-01140	Carry-out drainage diversion works, T&C and backfilling works at Zone 2B Aust Road West	tin 60) 1:	3-Dec-24	27-Feb-25	60	25-Jan-25	09-Apr-25	0%	32				
	Hoarding and Gantry)3-Sep-24	07-Nov-24	54	22-Mar-25	30-May-25		85				
	WKCDA-B-MOB-01300	Hoarding, covered walkway, gantries and waterbarriers modification including graphic and steel boards(Partial)	54	1 03)3-Sep-24	07-Nov-24	54	22-Mar-25	30-May-25	0%	85				
	Cost Centre C - Excavatio	n and Lateral Support Works for Zone 2B (Stage 1)	306	6 0)5-Aug-24	14-Aug-25	218	26-Sep-24 A	24-Jun-25		754				į
	Construction		306	6 0)5-Aug-24	14-Aug-25	218	26-Sep-24 A	24-Jun-25		754				-
	Preliminaries, Trial Trench &	& Fabrication Works)5-Aug-24	21-Feb-25	117	23-Dec-24 A	22-May-25		54				ł
	Trial trench before drilling v			_)5-Aug-24	04-Feb-25	45	25-Jan-25	21-Mar-25		-32				i
	WKCDA-C-CON-01190	Trial trench before drilling work at Zone 2B (PP-255 to PP-319))5-Aug-24	27-Aug-24	20	25-Jan-25	20-Feb-25	0%		-			Ì
	WKCDA-C-CON-01470	Trial trench before drilling work for king post at Zone 2B			9-Jan-25 1-Oct-24	04-Feb-25 21-Feb-25	20	27-Feb-25 23-Dec-24 A	21-Mar-25	0%					+
	Gravity Casing Grout Work WKCDA-C-CON-01200	s Gravity casing grout work (C C001 to C C037)(Total=37nos) (Consent 6a)		_)4-Jan-25	21-Feb-25 19-Feb-25	117 36	23-Dec-24 A 23-Dec-24 A	22-May-25 08-Feb-25	46%	54 84				1
	WKCDA-C-CON-01400	Plugging off existing 1350mm Drainage		_	31-Oct-24	04-Jan-25	53	25-Jan-25	01-Apr-25	0%		-			Ì
	WKCDA-C-CON-01380	Gravity casing grout work (B_C001 to B_C038)(Total=38nos) (Consent 5))4-Jan-25	21-Feb-25	38	01-Apr-25	22-May-25	0%					
	Pre-Grout Curtain Works				6-Aug-24	12-Jul-25	218	26-Sep-24 A	24-Jun-25		754				-
	WKCDA-C-CON-01040	at Zone 2B at AURW Row (PP-164 to PP-001) (062/248) Drilling works grout curtain at Zone 2B(PP-014 to PP-001)(Total=14nos, 1 no/day/rig, 1rig)(Consent 3)		_	08-Nov-24 6-May-25	02-Jun-25 02-Jun-25	182 100	26-Sep-24 A 26-Sep-24 A	12-May-25 25-Jan-25	90%	790 872	-			
	WKCDA-C-CON-01042	Drilling works grout curtain at Zone 2B(PP-053 to PP-034)(Total=20nos, 1 no/day/rig, 1rig)(Consent 3)	20) 2	25-Mar-25	17-Apr-25	74	07-Oct-24 A	04-Jan-25 A	100%			-		
	WKCDA-C-CON-01123	Drilling works grout curtain at Zone 2B(PP-164 to PP-135)(Total=30nos, 1 no/day/rig, 1rig)(Consent 3)	30	0)8-Nov-24	12-Dec-24	30	20-Dec-24 A	27-Jan-25	3%	-36			-	Dri
	WKCDA-C-CON-01121	Drilling works grout curtain at Zone 2B(PP-134 to PP-105)(Total=30nos, 1 no/day/rig, 1rig)(Consent 3)	30) 1:	3-Dec-24	20-Jan-25	30	28-Jan-25	06-Mar-25	0%	-36			-	
	WKCDA-C-CON-01120	Drilling works grout curtain at Zone 2B(PP-104 to PP-074)(Total=31nos, 1 no/day/rig, 1rig)(Consent 3)	31	1 2	21-Jan-25	28-Feb-25	31	07-Mar-25	12-Apr-25	0%	-36				
0	ABC.4D.0124(2)	♦ ♦ Milestone							D/00-						-
	ABC.4D.0124(2) 3-Feb-25 17:33							C/2023/2						17	-D
	age 2 of 7				Thr	ee Montl	1 Rol	ling Prog	ramme as	s of 25-J	lan-2	25			_
						-				_					

owloo	owloon Cultural District											
	202 Feb	Mar		Apr								
	8	9		10								
2 2 2 2		Mobili	zation of p	lant and equipme								
		• • • •										
		1 1 1 1										
1	Dron	are and submit method s	tatement f	or hoarding, cover								
-	Fieb			or noarding, cover								
		Re	view and a	approve submissio								
: : :		 										
: : :	ı	1										
-		1 1 1										
, , , ,												
-		Site mob., tal	ke-over exi	sting hoardings, co								
-		1 1 1										
1			1	Site clearance								
1 1 1	F	Relocation of check water	meter cab	inet at Zone 2A Ea								
		2 7 7 7	8									
 	<u></u>			<u></u>								
1 1 1		1 1 1	1	Coordination								
1												
-			Coordina	tion with relevant a								
		1 1 1 1		Carry-out dra								
		1 1 1 1										
-												
, ; ; ;		• • • •	1									
- <u>+</u>		 										
-		- - - - - - -										
	Trialt	ench beforedrilling work	at Zone 2E	3 (PP-255 to PP-3								
	-	•	1	eforedrillingwork f								
:	Gravity	casing grout work (C_C0	01 to C C)37)(Total=37nos)								
1			1									
1			Plu	igging off existing								
1 1 1												
-		: 										
1 1												
: : :			1	Drillin								
Drilling works	grout curtain at	Zone 2B(PP-164 to PP-13	35)(Total=3	80nos, 1 no/day/rig								
:		Drilling works grou	ıt curtain a	t Zone 2B(PP-134								
-			1	Drilling wa								
, , ,		n 1 1										
Date			ecked	Approved								
-Dec-24	4th Draft	KL										

	10 ID	ELS Works (Stages 1 & 2) for Integrated											<u>st no</u>
Acti	vity ID	Activity Name		4th Draft Start	4th Draft Finish	Dur	Forecast /Actual Start	Forecast /Actual Finish	% Complete		2024	Jan 7	
	WKCDA-C-CON-01043	Drilling works grout curtain at Zone 2B(PP-073 to PP-054)(Total=20nos, 1 no/day/rig, 1rig)(Consent 3)	<u> </u>	01-Mar-25	24-Mar-25	20	14-Apr-25	12-May-25	0%	-2			
	Drilling works grout curtair	n at Zone 2B at AURW Row (PP-165 to PP-319) (031/237)	160	13-Dec-24	02-Jul-25	95	08-Jan-25 A	08-May-25		65			
	WKCDA-C-CON-10120	Drilling works grout curtain at Zone 2B(PP-307 to PP-319)(Total=13nos, 1 no/day/rig, 1rig)(Consent 6a)	13	18-Jun-25	02-Jul-25	12	08-Jan-25 A	21-Jan-25 A	100%				
	WKCDA-C-CON-10110	Drilling works grout curtain at Zone 2B(PP-294 to PP-306)(Total=13nos, 1 no/day/rig, 1rig)(Consent 6a)	13	03-Jun-25	17-Jun-25	11	09-Jan-25 A	21-Jan-25 A	100%				
	WKCDA-C-CON-10100	Drilling works grout curtain at Zone 2B(PP-281 to PP-293)(Total=13nos, 1 no/day/rig, 1rig)(Consent 6a)	13	13-May-25	27-May-25	13	14-Jan-25 A	28-Jan-25	12%	142			
	WKCDA-C-CON-01124	Drilling works grout curtain at Zone 2B(PP-165 to PP-194)(Total=30nos, 1 no/day/rig, 1rig)(Consent 3)	30	13-Dec-24	20-Jan-25	30	21-Feb-25	27-Mar-25	0%	-54			
	WKCDA-C-CON-01122	Drilling works grout curtain at Zone 2B(PP-195 to PP-224)(Total=30nos, 1 no/day/rig, 1rig)(Consent 3)	30	21-Jan-25	27-Feb-25	30	28-Mar-25	08-May-25	0%	-54		_	
	Drilling works grout curtain	at Zone 2B at Middle Row (PPB-172 to PPB-342)	90	16-Aug-24	02-Dec-24	90	25-Jan-25	20-May-25		665			
	WKCDA-C-CON-01303	Drilling works grout curtain at Zone 2B(PPB-172 to PPB-201)(Total=30nos, 1no/day/rig, 1rig)(Consent 3)	30	16-Aug-24	20-Sep-24	30	25-Jan-25	04-Mar-25	0%	-59			
	WKCDA-C-CON-01304	Drilling works grout curtain at Zone 2B(PPB-202 to PPB-231)(Total=30nos, 1no/day/rig, 1rig)(Consent 3)	30	21-Sep-24	28-Oct-24	30	05-Mar-25	09-Apr-25	0%	665			
	WKCDA-C-CON-10020	Drilling works grout curtain at Zone 2B(PPB-232 to PPB-261)(Total=30nos, 1no/day/rig, 1rig)(Consent 3)	30	29-Oct-24	02-Dec-24	30	10-Apr-25	20-May-25	0%	665			- -
	Drilling works grout curtain	at Zone 2B at Middle Row (PPB-171 to PPB-001)	58	21-Sep-24	29-Nov-24	58	05-Mar-25	17-May-25		-56			
	WKCDA-C-CON-01302	Drilling works grout curtain at Zone 2B(PPB-171 to PPB-143)(Total=29nos, 1no/day/rig, 1rig)(Consent 3)	29	21-Sep-24	26-Oct-24	29	05-Mar-25	08-Apr-25	0%	-59			
	WKCDA-C-CON-01301	Drilling works grout curtain at Zone 2B(PPB-142 to PPB-114)(Total=29nos, 1no/day/rig, 1rig)(Consent 3)	29	28-Oct-24	29-Nov-24	29	09-Apr-25	17-May-25	0%	-56			1
	Pre-grout curtain works at	Zone 2B at AURW Row (PP-164 to PP-001) (029/248)	169	13-Dec-24	12-Jul-25	166	31-Oct-24 A	26-May-25		778			
	WKCDA-C-CON-01060	Carry-out Pre-grout curtain works at Zone 2B(P_A017 to P_A001 even) (P_B009 to P_B001)	17	24-Jun-25	12-Jul-25	72	31-Oct-24 A	25-Jan-25	41%	872			
	WKCDA-C-CON-01061	Carry-out Pre-grout curtain works at Zone 2B(P_A035 to P_A018 even) (P_B018 to P_B010)	18	03-Jun-25	23-Jun-25	72	31-Oct-24 A	25-Jan-25	63%	872			
	WKCDA-C-CON-01142	Carry-out Pre-grout curtain works at Zone 2B(P_A167 to P_A138 even) (P_B085 to P_B071)	31	13-Dec-24	21-Jan-25	31	28-Jan-25	07-Mar-25	0%	-36			
	WKCDA-C-CON-01141	Carry-out Pre-grout curtain works at Zone 2B(P_A137 to P_A108 even) (P_B070 to P_B056)	30	22-Jan-25	28-Feb-25	30	08-Mar-25	12-Apr-25	0%	-36		-	
	WKCDA-C-CON-01140	Carry-out Pre-grout curtain works at Zone 2B(P_A107 to P_A076 even) (P_B055 to P_B040)	32	01-Mar-25	08-Apr-25	32	14-Apr-25	26-May-25	0%	-36			
		Zone 2B at AURW Row (PP-165 to PP-319) (000/248)		21-Jan-25	27-Feb-25	30	28-Mar-25	08-May-25		-54			
	WKCDA-C-CON-01143	Carry-out Pre-grout curtain works at Zone 2B(P_A168 to P_A197 even) (P_B086 to P_B100)Consent 3)		21-Jan-25	27-Feb-25	30	28-Mar-25	08-May-25	0%				
		Zone 2B at Middle Row (PPB-172 to PPB-342)		21-Sep-24	30-Nov-24	59	05-Mar-25	19-May-25		668			
	WKCDA-C-CON-01323	Carry-out Pre-grout curtain works at Zone 2B(B_A163 to B_A192 ODD) (B_B084 to B_B098)(Consent 3)		21-Sep-24	28-Oct-24	30	05-Mar-25	09-Apr-25	0%				
	WKCDA-C-CON-01324	Carry-out Pre-grout curtain works at Zone 2B(B_A193 to B_A220 ODD) (B_B099 to B_B113)(Consent 3)		29-Oct-24	30-Nov-24	29	10-Apr-25	19-May-25	0%	668			
	Pre-grout curtain works at WKCDA-C-CON-01321	Zone 2B at Middle Row (PPB-171 to PPB-001) Carry-out Pre-grout curtain works at Zone 2B(B A162 to B A103 ODD) (B B083		28-Oct-24 28-Oct-24	08-Jan-25 08-Jan-25	60 60	09-Apr-25	24-Jun-25 24-Jun-25	0%	-59 -59			
		to B_B054)(Consent 3)					09-Apr-25		0%				
	Interlocking Pipe Pile Wall			09-Jan-25 22-Jan-25	14-Aug-25	146	21-Nov-24 A 19-Dec-24 A	23-May-25		88 88			
	WKCDA-C-CON-01085	Works at AURW Row (PP-164 to PP-001) (22/164) Installation of interlocking pipe pile wall at Zone 2B(PP-033 to		08-Jul-25	14-Aug-25 29-Jul-25	122 30	19-Dec-24 A 19-Dec-24 A	23-May-25 25-Jan-25	84%	161			
	WKCDA-C-CON-01080	PP-015)(Total=19nos, 1 no/day/rig, 1rig)(Consent 3) Installation of interlocking pipe pile wall at Zone 2B(PP-014 to	14	30-Jul-25	14-Aug-25	14	11-Jan-25 A	27-Jan-25	36%	179			
	WKCDA-C-CON-01166	PP-001)(Total=14nos, 1 no/day/rig, 1rig)(Consent 3) Installation of interlocking pipe pile wall at Zone 2B(PP-164 to PP-135)(Total=30nos, 1 no/day/rig, 1rig)(Consent 3)	30	22-Jan-25	28-Feb-25	30	08-Mar-25	12-Apr-25	0%	-36			
	WKCDA-C-CON-01164	Installation of interlocking pipe pile wall at Zone 2B(PP-134 to PP-105)(Total=30nos, 1 no/day/rig, 1rig)(Consent 3)	30	01-Mar-25	05-Apr-25	30	14-Apr-25	23-May-25	0%	-35			1
	Interlegitive Disc Disc 10			05 Mar 05	00 May 05		04 Nov 04 A						
		Works at Middle Row (PPB-172 to PPB-342) (171/171)		25-Mar-25	29-May-25	51 21	21-Nov-24 A	22-Jan-25 A	4000/				
	WKCDA-C-CON-01359	Installation of interlocking pipe pile wall at Zone 2B(PPB-292 to PPB-321)(Total=30nos, 1 no/day/rig, 1rig)(Consent 3)	30	25-Mar-25	03-May-25	31	21-Nov-24 A	28-Dec-24 A	100%				

2ABC.4D.0124(2) 03-Feb-25 17:33	♦		4th Draft Summary	CC/2023/2B/095
Page 3 of 7	•		Critical Bar	Three Month Rolling Programme as of 25-Jan-25
0		V Summary	Planned Bar	

		•••••••	
17-Dec-24	4th Draft	KL	

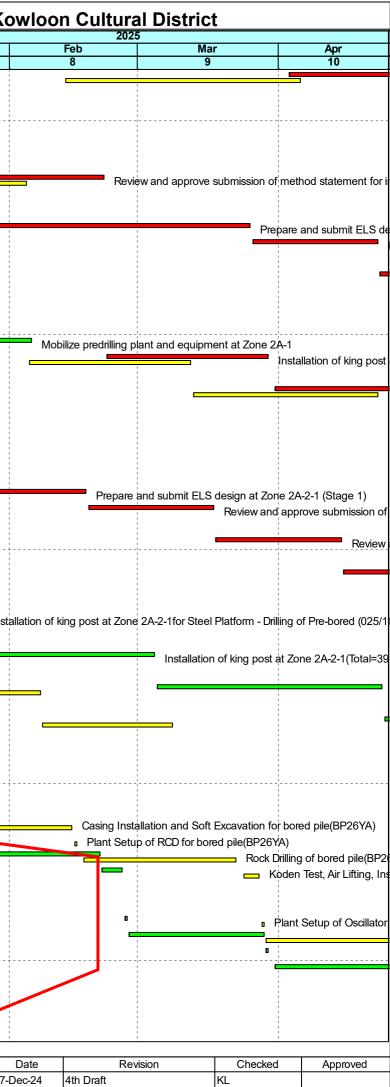
		ELS Works (Stages 1 & 2) for Integra											est K	<u>0</u>
Activ	ity ID	Activity Name		t 4th Draft	4th Draft Finish	Dur	Forecast /Actual Start	Forecast /Actual	% Complete	Total Float	2024	Jan		Т
		Lastallation of interdecting nine nine upliet Zane OD/DDD 200 to	Du			20		Finish	· ·			7	- 1	Ļ
	WKCDA-C-CON-10000	Installation of interlocking pipe pile wall at Zone 2B(PPB-322 to PPB-342)(Total=21nos, 1 no/day/rig, 1rig)(Consent 3)	2	06-IVIAy-25	29-May-25	20	30-Dec-24 A	22-Jan-25 A	100%					-
	Interlocking Pipe Pile Wall	Works at Middle Row (PPB-171 to PPB-001) (113/171)	143	09-Jan-25	05-Jul-25	63	21-Nov-24 A	08-Feb-25		154				
	WKCDA-C-CON-01345	Installation of interlocking pipe pile wall at Zone 2B(PPB-142 to PPB-114)(Total=29nos, 1 no/day/rig, 1rig)(Consent 3)	29	9 15-Feb-25	20-Mar-25	54	21-Nov-24 A	25-Jan-25	38%	163			-	
	WKCDA-C-CON-01440	Installation of interlocking pipe pile wall at Zone 2B(PPB-084 to PPB-057)(Total=28nos, 1 no/day/rig, 1rig)(Consent 5)	28	3 29-Apr-25	03-Jun-25	22	06-Dec-24 A	03-Jan-25 A	100%	•		-		
	WKCDA-C-CON-01340	Installation of interlocking pipe pile wall at Zone 2B(PPB-171 to PPB-143)(Total=29nos, 1 no/day/rig, 1rig)(Consent 3)	29	9 09-Jan-25	14-Feb-25	26	18-Dec-24 A	20-Jan-25 A	100%					
	WKCDA-C-CON-01445	Installation of interlocking pipe pile wall at Zone 2B(PPB-056 to PPB-029)(Total=28nos, 1 no/day/rig, 1rig)(Consent 5)	28	3 04-Jun-25	05-Jul-25	28	04-Jan-25 A	08-Feb-25	50%	154				
	Post Grout Curtain Works	AURW Row (PP-164 to PP-001)		2 03-Dec-24 1 01-Mar-25	17-Jul-25 07-Apr-25	125 31	17-Dec-24 A 14-Apr-25	24-May-25 24-May-25		116 -36				
	WKCDA-C-CON-01167	Carry-out Post grout curtain works at Zone 2B(P_A167 to P_A138)(Consent 3		01-Mar-25	07-Apr-25	31	14-Apr-25	24-May-25	0%					
	Post Grout Curtain Works	Niddle Row (PPB-172 to PPB-342)	90	03-Dec-24	24-Mar-25	88	25-Jan-25	17-May-25		36				
	WKCDA-C-CON-01351	Carry-out Post grout curtain works at Zone 2B(B_A163 to B_A192)(Consent 3) 30) 03-Dec-24	09-Jan-25	30	25-Jan-25	04-Mar-25	0%	36				
	WKCDA-C-CON-01353	Carry-out Post grout curtain works at Zone 2B(B_A193 to B_A220)(Consent 3) 28	3 10-Jan-25	14-Feb-25	28	05-Mar-25	07-Apr-25	0%	36				
	WKCDA-C-CON-01355	Carry-out Post grout curtain works at Zone 2B(B_A221 to B_A250)(Consent 3) 30) 18-Feb-25	24-Mar-25	30	08-Apr-25	17-May-25	0%	36	_			
	Post Grout Curtain Works	Middle Row (PPB-171 to PPB-001)	8	15-Feb-25	27-May-25	81	25-Jan-25	09-May-25		48				
	WKCDA-C-CON-01341	Carry-out Post grout curtain works at Zone 2B(B_A162 to B_A103)(Consent 3) 60) 15-Feb-25	30-Apr-25	60	25-Jan-25	09-Apr-25	0%	48				
	WKCDA-C-CON-01346	Carry-out Post grout curtain works at Zone 2B(B_A102 to B_A082)(Consent 3) 2'	02-May-25	27-May-25	21	10-Apr-25	09-May-25	0%	48				
		between Zone 3 and Zone 2B	90	3 15-Feb-25	11-Jun-25	93	25-Jan-25	23-May-25		117				:
	WKCDA-C-CON-01070	Carry-out Post grout curtain works between Zone 3 and Zone 2B (G_A063 to G_A093)	3	15-Feb-25	22-Mar-25	31	25-Jan-25	05-Mar-25	0%	117				-
	WKCDA-C-CON-01050	Carry-out Post grout curtain works between Zone 3 and Zone 2B (G_A032 to G_A062)	3	24-Mar-25	03-May-25	31	06-Mar-25	11-Apr-25	0%	117				
	WKCDA-C-CON-01010	Carry-out Post grout curtain works between Zone 3 and Zone 2B (G_A001 to G_A031)	3	06-May-25	11-Jun-25	31	12-Apr-25	23-May-25	0%	117				+-
	Post Grout Curtain Works b	between Zone 3 and Zone 2C	124	15-Feb-25	17-Jul-25	88	17-Dec-24 A	05-Apr-25		153				
	WKCDA-C-CON-01150	Carry-out Post grout curtain works between Zone 3 and Zone 2B (G_A132 to G_A162)	3	1 31-Mar-25	12-May-25	32	17-Dec-24 A	25-Jan-25	87%	153				
	WKCDA-C-CON-01130	Carry-out Post grout curtain works between Zone 3 and Zone 2B (G_A094 to G_A124)	3	1 15-Feb-25	22-Mar-25	31	25-Jan-25	05-Mar-25	0%	173				-
	WKCDA-C-CON-01170	Carry-out Post grout curtain works between Zone 3 and Zone 2B (G_A163 to G_A193)	3	13-May-25	18-Jun-25	31	27-Jan-25	06-Mar-25	0%	153				
	WKCDA-C-CON-01135	Carry-out Post grout curtain works between Zone 3 and Zone 2B (G_A125 to G_A131)	6	6 24-Mar-25	29-Mar-25	6	06-Mar-25	12-Mar-25	0%	173				
	WKCDA-C-CON-01210	Carry-out Post grout curtain works between Zone 3 and Zone 2B (G_A194 to G_A217)	25	5 19-Jun-25	17-Jul-25	25	07-Mar-25	05-Apr-25	0%	153				
	King Post Works		44	13-Feb-25	05-Apr-25	44	03-Apr-25	30-May-25		75				-
	WKCDA-C-CON-01480	Installation of king post at Zone 2B(Total=44nos, 3days/pile/rig, 3rigs) for ELS	44	13-Feb-25	05-Apr-25	44	03-Apr-25	30-May-25	0%	-42				
	WKCDA-C-CON-01490	Installation of king post at Zone 2B(Total=44nos, 3days/pile/rig, 3rigs) for ELS	44	13-Feb-25	05-Apr-25	44	03-Apr-25	30-May-25	0%	75				
	Cost Centre D - Excavatio	n and Lateral Support Works for Zone 2C (Stage 1)	22	26-Sep-24	27-Jun-25	195	15-Oct-24 A	13-Jun-25		763				
	Construction			26-Sep-24	27-Jun-25	195	15-Oct-24 A	13-Jun-25		763				
	Preliminaries, Trial Trench &			5 26-Sep-24	24-Dec-24	95	15-Oct-24 A	08-Feb-25		863				-
	WKCDA-D-CON-01010	Trial trench before drilling work at Zone 2C(PPA-001 to PPA-397)		26-Sep-24	21-Oct-24	86	15-Oct-24 A	25-Jan-25	95%				Tria	
-	WKCDA-D-CON-01070 WKCDA-D-CON-01090	Gravity casing grout work (A_C047 to A_C093) (Total=47nos) Gravity casing grout work (A_C094 to A_C140) (Total=47nos)		7 31-Oct-24 7 31-Oct-24	24-Dec-24 24-Dec-24	57 40	18-Nov-24 A 20-Nov-24 A	25-Jan-25 A 08-Jan-25 A	100% 100%			Gravity cas	Gra	
	WKCDA-D-CON-01030	Gravity casing grout work (A_C141 to A_C187) (Total=47nos)		7 31-Oct-24	24-Dec-24	48	28-Nov-24 A	25-Jan-25	28%			Glavity (3)	Gra	
	WKCDA-D-CON-01020	Gravity casing grout work (A_C001 to A_C046) (Total=46nos)		6 31-Oct-24	23-Dec-24	46	11-Dec-24 A	08-Feb-25		863				
	Pre-Grout Curtain Works			31-Oct-24	27-Jun-25	161	23-Nov-24 A	13-Jun-25		763				
	Drilling works grout curtain	at Zone 2C (227/599)	190) 31-Oct-24	24-Jun-25	161	23-Nov-24 A	13-Jun-25		763				-
2A	3C.4D.0124(2)	♦ ♦ Milestone				(CC/2023/2	B/095						_
	Feb-25_17:33	Critical MS Critical Bar		TL	too Mand				of JE	Ion '	5		17	·D
Ра	ge 4 of 7	✓——✓ Summary Planned Bar		1 01		II KOL	nng rrog	ramme as	5 01 23-5	Jall-4	43		-	

owloon Cultural District												
2025 Feb				Apr								
Feb 8	Mai 9			Apr 10								
,												
			n of int	terlocking pipe pi								
			101111	tenocking pipe pi								
	5 5 5											
	of interlocking pip	o pilo wall at Z	ono 21									
1												
F F		1										
	- - 											
8 8	2 2 1											
1			in wor	ks at Zone 2B(B								
	Carry-Out P	osi gioui cuna	III WOI	KS at Zone ZD(D								
				Carry-out Post								
				Carry-out Post								
	- 1 1	1										
	1											
5 5 5	8											
				_								
	- 1 1	1										
	8	1										
5 5 5	5											
		0										
		Carry-ou	It Post	grout curtain wo								
: +	; ;											
	8											
- - 												
	1											
		Carry-ou	it Post	grout curtain wo								
F F F												
			Carry-o	ut Post grout cur								
	1 1	1										
	8											
8												
	- 1 1	1										
1	1											
I trench before drilling work a	at Zone 20(001)	001 to PDA 20.	7)									
avity casing grout work (A_C			')									
		iolai-47110S)										
work (A_C094 to A_C140) (Totol= 47: \										
avity casing grout work (A_C			otel 4	(maa)								
Gravity casing gro	ut work (A_C001	ιο Α_CU46) (10	otal=4	onosj								
1	5 8 9											
	1											
Date Rev	vision	Checked	<u> </u>	Approved								
-Dec-24 4th Draft		KI		Appioved								

Dale	Revision	Checkeu	Appioved
17-Dec-24	4th Draft	KL	

		ELS Works (Stages 1 & 2) for Integrated							ones 2/				<u>st K</u>	0
Activ	ity ID	Activity Name	-	4th Draft Start	4th Draft Finish	Dur	Forecast /Actual Start	Forecast /Actual Finish	% Complete		2024	Jan 7		Ŧ
	Drilling works grout curtain	n at Zone 2C Part 1		31-Oct-24	24-Jun-25	89	23-Nov-24 A	13-Mar-25		835				+
	WKCDA-D-CON-01042	Drilling works grout curtain at Zone 2C(PPA-121 to PPA-076)(Total=46nos, 1no/day/rig, 1rig)(Consent 6b)		23-Jan-25	20-Mar-25	52	23-Nov-24 A	25-Jan-25	35%	872			_	-
	WKCDA-D-CON-01044	Drilling works grout curtain at Zone 2C(PPA-213 to PPA-168)(Total=46nos, 1no/day/rig, 2rig)(Consent 6b)	23	31-Oct-24	26-Nov-24	33	23-Nov-24 A	03-Jan-25 A	100%			Drilling works grout	t curta	in
	WKCDA-D-CON-01043	Drilling works grout curtain at Zone 2C(PPA-167 to PPA-122)(Total=46nos, 1no/day/rig, 1rig)(Consent 6b)	46	27-Nov-24	22-Jan-25	35	29-Nov-24 A	11-Jan-25 A	100%				Drilling	j v
	WKCDA-D-CON-01041	Drilling works grout curtain at Zone 2C(PPA-075 to PPA-030)(Total=46nos, 1no/day/rig, 1rig)(Consent 6b)	46	21-Mar-25	20-May-25	57	03-Jan-25 A	13-Mar-25	55%	66				
	WKCDA-D-CON-01040	Drilling works grout curtain at Zone 2C(PPA-029 to PPA-001)(Total=29nos, 1no/day/rig, 1rig)(Consent 6b)	29	21-May-25	24-Jun-25	29	21-Jan-25 A	26-Feb-25	2%	111				
	Drilling works grout curtai	n at Zone 2C Part 2	161	31-Oct-24	20-May-25	152	04-Dec-24 A	13-Jun-25		763				÷
	WKCDA-D-CON-01045	Drilling works grout curtain at Zone 2C(PPA-214 to PPA-259)(Total=46nos, 1no/day/rig, 2rig)(Consent 6b)	23	31-Oct-24	26-Nov-24	43	04-Dec-24 A	25-Jan-25	59%	872			Dril	llin
	WKCDA-D-CON-01046	Drilling works grout curtain at Zone 2C(PPA-260 to PPA-305)(Total=46nos, 1no/day/rig, 1rig)(Consent 6b)	46	27-Nov-24	22-Jan-25	46	20-Dec-24 A	18-Feb-25	49%	9				-
	WKCDA-D-CON-01047	Drilling works grout curtain at Zone 2C(PPA-306 to PPA-351)(Total=46nos, 1no/day/rig, 1rig)(Consent 6b)	46	23-Jan-25	20-Mar-25	46	19-Feb-25	14-Apr-25	0%	9				- 4 -
	WKCDA-D-CON-01048	Drilling works grout curtain at Zone 2C(PPA-352 to PPA-397)(Total=46nos, 1no/day/rig, 1rig)(Consent 6b)	46	21-Mar-25	20-May-25	46	15-Apr-25	13-Jun-25	0%	9				
	Pre-grout curtain works at 2	Zone 2C (71/599)	170	27-Nov-24	27-Jun-25	142	16-Dec-24 A	13-Jun-25		26				1
	Pre-grout curtain works at	Zone 2C Part 1	170	27-Nov-24	27-Jun-25	102	16-Dec-24 A	24-Apr-25		66				÷
	WKCDA-D-CON-01062	Carry-out Pre-grout curtain works at Zone 2C(A_A122 to A_A077) (A_B040 to A_B062)(Consent 6b)	46	21-Mar-25	20-May-25	46	16-Dec-24 A	13-Feb-25	69.57%	76				-
	WKCDA-D-CON-01063	Carry-out Pre-grout curtain works at Zone 2C(A_A168 to A_A123) (A_B063 to A_B085)(Consent 6b)	46	23-Jan-25	20-Mar-25	46	21-Dec-24 A	19-Feb-25	58.7%	25				
	WKCDA-D-CON-01064	Carry-out Pre-grout curtain works at Zone 2C(A_A214 to A_A169) (A_B086 to A_B108)(Consent 6b)	46	27-Nov-24	22-Jan-25	46	30-Dec-24 A	25-Feb-25	47.83%					1
	WKCDA-D-CON-01060	Carry-out Pre-grout curtain works at Zone 2C(A_A076 to A_A031) (A_B017 to A_B039)(Consent 6b)		21-May-25	27-Jun-25	32	14-Mar-25	24-Apr-25	0%	66				
	Pre-grout curtain works at			27-Nov-24	20-May-25	135	24-Dec-24 A	13-Jun-25		9				-
	WKCDA-D-CON-01065	Carry-out Pre-grout curtain works at Zone 2C(A_A216 to A_A260) (A_B109 to A_B131)(Consent 6b)		27-Nov-24	22-Jan-25	46	24-Dec-24 A	21-Feb-25	54.35%					
	WKCDA-D-CON-01066	Carry-out Pre-grout curtain works at Zone 2C(A_A262 to A_A306) (A_B132 to A_B154)(Consent 6b)		23-Jan-25	20-Mar-25	46	19-Feb-25	14-Apr-25	0%			=		- + -
	WKCDA-D-CON-01067	Carry-out Pre-grout curtain works at Zone 2C(A_A308 to A_A350) (A_B155 to A_B179)(Consent 6b)		21-Mar-25	20-May-25	46	15-Apr-25	13-Jun-25	0%					
	Interlocking Pipe Pile Wall V			23-Jan-25	14-Apr-25	66	26-Feb-25	20-May-25		-17				
			ļ	23-Jan-25	20-Mar-25	46	26-Feb-25	24-Apr-25		-26		[
	WKCDA-D-CON-01180	Installation of interlocking pipe pile wall at Zone 2C(PPA-213 to PPA-168)(Total=46nos, 1 no/day/rig, 1rig)(Consent 6b)		23-Jan-25	20-Mar-25	46	26-Feb-25	24-Apr-25	0%		(-
	Interlocking Pipe Pile Wall			19-Feb-25	14-Apr-25	46	21-Mar-25 21-Mar-25	20-May-25	00/	-17				ļ
	WKCDA-D-CON-01220	Installation of interlocking pipe pile wall at Zone 2C(PPA-214 to PPA-259)(Total=46nos, 1 no/day/rig, 1rig)(Consent 6b)		19-Feb-25	14-Apr-25	46		20-May-25	0%		\square			
		n and Lateral Support Works for Zone 2B (Stage 2)		14-Aug-24	05-Apr-25	281	23-Aug-24 A	30-May-25		-55				-
	Submissions and Approval Design Submission and Stat			14-Aug-24 14-Aug-24	12-Feb-25 12-Feb-25	223 223	23-Aug-24 A 23-Aug-24 A	02-Apr-25 02-Apr-25		-49 -49				
	ELS design at zone 2B & zo			14-Aug-24	12-Feb-25	223	23-Aug-24 A	02-Apr-25		-49		1		
	WKCDA-C-SUB-01200	Prepare and submit ELS design at zone 2B & zone 2A-1 (stage 2)		14-Aug-24	12-Oct-24	156	23-Aug-24 A	25-Jan-25	98.33%	-60		 I	Pre	epa
	WKCDA-C-SUB-01220	Review and approve submission of ELS design at zone 2B & zone 2A-1 (stage 2)		13-Oct-24	09-Nov-24	28	26-Jan-25	22-Feb-25	0%					
	WKCDA-C-SUB-01240	Review and approve submission of ELS design at zone 2B & zone 2A-1 (stage 2) by BD $$	60	10-Nov-24	08-Jan-25	60	26-Jan-25	26-Mar-25	0%	-49				-
	WKCDA-C-SUB-01400	Application and obtain consent(BA8) for king post at Zone 2B(Consent 9)	28	09-Jan-25	05-Feb-25	28	27-Feb-25	26-Mar-25	0%	-49			<u> </u>	
	WKCDA-C-SUB-01420	Submit BA10 for king post at Zone 2B	7	06-Feb-25	12-Feb-25	7	27-Mar-25	02-Apr-25	0%	-49		1		į
	Construction		44	13-Feb-25	05-Apr-25	44	03-Apr-25	30-May-25		-42		1		
	Excavation, Temporary Shor	ing and Struts	44	13-Feb-25	05-Apr-25	44	03-Apr-25	30-May-25		-42		1		
	Temporary Shoring		44	13-Feb-25	05-Apr-25	44	03-Apr-25	30-May-25		-42		1		

	2ABC.4D.0124(2) 03-Feb-25_17:33 Page 5 of 7	 ♦ ▼ 	• -	4th Draft Summary Critical Bar Planned Bar	CC/2023/2B/095 Three Month Rolling Programme as of 25-Jan-25
--	---	----------------------------------	-----	--	---


	ELS Works (Stages 1 & 2) for Integrate										C of Wes	st Ko
vity ID	Activity Name		4th Draft Start	4th Draft Finish	Dur	Forecast /Actual Start	Forecast /Actual Finish	% Complete		2024	Jan 7	
WKCDA-E-CON-01020	Installation of king post at Zone 2B(Total=88nos, 3days/pile/rig, 6rigs) for Steel Platform Part 1	44	13-Feb-25	05-Apr-25	44	03-Apr-25	30-May-25	0%	-42			
Cost Centre F - Excavatio	on and Lateral Support Works for Zone 2A-1 (Stage 2)	252	14-Aug-24	22-Apr-25	148	25-Jan-25	21-Jun-25		928			
Submissions and Approva		175	14-Aug-24	04-Feb-25	148	25-Jan-25	21-Jun-25		-60			
Design Submission and Sta		175	14-Aug-24	04-Feb-25	148	25-Jan-25	21-Jun-25		-60			1
Method statement for insta	Ilation of king post at Zone 2A-1 (Stage 1)	28	08-Jan-25	04-Feb-25	28	25-Jan-25	21-Feb-25		-17			
WKCDA-F-SUB-01020	Review and approve submission of method statement for installation of king post at Zone 2A-1 (Stage 1)	28	08-Jan-25	04-Feb-25	28	25-Jan-25	21-Feb-25	0%	-17			
ELS design at Zone 2A-1 (Stage 2)	159	14-Aug-24	19-Jan-25	148	25-Jan-25	21-Jun-25		-60			1
WKCDA-F-SUB-01040	Prepare and submit ELS design at Zone 2A-1 (Stage 2)	60	14-Aug-24	12-Oct-24	60	25-Jan-25	25-Mar-25	0%	-60			
WKCDA-F-SUB-01060	Review and approve submission of ELS design at zone 2B & zone 2A-1 (stage 2)	28	24-Oct-24	20-Nov-24	28	26-Mar-25	22-Apr-25	0%	-60			
WKCDA-F-SUB-01080	Review and approve submission of ELS design at zone 2B & zone 2A-1 (stage 2) by BD $$	60	21-Nov-24	19-Jan-25	60	23-Apr-25	21-Jun-25	0%	-60			
onstruction		162	03-Oct-24	22-Apr-25	83	25-Jan-25	12-May-25		790			
King Post		162	03-Oct-24	22-Apr-25	83	25-Jan-25	12-May-25		790			
WKCDA-F-CON-00990	Mobilize predrilling plant and equipment at Zone 2A-1	7	03-Oct-24	10-Oct-24	7	25-Jan-25	05-Feb-25	0%	866			
WKCDA-F-CON-01010	Installation of king post at Zone 2A-1(Total=31nos, 3days/pile/rig, 3rigs) For ELS	31	05-Feb-25	12-Mar-25	31	22-Feb-25	29-Mar-25	0%	-15			
WKCDA-F-CON-01015	Installation of king post at Zone 2A-1(Total=31nos, 3days/pile/rig, 3rigs) For ELS	31	13-Mar-25	22-Apr-25	31	31-Mar-25	12-May-25	0%	-15		7	
ot Contro C. Evenueti	on and Lateral Support Works for Zone 2A-2-1 (Stage 2)	207	14-Aug-24	08-Mar-25	149	27-Dec-24 A	24-May-25		14			
Submissions and Approva			14-Aug-24	20-Dec-24	108	25-Jan-25	12-May-25		-24			
Design Submission and Sta			14-Aug-24	20-Dec-24	108	25-Jan-25	12-May-25		-24			
ELS design at Zone 2A-2-1			14-Aug-24	01-Nov-24	80	25-Jan-25	14-Apr-25		-24			
WKCDA-G-SUB-01000	Prepare and submit ELS design at Zone 2A-2-1 (Stage 1)		14-Aug-24	06-Sep-24	24	25-Jan-25	17-Feb-25	0%				
WKCDA-G-SUB-01020	Review and approve submission of ELS design at Zone 2A-2-1 (Stage 1)	28	07-Sep-24	04-Oct-24	28	18-Feb-25	17-Mar-25	0%	-24			
WKCDA-G-SUB-01060	Review and approve of ELS design at Zone 2A-2-1 (Stage 1) by BD	28	05-Oct-24	01-Nov-24	28	18-Mar-25	14-Apr-25	0%	-24			
ELS design at Zone 2A-2-1		28	23-Nov-24	20-Dec-24	28	15-Apr-25	12-May-25		-24			
WKCDA-G-SUB-02000	Prepare and submit ELS design at Zone 2A-2-1 (Stage 2)	28	23-Nov-24	20-Dec-24	28	15-Apr-25	12-May-25	0%	-24			
onstruction		103	02-Nov-24	08-Mar-25	118	27-Dec-24 A	24-May-25		11			
King Post (17/100)		103	02-Nov-24	08-Mar-25	118	27-Dec-24 A	24-May-25		11			
WKCDA-G-CON-01021	Installation of king post at Zone 2A-2-1for Steel Platform - Drilling of Pre-bored (025/100)	0			25	27-Dec-24 A	25-Jan-25	25%	79			nst
WKCDA-G-CON-01000	Installation of king post at Zone 2A-2-1(Total=39nos, 3days/pile/rig, 3rigs) for ELS (022/100)	39	02-Nov-24	17-Dec-24	39	15-Jan-25 A	04-Mar-25	22%	11			
WKCDA-G-CON-01010	Installation of king post at Zone 2A-2-1(Total=39nos, 3days/pile/rig, 3rigs) for ELS	39	18-Dec-24	07-Feb-25	39	05-Mar-25	23-Apr-25	0%	11			
WKCDA-G-CON-01020	Installation of king post at Zone 2A-2-1(Total=50nos, 3days/pile/rig, 6rigs) for Steel Platform	25	08-Feb-25	08-Mar-25	25	24-Apr-25	24-May-25	0%	11			
ost Centre H - Bored Pil	e Foundation for Zone 2A-2-2	380	14-Jan-25	28-Apr-26	142	02-Dec-24 A	29-May-25		324			
Construction			14-Jan-25	28-Apr-26	142	02-Dec-24 A	29-May-25		324			
Bored Pile Foundation 2A-2	1		14-Jan-25	11-Jun-25	126	02-Dec-24 A	10-May-25		105			
Bored Pile Works BP26YA			14-Jan-25	27-Mar-25	68	02-Dec-24 A	25-Feb-25		105			
WKCDA-H-CON-01080	Casing Installation and Soft Excavation for bored pile(BP26YA)		14-Jan-25	14-Feb-25	32	02-Dec-24 A	11-Jan-25 A	100%				
WKCDA-H-CON-01100	Plant Setup of RCD for bored pile(BP26YA)	20	15-Feb-25	15-Feb-25	1	13-Jan-25 A	13-Jan-25 A	100%				
WKCDA-H-CON-01120	Rock Drilling of bored pile(BP26YA)	30	17-Feb-25	22-Mar-25	30	14-Jan-25 A	20-Feb-25	33.33%				
WKCDA-H-CON-01140	Koden Test, Air Lifting, Installation of Rebar Cage and	4		27-Mar-25	4	21-Feb-25	25-Feb-25	0%				
	Concreting(BP26YA)(Including Testing)							070				
Bored Pile Works BP27X WKCDA-H-CON-01160	Plant Setup of Oscillator for bored pile(BP27X)		28-Mar-25 28-Mar-25	11-Jun-25 28-Mar-25	58 1	26-Feb-25 26-Feb-25	10-May-25 26-Feb-25	0%	105			
WKCDA-H-CON-01180	Casing Installation and Soft Excavation for bored pile(BP27X)		28-iviar-25 29-Mar-25	03-May-25	26	20-Feb-25 27-Feb-25	28-Mar-25	0%				
WKCDA-H-CON-01200	Plant Setup of RCD for bored pile(BP27X)		29-Mar-25 06-May-25	03-Way-25 06-May-25	20	27-Feb-25 29-Mar-25	20-Mar-25 29-Mar-25	0%				
WKCDA-H-CON-01200	Rock Drilling of bored pile(BP27X)		07-May-25	11-Jun-25	30	29-Mar-25 31-Mar-25	29-Mar-25 10-May-25	0%				
Bored Pile Foundation 2A-2			17-Oct-25	28-Apr-26	120	30-Dec-24 A	29-May-25	070	324			
Bored Pile Works BP28YA			17-Oct-25	29-Dec-25	25	30-Dec-24 A	29-way-25 28-Jan-25		324			
WKCDA-H-CON-01460	Plant Setup of Oscillator for bored pile(BP28YA)		17-Oct-25	17-Oct-25	20	30-Dec-24 A	30-Dec-24 A	100%				
WKCDA-H-CON-01480	Casing Installation and Soft Excavation for bored pile(BP28YA)		17-Oct-25 18-Oct-25	17-0d-25 15-Nov-25	8	30-Dec-24 A	09-Jan-25 A	100%				
							20,1					'
BC.4D.0124(2) Feb-25_17:33	 Milestone 4th Draft Summary Critical MS Critical Bar 			• -		CC/2023/2		a	-	_		17-
ne 6 of 7			Thr	ee Mont	h Ral	ling Prog	ramme a	s of 25_1	lan_2	5		

Page 6 of 7

V Summary Planned Bar

 ∇

Three Month Rolling Programme as of 25-Jan-25

	ELS Works (Stages 1 & 2) for Integrate			laerg	Forecast		Virtual 20		or wes	L NOWIO				
Activity ID	Activity Name	4th 4th Draft Draft Start	4th Draft Finish	Dur	Actual Start	Forecast /Actual	Complete Float	.024	Jan		Feb	Mar		Apr
WKCDA-H-CON-01500	Plant Setup of RCD for bored pile(BP28YA)	Dur 1 17-Nov-25	17-Nov-25	1	10-Jan-25 A	Finish 10-Jan-25 A	100%		7		8	9		10
	Rock Drilling of bored pile(BP28YA)	30 18-Nov-25	22-Dec-25		11-Jan-25 A	23-Jan-25 A	100%			1				
WKCDA-H-CON-01540	Koden Test, Air Lifting, Installation of Rebar Cage and Concreting(BP28YA)(Including Testing)	4 23-Dec-25	29-Dec-25	4	24-Jan-25 A	28-Jan-25	25% 324		-					
Bored Pile Works BP29YA		64 30-Dec-25	18-Mar-26	64	01-Feb-25	17-Apr-25	324			8				
WKCDA-H-CON-01560	Plant Setup of Oscillator for bored pile(BP29YA)	1 30-Dec-25	30-Dec-25	1	01-Feb-25	01-Feb-25	0% 324			1				
WKCDA-H-CON-01580	Casing Installation and Soft Excavation for bored pile(BP29YA)	28 31-Dec-25	02-Feb-26	28	03-Feb-25	06-Mar-25	0% 324							
WKCDA-H-CON-01600	Plant Setup of RCD for bored pile(BP29YA)	1 03-Feb-26	03-Feb-26	1	07-Mar-25	07-Mar-25	0% 324			1		I		
	Rock Drilling of bored pile(BP29YA)	30 04-Feb-26	13-Mar-26	30	08-Mar-25	12-Apr-25	0% 324			1				
	Koden Test, Air Lifting, Installation of Rebar Cage and Concreting(BP29YA)(Including Testing)	4 14-Mar-26	18-Mar-26	4	14-Apr-25	17-Apr-25	0% 324							
Bored Pile Works BP30Y		31 19-Mar-26	28-Apr-26	31	22-Apr-25	29-May-25	324							
	Plant Setup of Oscillator for bored pile(BP30Y)	1 19-Mar-26	19-Mar-26	1	22-Apr-25	22-Apr-25	0% 324			8			1	0
	Casing Installation and Soft Excavation for bored pile(BP30Y)	30 20-Mar-26	28-Apr-26	_	23-Apr-25	29-May-25	0% 324			8				9
Cost Centre J & M - Site Sa	afety and Smart Site Safety System	914 05-Jul-24	04-Jan-27	914	05-Jul-24 A	04-Jan-27	0			r F F				
General Submission		914 05-Jul-24	04-Jan-27	914	05-Jul-24 A	04-Jan-27	0			I				
Submission and Approval a n	d Implementation	914 05-Jul-24	04-Jan-27	914	05-Jul-24 A	04-Jan-27	0			1				
WKCDA-JM-SUB-01100	Submit and update Construction Health and Safety Plan Implementation and update of SSSS(including communication network,centralized management platform,etc.)	914 05-Jul-24 879 09-Aug-24	04-Jan-27 04-Jan-27		05-Jul-24 A 26-Jul-24 A	04-Jan-27 04-Jan-27	22.3% 0 20.82% 0		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0					
Cost Centre K - Environme	antal Management	914 05-Jul-24	04-Jan-27	914	05-Jul-24 A	04-Jan-27	0							
	entar management									8				
General Submission		914 05-Jul-24	04-Jan-27		05-Jul-24 A	04-Jan-27	0			8				
Submission and Approval and WKCDA-K-SUB-01000	Submit and update Environmental Management Plan	914 05-Jul-24 914 05-Jul-24	04-Jan-27 04-Jan-27		05-Jul-24 A 05-Jul-24 A	04-Jan-27 04-Jan-27	22.32% 0			8		1		
	Conduct environmental monitoring & audit and submit EM&A report to EPD	914 05-Jul-24 914 05-Jul-24	04-Jan-27		05-Jul-24 A 05-Jul-24 A	04-Jan-27	22.32% 0			1			1	
WKCDA-K-SUB-01040	Implementation of the EM&A programme	914 05-Jul-24	04-Jan-27	Q1 <i>1</i>	05-Jul-24 A	04-Jan-27	22.32% 0							
Cost Centre P, Q, R & S- O	· · ·	882 05-Jul-24	03-Dec-26		05-Jul-24 A	03-Dec-26	0					1	1	
Item No.1 - Maintenance and		882 05-Jul-24	03-Dec-26		05-Jul-24 A	03-Dec-26	0			1				
							0							
Site Maintenance and Demoli		882 05-Jul-24	03-Dec-26		05-Jul-24 A	03-Dec-26	0							
	Take-over and maintenance of NSO	882 05-Jul-24 882 05-Jul-24	03-Dec-26 03-Dec-26		05-Jul-24 A 05-Jul-24 A	03-Dec-26 03-Dec-26	23.13% 0							
	as CA's and RSS's Site Office & Maintenance of 1/F and Demolition of NS						0			8				
	Take-over adoption of G/F NSO as CA and RSS's site office and maintenance of 1/F NSO	882 05-Jul-24 882 05-Jul-24	03-Dec-26 03-Dec-26		05-Jul-24 A 05-Jul-24 A	03-Dec-26 03-Dec-26	23.13% 0							
Item No.4 - Road Reinstatem	ent Works at Austin Road West	28 28-Feb-25	27-Mar-25	28	10-Apr-25	07-May-25	447			- 				
Road Reinstatement Works		28 28-Feb-25	27-Mar-25	28	10-Apr-25	07-May-25	447			8				
WKCDA-S-#OW-01000	Prepare and submit TTMS scheme for road reinstatement works at Austin Road West	28 28-Feb-25	27-Mar-25	28	10-Apr-25	07-May-25	0% 447					(
2ABC.4D.0124(2) 03-Feb-25_17:33 Page 7 of 7	 Milestone 4th Draft Summary Critical MS Critical Bar Summary Planned Bar 	Thi	ree Mont		CC/2023/2 ling Prog		s of 25-Jan-25	5		Date 17-Dec-24	Re 4th Draft	evision K	Checked	Approved

ABC.4D.0124(2) 3-Feb-25_17:33 'age 7 of 7	 ♦ ▼ 	Critical MS	4th Draft Summary Critical Bar Planned Bar	CC/2023/2B/095 Three Month Rolling Programme as of 25-Jan-25

C. Action and Limit Levels for Construction Phase

Air Quality

The Action and Limit Levels for 1-hour and 24-hour TSP for the monitoring stations are presented in following tables:

Table C-1: Action and Limit Levels for 1-hour TSP

Monitoring Station	Action Level (µg/m3)	Limit Level (µg/m3)
AM3A	280.4	500
AM4A	278.5	500
AM5A	275.4	500

Table C-2: Action and Limit Levels for 24-hour TSP

Monitoring Station	Action Level (µg/m3)	Limit Level (μg/m3)
AM3A	152.4	260
AM4A	152.6	260
AM5A	141.1	260

<u>Noise</u>

The Action and Limit Levels for Noise for the monitoring stations are presented in following table:

Table C-3: Action and Limit Levels for Construction Noise

Time Period & Monitoring Locations	Action Level	Limit Level
NM2A, NM3A, NM4A and NM5A		
0700-1900 hours on normal weekdays	When one valid documented complaint is	75
	received from any one of the sensitive receiver	

Note:

*Reduce to 70dB(A) for school and 65 dB(A) during school examination period.

D. Event and Action Plan for Air Quality, Noise, Landscape and Visual Impact

Air Quality

In case the Action and Limit Levels are not complied during construction stage, the following Event and Action Plan should be followed:

Event	Action							
Event	ET	IEC	WKCDA	Contractor				
Action Level								
1. Exceedance for one sample	 Identify source, investigate the causes of exceedance and propose remedial measures; Inform IEC and WKCDA; Repeat measurement to confirm finding; Increase monitoring frequency to daily. 	 Check monitoring data submitted by ET; Check Contractor's working method. 	1. Notify Contractor	 Rectify any unacceptable practice; Amend working methods if appropriate. 				
2. Exceedance for two or more consecutive samples	 Identify source; Inform IEC and WKCDA; Advise the WKCDA on the effectiveness of the proposed remedial measures; Repeat measurements to confirm findings; Increase monitoring frequency to daily; Discuss with IEC and Contractor on remedial actions required; If exceedance continues, arrange meeting with IEC and WKCDA; If exceedance stops, cease additional monitoring. 	 Check monitoring data submitted by ET; Check Contractor's working method; Discuss with ET and Contractor on possible remedial measures; Advise the ET on the effectiveness of the proposed remedial measures; Monitor the implementation of remedial measures. 	 Confirm receipt of notification of failure in writing; Notify Contractor; Ensure remedial measures properly implemented. 	 Submit proposals for remedial to WKCDA within three working days of notification; Implement the agreed proposals; Amend proposal in appropriate. 				

Table D-1: Typical Event and Action Plan for Air Quality

Friend	Action							
Event	ET	IEC	WKCDA	Contractor				
Limit Level								
1. Exceedance for one sample	 Identify source, investigate the causes of exceedance and propose remedial measures; Inform WKCDA, Contractor and EPD; Repeat measurement to confirm finding; Increase monitoring frequency to daily; Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and WKCDA informed of the results. 	 Check monitoring data submitted by ET; Check Contractor's working method; Discuss with ET and Contractor on possible remedial measures; Advise the WKCDA on the effectiveness of the proposed remedial measures; Monitor the implementation of remedial measures. 	 Confirm receipt of notification of failure in writing; Notify Contractor; Ensure remedial measures properly implemented. 	 Take immediate action to avoid furthe exceedance; Submit proposals for remedial actions to IEC within three working days of notification; Implement the agreed proposals; Amend proposal if appropriate. 				
2. Exceedance for two or more consecutive samples	 Notify IEC, WKCDA, Contractor and EPD; Identify source; Repeat measurement to confirm findings; Increase monitoring frequency to daily; Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented; Arrange meeting with IEC and WKCDA to discuss the remedial actions to be taken; Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and WKCDA informed of the results; If exceedance stops, cease additional 	 Check monitoring data submitted by ET; Check Contractor's working method; Discuss amongst WKCDA, ET, and Contractor on the potential remedial actions; Review Contractor's remedial actions whenever necessary to assure their effectiveness and advise the WKCDA accordingly; Monitor the implementation of remedial measures. 	 Confirm receipt of notification of failure in writing; Notify Contractor; In consolidation with the IEC, agree with the Contractor on the remedial measures to be implemented; Ensure remedial measures properly implemented; If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated. 	 Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IEC within three working days of notification; Implement the agreed proposals; Resubmit proposals if problem still not under control; Stop the relevant portion of works as determined by the WKCDA until the exceedance is abated. 				

Construction Noise

In case the Action and Limit Levels are not complied during construction stage, the following Event and Action Plan should be followed:

Table D-2: Event and Action Plan for Construction Noise

Event	Action							
Event	ET	IEC	WKCDA	Contractor				
Action Level	 Notify WKCDA, IEC and Contractor; Carry out investigation; Report the results of investigation to the IEC, WKCDA and Contractor; Discuss with the IEC and Contractor on remedial measures required; Increase monitoring frequency to check mitigation effectiveness. 	 Review the investigation results submitted by the ET; Review the proposed remedial measures by the Contractor and advise the WKCDA accordingly; Advise the WKCDA on the effectiveness of the proposed remedial measures. 	 Confirm receipt of notification of failure in writing; Notify Contractor; In consolidation with the IEC, agree with the Contractor on the remedial measures to be implemented; Supervise the implementation of remedial measures. 	 Submit noise mitigation proposals to IEC and WKCDA; Implement noise mitigation proposals 				
Limit Level	 Inform IEC, WKCDA, Contractor and EPD; Repeat measurements to confirm findings; Increase monitoring frequency; Identify source and investigate the cause of exceedance; Carry out analysis of Contractor's working procedures; Discuss with the IEC, Contractor and WKCDA on remedial measures required; Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and WKCDA informed of the results; If exceedance stops, cease additional 	 Discuss amongst WKCDA, ET, and Contractor on the potential remedial actions; Review Contractor's remedial actions whenever necessary to assure their effectiveness and advise the WKCDA accordingly. 	 Confirm receipt of notification of failure in writing; Notify Contractor; In consolidation with the IEC, agree with the Contractor on the remedial measures to be implemented; Supervise the implementation of remedial measures; If exceedance continues, consider stopping the Contractor to continue working on that portion of work which causes the exceedance until the exceedance is abated. 	 Take immediate action to avoid further exceedance, Submit proposals for remedial actions to IEC and WKCDA within 3 working days of notification; Implement the agreed proposals; Submit further proposal if problem still not under control; Stop the relevant portion of works as instructed by the WKCDA until the exceedance is abated. 				

Landscape and Visual Impact

In case of non-compliance of landscape and visual impacts, procedures in accordance with the Event and Action Plan should be followed:

	Action							
Event	Action	Event	Action	Event				
Design Check	 Design check to make sure the design complies with all the proposed mitigation measures in the EIA report; Prepare and submit report. 	 Check report submitted by ET; Recommend remedial design if necessary. 	1. Undertake remedial design if necessary.	-				
Non-conformity on one occasion	 Identify source of non-conformity; Report to IEC and WKCDA; Discuss remedial actions with IEC, WKCDA and Contractor; Monitor remedial actions until rectification has been completed. 	 Check and verify source of non- conformity; Discuss remedial actions with ET and Contractor; Advise WKCDA on effectiveness of proposed remedial actions; Check implementation of remedial actions. 	 Notify Contractor; Ensure remedial actions are properly implemented. 	 Amend working method as necessary; Rectify damage and undertake necessary replacement and remedial actions. 				
Repeated non- conformity	 Identify source of non-conformity; Report to IEC and WKCDA; Increase monitoring frequency; Discuss remedial actions with IEC, WKCDA and Contractor; Monitor remedial actions until rectification has been completed; If non-conformity rectified, reduce monitoring frequency back to normal. 	 Check and verify source of non- conformity; Check Contractor's working method; Discuss remedial actions with ET and Contractor; Advise WKCDA on effectiveness of proposed remedial actions; Supervise implementation of remedial actions. 	 Notify Contractor; Ensure remedial actions are properly implemented. 	 Amend working method as necessary; Rectify damage and undertake necessary replacement and remedial actions. 				

Table D-3: Event and Action Plan for Landscape and Visual Impact

E. Monitoring Schedule

Notes:

AM3A - Northeast corner of West Kowloon Station's station box (G/F)

AM4A - Southeast corner of West Kowloon Station's station box (G/F)

AM5A - North of West Kowloon Station's station box (G/F) NM2A - The Arch – Sun Tower (G/F)

January 2025 (Hong Kong)

NM3A - Xiqu Centre (G/F) NM4A - Next to Tsim Sha Tsui Fire Station (G/F)

NM5A - Pedestrian road (G/F) outside West Kowloon Station

Sun	Mon	Tue	Wed	Thu	Fri	Sat
29	30	31	1 • New Year's Day	2	3	4
5	6 AM3A,AM4A,AM5A - 24-hr TSP, 1-hr TSP X 3 NM2A,NM3A,NM4A,NM5A - Noise Impact Monitoring	7	8 Landscape & Visua inspection Zones 2A, 2B & 2C	9	10	11 AM3A,AM4A,AM5A - 24-hr TSP, 1-hr TSP X 3 NM2A,NM3A,NM4A,NM5A- Noise Impact Monitoring
12	13	14	15	16	17 AM3A,AM4A,AM5A - 24-hr TSP, 1-hr TSP X 3 NM2A,NM3A,NM4A,NM5A- Noise Impact Monitoring	18
19	20	21	22 Landscape & Visual Inspection Zones 2A, 2B & 2C	23 AM3A,AM4A,AM5A - 24-hr TSP, 1-hr TSP X 3 NM2A,NM3A,NM4A,NM5A- Noise Impact Monitoring	24	25
26	27	28 AM3A,AM4A,AM5A - 24-hr TSP, 1-hr TSP X 3 NM2A,NM3A,NM4A,NM5A- Noise Impact Monitoring	29 • Lunar New Year's Day	30 • Second Day of Lunar New Year	31 • Third Day of Lunar New Year	1

February 2025 (Hong Kong)

Sun	Mon	Tue	Wed	Thu	Fri	Sat
26	27	28	29 • Lunar New Year's Day	30 • Second Day of Lunar New Year	31Third Day of Lunar New Year	1 AM3A,AM4A,AM5A - 24-hr TSP, 1-hr TSP X 3 NM2A,NM3A,NM4A,NM5 A - Noise Impact Monitoring
2	3	4 AM3A,AM4A,AM5A - 24-hr TSP, 1-hr TSP X 3 NM2A,NM3A,NM4A,NM5A - Noise Impact Monitoring	5 Landscape & Visua inspection Zones 2A, 2B & 2C	6	7	8
9	10 AM3A,AM4A,AM5A - 24-hr TSP, 1-hr TSP X 3 NM2A,NM3A,NM4A,NM5A - Noise Impact Monitoring	11	12	13	14	15 AM3A,AM4A,AM5A - 24-hr TSP, 1-hr TSP X 3 NM2A,NM3A,NM4A,NM5A - Noise Impact Monitoring
16	17	18	19 Landscape & Visua inspection Zones 2A, 2B & 2C	20	21 AM3A,AM4A,AM5A - 24-hr TSP, 1-hr TSP X 3 NM2A,NM3A,NM4A,NM5A - Noise Impact Monitoring	22
23	24	25	26	27 AM3A,AM4A,AM5A - 24- hr TSP, 1-hr TSP X 3 NM2A,NM3A,NM4A,NM 5A - Noise Impact Monitoring	28	1

F. Calibration Certifications

CERTIFICATE OF ACCREDITATION

This is to attest that

AQUALITY TESTCONSULT LIMITED

11A&B, KAI FONG GARDEN, PING CHE ROAD FANLING, HONG KONG

Calibration Laboratory CL-207

has met the requirements of AC204, *IAS Accreditation Criteria for Calibration Laboratories*, and has demonstrated compliance with ISO/IEC Standard 17025:2017, *General requirements for the competence of testing and calibration laboratories*. This organization is accredited to provide the services specified in the scope of accreditation.

Effective Date February 19, 2024

Expiration Date December 1, 2024

President

Visit www.iasonline.org for current accreditation information.

International Accreditation Service, Inc. 3060 Saturn Street, Suite 100, Brea, California 92821, U.S.A. | www.iasonline.org

AQUALITY TESTCONSULT LIMITED

CALIBRATION AND MEASUREMENT CAPABILITY (CMC)*

Contact Name Lee Mei Yee, Julia

Contact Phone +852-56138988

Accredited to ISO/IEC 17025:2017

Effective Date February 19, 2024

	ALIBRATION AND MEASURE	1	、 ,
MEASURED QUANTITY or DEVICE TYPE CALIBRATED	RANGE	UNCERTAINTY ^{1,2} (±)	CALIBRATION PROCEDURE AND/OR STANDARD EQUIPMENT USED
	Dimens	ional	
Caliper -Vernier, Dial & Electronic ³	0 mm to 300 mm	30 µm	Checker by Direct method (Based on BS 887:1982, BS 887:2008
Steel Ruler ³	1 mm to 1000 mm	280 µm	Reference Steel Rule by comparison method (Based on BS 4372:1968)
Dial Indicator/Gauge (Plunger) ³	0 mm to 50 mm	8 µm	Reference micrometer head by comparison method (Based on BS 907:2008)
Feeler Gauge ³	0.01 mm to 1 mm	8 µm	Reference Dial Gauge by Direct method (Based on BS 957: 2008)
Measuring tape ³	0 m to 5 m	1200 µm	Reference steel ruler by comparison method (Based on BS 4035:1966)
Engineering Square ³	Length: 0 mm to 160 mm	20 µm	Reference engineering square and Feeler Gauge by Direct Method (Based on BS 939:2007)
Slump cone ³	Diameter: 0 mm to 200 mm	560 µm	Reference Caliper & Reference Steel ruler by direct measurement
	Thickness: ≥1.5 mm	70 µm	(Verification in accordance with in-house method for the
	Height: 0 mm to 300 mm	560 μm	dimensional requirements as specified CS1:1990 Vol.1 A4; CS1: 2010 Vol. 1, A5) (BS EN 12350-2: 2009 Cl. 4.1 BS EN 12350-1: 2019 Cl. 4.1.7)

* If information in this CMC is presented in non-SI units, the conversion factors stated in NIST Special Publication 811 "Guide for the Use of the International System of Units (SI)" apply.

Effective Date February 19, 2024 Page 2 of 6 IAS/CL/100-3

International Accreditation Service, Inc.

3060 Saturn Street, Suite 100, Brea, California 92821, U.S.A. | www.iasonline.org

MEASURED QUANTITY or DEVICE TYPE CALIBRATED	RANGE	UNCERTAINTY ^{1,2} (±)	CALIBRATION PROCEDURE AND/OR STANDARD EQUIPMENT USED
Tamping rod ³	Diameter: 0 mm to 16 mm	50 µm	Reference steel ruler & Reference Caliper by direct
	Length: 600 mm	290 µm	measurement (Verification in accordance with in-house method for the dimensional requirements as specified CS1:1990 Vol.1 A5; CS1: 2010 Vol. 1, A6) (BS EN 12350-2: 2009 Cl. 4.2, BS EN 12350-1: 2019 Cl. 4.1.8)
Cube mould ³	(Max dimensions 150 mm per side)		Reference Caliper, straight edge & feeler gauge by direct measurement.
	Dimension	50 µm	(Verification in accordance with in-house method for the
	Flatness	10 µm	dimensional requirements as specified in BS1881: Part
	Perpendicularity	10 µm	108:1983; CS1:1990 Vol1, A21; CS1:2010 Vol 1, A25;
	Parallelism	50 µm	BS EN 12390-1:2000 Cl. 5.2.4, BS EN 12390-1: 2012 Cl. 5.2.4, BS EN 12390-1: 2021 Cl. 5.2.2)
Compacting Bar ³	Ramming Face: 25 mm Length: 380 mm	100 μm 560 μm	Reference Caliper, Steel ruler & Weiging Balance by direct measurement.
			(Verification in accordance
	Weight: 1.8 kg	1 g	with in-house method for the dimensional & mass requirements as specified in BS 1881: Part 105: 1984 Cl 3.3; CS1: 1990 Vol 2, E3; CS1: 2010 Vol 1 A10; BS EN 12390-2: 2000 Cl 3.3; BS EN 12350-1: 2019 Cl. 4.1.8)
Covermeter	20 mm to 103 mm	2.9 mm	Reference concrete block (Verification in accordance with in-house method for the dimensional requirements as specified in BS 1881- 204:1988 CI.6.4- Method C)
Flow table ³	Mass 15 kg to 17 kg Dimension	12 g	Weighing Balance, Reference caliper & Reference steel ruler by direct measurement
	1 mm up to 71 cm	600 µm	(Verification in accordance with in-house method for the

Effective Date February 19, 2024 Page 3 of 6 IAS/CL/100-3

International Accreditation Service, Inc.

3060 Saturn Street, Suite 100, Brea, California 92821, U.S.A. | www.iasonline.org

MEASURED QUANTITY or DEVICE TYPE CALIBRATED	RANGE	UNCERTAINTY ^{1,2} (±)	CALIBRATION PROCEDURE AND/OR STANDARD EQUIPMENT USED
			dimensional requirements as specified in BS 1881- Part 105: 1984)
Test Sieve ³	4 mm to 50 mm	50 µm	Reference Caliper by direct measurement as per BS 410 : 1986
Elongation Gauge ³	Gap between Pins of Gauge 10 mm to 100 mm	0.29 mm	Reference Caliper by direct measurement (Verification in accordance with in-house method for the dimensional requirements as specified in BS 812- Part 1:1975; BS 812- Part 105.2: 1990)
Flakiness Gauge ³	Length of Slot of Gauge 4.9 mm to 33.9 mm	0.06 mm	Reference Caliper by direct measurement ((Verification in accordance with in-house method for the dimensional requirements as specified in BS 812- Part 1:1975; BS 812- Part105.1:1985; BS 812- Part105.1:1989)
Riffle Box ³	Width 6 mm to 100 mm	0.06 mm	Reference Caliper by direct measurement (Verification in accordance with in-house method for the dimensional requirements as specified in BS 812- Part 1:1975)
	Mechani	cal	
Force Measuring Machine ³ (Compression Mode)	1 kN to 3000 kN	0.4 %	Reference Load cell by direct measurement (Based on BS 1610: Part 1:1985; BS 1610: Part 1:1992; BS EN ISO 12390- 4:2000 Annex B; BS EN 12390-4: 2019; BS EN ISO 7500-1:2004, BS EN ISO 7500-1: 2015, BS EN ISO 7500-1: 2018)
Laser Dust Meter ³	Dust particles 0.1 mg/m ³ to 3 mg/m ³ 3 mg/m ³ to 8 mg/m ³	0.006 mg/m ³ 0.39 mg/m ³	By comparison method by using reference laser dust meter (Based on ISO 12103- 1:2016)
Rebound Hammer ³	80 unit (hardness)	1.6 rebound count	Reference Rebound count by comparison method (Based on BS1881: Part 202:1986; BS EN 12504-2:2001; BS EN

International Accreditation Service, Inc.

3060 Saturn Street, Suite 100, Brea, California 92821, U.S.A. | www.iasonline.org

MEASURED QUANTITY or DEVICE TYPE CALIBRATED	RANGE	UNCERTAINTY ^{1,2} (±)	CALIBRATION PROCEDURE AND/OR STANDARD EQUIPMENT USED
			12504-2:2012; BS EN 12504- 2:2021)
Mass (F2 class and coarser)	1 g 2 g 5 g 10 g 20 g 50 g 100 g 200 g 500 g 1 kg 2 kg 5 kg 10 kg 20 kg 50 kg	0.7 mg 0.7 mg 0.7 mg 0.7 mg 0.7 mg 0.7 mg 0.7 mg 0.7 mg 0.03 g 0.03 g 0.03 g 0.03 g 0.03 g 0.03 g 0.06 g 3.06 g 3.06 g 6 g	Standard Weight E2/ F1 Class & Weighing Balances by comparison (ABBA) method (Based on OIML-R-111)
Weighing Scale & Balance ³	0 g to 200 g 200 g to 5 kg 5 kg to 30 kg 30 kg to 50 kg	0.32 mg 12 mg 0.75 g 3.1 g	Standard weight of E2/F1 Grade by direct measurement (Based on OIML-R-111)
Volumetric Glassware	1 mL to 100 mL 100 mL to 1000 mL	0.004 mL 0.09 mL	Standard weight E2 Class, Weighing Balances & Distilled water by gravimetric method (Based on BS 1792: 1982, BS 1797: 1987)
	Therma	al	
Digital/Liquid in Glass Thermometers & RTD/ Thermocouples with or without Indicators	15 °C to 55 °C 55 °C to 95 °C	0.4 °C 0.7 °C	Water Baths, Reference Sensor and Indicator by Comparison Method (Based on OIML R133)
Curing Tank ³	(Calibration at 20 °C and at 27 °C @ 30 min) 20 °C Temperature	0.4 °C	Reference Temperature datalogger by Mapping Method & Reference Stop Watch (Verification in
	distribution 27 °C Temperature distribution	0.4 °C	accordance with in-house method for the Temp & Time requirements as specified in BS1881-111:1983, CS1:1990 Vol 1 App A24,
	Efficiency of circulation	5 s	CS1:2010 Vol 1 App A28, BE EN 12390-2:2000, BS EN 12390-2: 2019)
Oven/Furnace ³	40.0 °C to 180.0 °C 200.0 °C to 1300 °C	1.5 °C 6 °C	Reference Thermocouple with Indicator By Mapping or Single sensor method (AS 2853:1986)

Effective Date February 19, 2024 Page 5 of 6 IAS/CL/100-3

International Accreditation Service, Inc.

3060 Saturn Street, Suite 100, Brea, California 92821, U.S.A. | www.iasonline.org

MEASURED QUANTITY or DEVICE TYPE CALIBRATED	RANGE	UNCERTAINTY ^{1,2} (±)	CALIBRATION PROCEDURE AND/OR STANDARD EQUIPMENT USED
Water bath ³	15 °C to 95 °C	0.2 °C	Reference Temperature datalogger by Mapping Method (Based on AS 2853:1986)
	Time and Fr	equency	
Stop Watch/Timer ³	0 s to 3600 s 0 s to 21600 s (6 hours) 0 s to 86400 s (24 hours)	0.2 s 0.6 s 0.61 s	Reference stop watch by Direct Method (NIST 960-12 Cl. 4.A.2)
Grout Flow Cone ³	7 s to 9 s	0.2 s	Reference stop watch by direct method (Based on ASTM C939-10 Cl.9)

¹The uncertainty covered by the Calibration and Measurement Capability (CMC) is expressed as the expanded uncertainty having a coverage probability of approximately 95 %. It is the smallest measurement uncertainty that a laboratory can achieve within its scope of accreditation when performing calibrations of a best existing device. The measurement uncertainty reported on a calibration certificate may be greater than that provided in the CMC due to the behavior of the calibration item and other factors that may contribute to the uncertainty of a specific calibration.

²When uncertainty is stated in relative terms (such as percent, a multiplier expressed as a decimal fraction or in scientific notation), it is in relation to instrument reading or instrument output, as appropriate, unless otherwise indicated.

³Also available as site calibration. Note that actual measurement uncertainties achievable at a customer's site can normally be expected to be larger than the uncertainties listed on this Scope of Accreditation

東恒測試顧問有限公司

AQUALITY TESTCONSULT LIMITED

香港新界粉嶺坪輋路啟芳園11A&11B號

No. 11A&B, KAI FONG GARDEN, PING CHE ROAD, FANLING, NEW TERRITORIES, HONG KONG TEL : 852-3582-9589 FAX : 852-2674-1177 EMAIL : cal.aqtl@gmail.com WEBSITE: www.aqtlgroup.com

CERTIFICATE OF CALIBRATIONReport Number: 240818MCA-162FDate of Report: 22-Aug-24Page Number: 1 of 3Customer *: Apex Testing & Certification Ltd.Customer Address*: Unit D6A, 10/F, TML Tower, 3 Hoi Shing Road, Tsuen Wan, N.T., HKCustomers Ref. *: A005

Item Under Calibration (IUC)*

Equipment No.	: N/A
Manufacturer	: Sibata Scientific Technology Ltd
Model No.	: LD-3B
Serial No.	: 276004
Scale Division	: 0.001 mg/m3
Range	: 0.001 to 1 mg/m3
Condition of Item	: Normal
n Received	: 18-Aug-24
ibratad	· 18 Aug 24

Date Item Received	: 18	Aug-24			
Date Calibrated	: 18	Aug-24			
Calibration Location	: AQ	uality Ca	libration Lab.		
Date of Next Calibration	: 17	Aug-25			
Calibrated By	: Jess	sica Liu			
Test Environment					
Ambient Temperature	:	25.8	°C to	30.3	°C
Relative Humidity	:	82	% to	88	%

Calibration Results

Reference True Reading (mg/m3)	Average IUC Reading (mg/m ³)	Correction (mg/m ³)	Error of IUC Reading (%)	Coverage Factor K
0.176	0.177	-0.001	0.3%	2.0
4.832	4.873	-0.041	0.8%	2.0
8.143	8.074	0.069	0.9%	2.0

Remarks

- 1. * Denotes information supplied by customer.
- 3. The results relate only to the items calibrated.
- 3. The results apply to the items as received.
- 4. Correction = Average of (Ref reading IUC reading)
- 5. The technical requirement of laser dust meter. +/- 30% error for the particles concentration.

LEE Mei Yee, Julia Managing Director

The results shown in this certificate are metrologically traceable to the International System of Units (SI) or recognised measurement standards. The certificate shall not be reproduced except in full without approval of the laboratory.

Approved by:

東恒測試顧問有限公司 AQUALITY TESTCONSULT LIMITED

香港新界粉嶺坪黃路啟芳園11A&11B號

No. 11A&11B, KAI FONG GARDEN, PING CHE ROAD, FANLING, NEW TERRITORIES, HONG KONG TEL: 852-3582-9589 FAX: 852-2674-1177 EMAIL: cal.aqtl@gmail.com WEBSITE: www.aqtlgroup.com

	CERTIFICATE OF	CALIBRATION
--	-----------------------	-------------

Report Number	: 240818MCA-162F
Date of Report	: 22-Aug-24
Page Number	: 3 of 3
Customer *	: Apex Testing & Certification Ltd.
Customers Ref. *	: A005

Details of Calibration

- 1. The calibration was performed in accordance with AQuality Testconsult Procedure Number ENV-L-003 (in-house method), by comparison with the laboratory's reference equipment which have traceable international standards of measurement.
- 3. The item under calibration (IUC) was allowed to stabilize in the laboratory for 0.35 hour before commencement of calibration.
- 3. A set of readings were made at each calibration concentration. The values quoted in the results are the average of each set of readings.
- 4. The values given in this calibration certificate only relate to the values measured at the time of calibration. Any uncertainties quoted do not include allowance for the capabiliy of any other laboratory to repeat the measurement. The uncertainty quoted relate only to item at time of calibration. AQuality Testconsult Limited is not liable for any loss or damage resulting from the use of this equipment.
- 5. The identification, calibration certificate numbers for the reference equipment used were as follows :

Equipment Number	Certificate Number	Description
CH-LDM-1	HBW202401001	粉尘测试仪

6. Copies of the Calibration certificates of the reference equipment used in this calibration may be obtained from AQuality Testconsult Limited, if necessary.

- End of Report -

東恒測試顧問有限公司 AQUALITY TESTCONSULT LIMITED 香港新界粉嶺坪輋路啟芳園11A&11B號

TEL : 852-3582-9589 FAX : 852-2674-1177 EMAIL : cal.aqtl@gmail.com WEBSITE: www.aqtlgroup.com

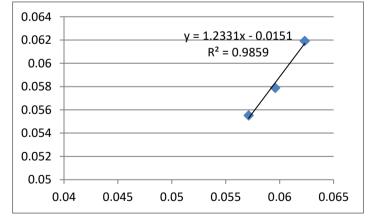
No. 11A&11B, KAI FONG GARDEN, PING CHE ROAD, FANLING, N.T., HONG KONG

CERTIFICATE OF CALIBRATION

Apex Testing & Certification Ltd.	Test Report No.	240818MCA-162F
Unit D6A, 10/F, TML Tower, 3 Hoi Shing	Date of Issue	22-Aug-24
Road, Tsuen Wan, N.T., HK	Date of Testing	18-Aug-24
Koad, Tsuen wan, N.T., HK	Page	1 of 1

Item for Calibration

Description	: Laser Dust Monitor
Manufacturer	: Sibata Scientific Technology Ltd
Model No.	: LD-3B
Serial No.	: 276004


Standard Equipment

Description	: High Volume Sampler / Calibration Orifice
Manufacturer	: Tisch Environmental, Inc.
Model No.	: TE-5170 / TE-5025A
Serial No.	3476 / 4088
Last Calibration	: 17-AUG-24 / 7-NOV-23

			Mean	Concentration	Concentration
Date	Time	Mean Temp	Pressure	Standard	Calibrated
Date			riessuie	Equipment	Equipment
		(°C)	(hPa)	(mg/m3)	(mg/m3)
18-Aug-24	19:00	28.1	1006.1	0.0623	0.0619
18-Aug-24	20:05	28.1	1006.1	0.0571	0.0555
18-Aug-24	21:10	28.1	1006.1	0.0596	0.0579

By Linear Regression of Y or X			
Slope :	1.2331		
Correlation Coefficient :	0.9859		
K-Factor :	1.0216		
Validity of Calibration :	17-Aug-25		

:

Jessin Recorded by Signature: Date: 18-Aug-24 Jessica Liu :

Checked by

S Tang

Signature:

Date: <u>18-Aug-24</u>

東恒測試顧問有限公司

AQUALITY TESTCONSULT LIMITED

香港新界粉嶺坪輋路啟芳園11A&11B號

No. 11A&B, KAI FONG GARDEN, PING CHE ROAD, FANLING, NEW TERRITORIES, HONG KONG TEL : 852-3582-9589 FAX : 852-2674-1177 EMAIL : cal.aqtl@gmail.com WEBSITE: www.aqtlgroup.com

CERTIFICATE OF CALIBRATIONReport Number: 240818MCA-163FDate of Report: 22-Aug-24Page Number: 1 of 2Customer *: Apex Testing & Certification Ltd.Customer Address*: Unit D6A, 10/F, TML Tower, 3 Hoi Shing Road, Tsuen Wan, N.T., HKCustomers Ref. *: A005

Item Under Calibration (IUC)*

Equipment No.	: N/A
Manufacturer	: Sibata Scientific Technology Ltd
Model No.	: LD-3B
Serial No.	: 336338
Scale Division	: 0.001 mg/m3
Range	: 0.001 to 1 mg/m3
Condition of Item	: Normal
n Received	: 18-Aug-24
	. 10-Aug-24

Date Item Received	: 18-	Aug-24			
Date Calibrated	: 18-	Aug-24			
Calibration Location	: AQ	uality Ca	libration Lab.		
Date of Next Calibration	:17-	Aug-25			
Calibrated By	: Jess	sica Liu			
Test Environment					
Ambient Temperature	:	25.8	°C to	30.3	°C
Relative Humidity	:	82	% to	88	%

Calibration Results

Reference True Reading (mg/m3)	Average IUC Reading (mg/m ³)	Correction (mg/m ³)	Error of IUC Reading (%)	Coverage Factor K
0.176	0.160	0.017	9.4%	2.0
4.832	4.776	0.057	1.2%	2.0
8.143	8.265	-0.122	1.5%	2.0

Remarks

- 1. * Denotes information supplied by customer.
- 2. The results relate only to the items calibrated.
- 3. The results apply to the items as received.
- 4. Correction = Average of (Ref reading IUC reading)
- 5. The technical requirement of laser dust meter. +/- 20% error for the particles concentration.

LEE Mei Yee, Julia Managing Director

The results shown in this certificate are metrologically traceable to the International System of Units (SI) or recognised measurement standards. The certificate shall not be reproduced except in full without approval of the laboratory.

Approved by:

東恒測試顧問有限公司 AQUALITY TESTCONSULT LIMITED

香港新界粉嶺坪黃路啟芳園11A&11B號

No. 11A&11B, KAI FONG GARDEN, PING CHE ROAD, FANLING, NEW TERRITORIES, HONG KONG TEL: 852-3582-9589 FAX: 852-2674-1177 EMAIL: cal.aqtl@gmail.com WEBSITE: www.aqtlgroup.com

	CERTIFICATE OF	CALIBRATION
--	-----------------------	-------------

Report Number	: 240818MCA-163F
Date of Report	: 22-Aug-24
Page Number	: 2 of 2
Customer *	: Apex Testing & Certification Ltd.
Customers Ref. *	: A005

Details of Calibration

- 1. The calibration was performed in accordance with AQuality Testconsult Procedure Number ENV-L-003 (in-house method), by comparison with the laboratory's reference equipment which have traceable international standards of measurement.
- 2. The item under calibration (IUC) was allowed to stabilize in the laboratory for 0.25 hour before commencement of calibration.
- 3. A set of readings were made at each calibration concentration. The values quoted in the results are the average of each set of readings.
- 4. The values given in this calibration certificate only relate to the values measured at the time of calibration. Any uncertainties quoted do not include allowance for the capabiliy of any other laboratory to repeat the measurement. The uncertainty quoted relate only to item at time of calibration. AQuality Testconsult Limited is not liable for any loss or damage resulting from the use of this equipment.
- 5. The identification, calibration certificate numbers for the reference equipment used were as follows :

Equipment Number	Certificate Number	Description
CH-LDM-1	HBW202401001	粉尘测试仪

6. Copies of the Calibration certificates of the reference equipment used in this calibration may be obtained from AQuality Testconsult Limited, if necessary.

- End of Report -

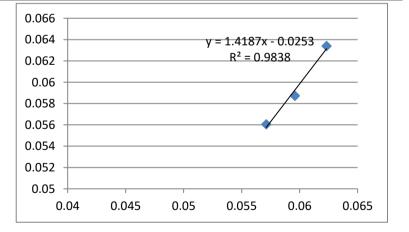
東恒測試顧問有限公司 AQUALITY TESTCONSULT LIMITED 香港新界粉嶺坪輋路啟芳園11A&11B號

No. 11A&11B, KAI FONG GARDEN, PING CHE ROAD, FANLING, N.T., HONG KONG

CERTIFICATE OF CALIBRATION

Apex Testing & Certification Ltd.	Test Report No.	240818MCA-163F
Unit D6A, 10/F, TML Tower, 3 Hoi Shing	Date of Issue	22-Aug-24
Road, Tsuen Wan, N.T., HK	Date of Testing	18-Aug-24
	Page	1 of 1

Item for Calibration


Description	: Laser Dust Monitor
Manufacturer	: Sibata Scientific Technology Ltd
Model No.	: LD-3B
Serial No.	: 336338

Standard Equipment

Description	: High Volume Sampler / Calibration Orifice
Manufacturer	: Tisch Environmental, Inc.
Model No.	: TE-5170 / TE-5025A
Serial No.	3476 / 4088
Last Calibration	: 17-AUG-24 / 7-NOV-23

		Mean Temp	Mean	Concentration	Concentration
Date	Time		Pressure	Standard	Calibrated
				Equipment	Equipment
		(°C)	(hPa)	(mg/m3)	(mg/m3)
18-Aug-24	19:00	28.1	1006.1	0.0623	0.0634
18-Aug-24	20:05	28.1	1006.1	0.0571	0.0561
18-Aug-24	21:10	28.1	1006.1	0.0596	0.0587

By Linear Regression of Y or X		
Slope	:	1.4187
Correlation Coefficient	:	0.9838
K-Factor	:	1.0056
Validity of Calibration	:	17-Aug-25

Jearin Recorded by Jessica Liu Signature: Date: 18-Aug-24 Signature: Checked by S Tang Date: 18-Aug-24

東恒測試顧問有限公司

AQUALITY TESTCONSULT LIMITED

香港新界粉嶺坪輋路啟芳園11A&11B號

No. 11A&B, KAI FONG GARDEN, PING CHE ROAD, FANLING, NEW TERRITORIES, HONG KONG TEL : 852-3582-9589 FAX : 852-2674-1177 EMAIL : cal.aqtl@gmail.com WEBSITE: www.aqtlgroup.com

CERTIFICATE OF CALIBRATIONReport Number: 240818MCA-161FDate of Report: 22-Aug-24Page Number: 1 of 2Customer *: Apex Testing & Certification Ltd.Customer Address*: Unit D6A, 10/F, TML Tower, 3 Hoi Shing Road, Tsuen Wan, N.T., HKCustomers Ref. *: A005

Item Under Calibration (IUC)*

Equipment No.	: N/A
Manufacturer	: Sibata Scientific Technology Ltd
Model No.	: LD-3B
Serial No.	: 476672
Scale Division	: 0.001 mg/m3
Range	: 0.001 to 1 mg/m3
Condition of Item	: Normal
Date Item Received	: 18-Aug-24
Date Itelli Keterveu	. 10-Aug-24
Date Calibrated	: 18-Aug-24

Date Calibrated Calibration Location Date of Next Calibration Calibrated By	: 18-Aug-24 : AQuality Calibration Lab. : 17-Aug-25 : Jessica Liu				
Test Environment Ambient Temperature Relative Humidity	:	25.8 82	°C to % to	30.3 88	°C %

Calibration Results

Reference True Reading (mg/m3)	Average IUC Reading (mg/m^3)	Correction (mg/m ³)	Error of IUC Reading (%)	Coverage Factor K
0.176	0.174	0.003	1.4%	2.0
4.832	4.706	0.126	2.6%	2.0
8.143	8.245	-0.102	1.3%	2.0

Remarks

- 1. * Denotes information supplied by customer.
- 2. The results relate only to the items calibrated.
- 3. The results apply to the items as received.
- 4. Correction = Average of (Ref reading IUC reading)
- 5. The technical requirement of laser dust meter. +/- 20% error for the particles concentration.

LEE Mei Yee, Julia Managing Director

The results shown in this certificate are metrologically traceable to the International System of Units (SI) or recognised measurement standards. The certificate shall not be reproduced except in full without approval of the laboratory.

Approved by:

東恒測試顧問有限公司 AQUALITY TESTCONSULT LIMITED

香港新界粉嶺坪崙路啟芳園11A&11B號

No. 11A&11B, KAI FONG GARDEN, PING CHE ROAD, FANLING, NEW TERRITORIES, HONG KONG TEL: 852-3582-9589 FAX: 852-2674-1177 EMAIL: cal.aqtl@gmail.com WEBSITE: www.aqtlgroup.com

CERTIFICATE OF CALIBRATION
$-240818MCA_{-}161F$

Report Number	: 240818MCA-161F
Date of Report	: 22-Aug-24
Page Number	: 2 of 2
Customer *	: Apex Testing & Certification Ltd.
Customers Ref. *	: A005

Details of Calibration

- 1. The calibration was performed in accordance with AQuality Testconsult Procedure Number ENV-L-003 (in-house method), by comparison with the laboratory's reference equipment which have traceable international standards of measurement.
- 2. The item under calibration (IUC) was allowed to stabilize in the laboratory for 0.25 hour before commencement of calibration.
- 3. A set of readings were made at each calibration concentration. The values quoted in the results are the average of each set of readings.
- 4. The values given in this calibration certificate only relate to the values measured at the time of calibration. Any uncertainties quoted do not include allowance for the capabiliy of any other laboratory to repeat the measurement. The uncertainty quoted relate only to item at time of calibration. AQuality Testconsult Limited is not liable for any loss or damage resulting from the use of this equipment.
- 5. The identification, calibration certificate numbers for the reference equipment used were as follows :

Equipment Number	Certificate Number	Description
CH-LDM-1	HBW202401001	粉尘测试仪

6. Copies of the Calibration certificates of the reference equipment used in this calibration may be obtained from AQuality Testconsult Limited, if necessary.

- End of Report -

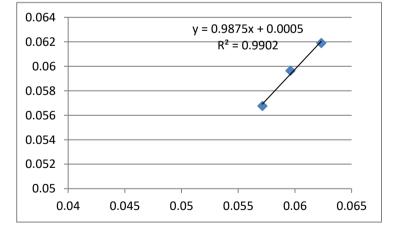
東恒測試顧問有限公司 **AQUALITY TESTCONSULT LIMITED** 香港新界粉嶺坪輋路啟芳園11A&11B號

No. 11A&11B, KAI FONG GARDEN, PING CHE ROAD, FANLING, N.T., HONG KONG

CERTIFICATE OF CALIBRATION

Apex Testing & Certification Ltd.	Test Report No.	240818MCA-161F
Unit D6A, 10/F, TML Tower, 3 Hoi Shing Road, Tsuen Wan, N.T., HK	Date of Issue	22-Aug-24
	Date of Testing	18-Aug-24
	Page	1 of 1

Item for Calibration


Description	: Laser Dust Monitor
Manufacturer	: Sibata Scientific Technology Ltd
Model No.	: LD-3B
Serial No.	: 476672

Standard Equipment

Description	: High Volume Sampler / Calibration Orifice
Manufacturer	: Tisch Environmental, Inc.
Model No.	: TE-5170 / TE-5025A
Serial No.	3476 / 4088
Last Calibration	: 17-AUG-24 / 7-NOV-23

Date	Time	Mean Temp	Mean Pressure	Concentration	Concentration
				Standard	Calibrated
				Equipment	Equipment
		(°C)	(hPa)	(mg/m3)	(mg/m3)
18-Aug-24	19:00	28.1	1006.1	0.0623	0.0619
18-Aug-24	20:05	28.1	1006.1	0.0571	0.0568
18-Aug-24	21:10	28.1	1006.1	0.0596	0.0596

By Linear Regression of Y or X				
Slope	:	0.9875		
Correlation Coefficient	:	0.9902		
K-Factor	:	1.0042		
Validity of Calibration	:	17-Aug-25		

Recorded by Jessica Liu Signature: : S Tang :

Date: 18-Aug-24

Checked by

Signature:

Date: 18-Aug-24

			X	J)		D	ALIBRATION UE DATE: ber 15, 2025
(Ce	rtifa	cate			~~~~	tion	
			Calibration	Certificatio	on Informat	ion		
Cal. Date: 0	October 15	, 2024	Roots	meter S/N:	438320	Ta:	294	°K
Operator: J	im Tisch					Pa:	752.1	mm Hg
Calibration M	lodel #:	TE-5025A	Calik	orator S/N:	4088			
								I
		Vol. Init	Vol. Final	ΔVol.	∆Time	ΔP	ΔH	
	Run	(m3)	(m3)	(m3)	(min)	(mm Hg)	(in H2O)	
	1	1	2	1	1.4330	3.2	2.00	4
	2	3	4	1	1.0260	6.4	4.00	-
	3	5	6	1	0.9190	7.9	5.00	
L	4	7	8	1	0.8740	8.8	5.50	4
L	5	9	10	1	0.7230	12.7	8.00	
Г			C	Data Tabula	tion			1
-	Vstd	Qstd	$\sqrt{\Delta H \left(\frac{Pa}{Pstd}\right)}$)(<u>Tstd</u>)		Qa	√∆H(Ta/Pa)	
	(m3)	(x-axis)	(y-axi		Va	(x-axis)	(y-axis)	
-	0.9988	0.6970	1.416	and the second se	0.9957	0.6949	0.8842	
-	0.9945	0.9693	2.003		0.9915	0.9664	1.2505	
-	0.9925	1.0800	2.239		0.9895	1.0767	1.3980	1
-	0.9913	1.1342	2.348	38	0.9883	1.1308	1.4663	4
-	0.9861	1.3639	2.832	28	0.9831	1.3598	1.7684	
-		m=	2.123	56		m=	1.32974	
	QSTD[b=	-0.059		QA [b=	-0.03702]
L		r=	0.999	96		r=	0.99996	
Г				Calculatio	ns			1
-	Vstd=	ΔVol((Pa-ΔP	/Pstd)(Tstd/Ta			∆Vol((Pa-∆F	P)/Pa)	1
-		Vstd/ATime				Va/ATime		1
			For subsequ	ent flow ra	te calculation	ns:]
	Qstd=	1/m ((\\ \ \ \ \ \ \ H (Pa Pstd Tstd))-b)	Qa=	1/m ((√∆H	(Ta/Pa))-b)	
L	Standard	Conditions		l				• , , , , , , , , , , , , , , , , , , ,
Tstd:	298.15			Γ		RECAL	IBRATION	
Pstd:		mm Hg						
		ley					nnual recalibratio	
ΔH: calibrator							Regulations Part	~
ΔP: rootsmete Ta: actual abs			(mm Hg)		5.15		Reference Meth	
Pa: actual abs			Hø)				ended Particulat	
. a. accoult out	enterne pi	-searc (min			the	e Atmosphe	re, 9.2.17, page	30
b: intercept				1				1

Tisch Environmental, Inc.

145 South Miami Avenue

Village of Cleves, OH 45002

www.tisch-env.com TOLL FREE: (877)263-7610 FAX: (513)467-9009

				R	4 T7	
Location:	ΔΜ3Δ		Site ID:	Zones 2A a Kowloon Cu		Date: 27-Nov-24
Sampler:			Serial No:		licului	Tech: CS Tang
oumpien			Jenar Hor			
			Site C	Conditions		
		essure (in Hg): 3				ssure (mm Hg): 766
	•	erature (deg F): 6			erature (deg K): 292	
	-	Press. (in Hg): 3				erage (mm Hg): 766
	Average	Temp. (deg F): 6			Average	Temp. (deg K): 292
			Calibra	tion Orifice		
		Tisch			Qstd Slope:	
		TE-5025A			Qstd Intercept:	
	Serial#:	4088			Date Certified:	7-Nov-23
			Calibratio	on Informati	on	
Plate or	H2O	Qstd (m2/min)	 (ahart)	IC (corrected)		
Test #	(in) 12.40	(m3/min) 1.709	(chart) 53.0	(corrected) 53.72		Linear Regression Slope: 31.6152
2	10.90	1.604	48.0	48.65		Intercept: -0.9165
3	7.50	1.335	41.0	41.56		Corr. Coeff: 0.9978
4	4.70	1.063	33.0	33.45		
5	2.50	0.783	23.0	23.31	# o	f Observations: 5
			Ca	lculations		
	(H2O(Pa/Pstd)(Tstd/Ta))-b]			m = sampler slo	ope
I[Sqrt(Pa/Ps	td)(Tstd/Ta)]				b = sampler int	•
					I = chart respon	
d = standard						age temperature
ctual chart r	nart response				Pav = daily avera	age pressure
calibrator C	•				Δ	verage I (chart): 40
	std intercept					ge Flow Calculation m3/min
	•	calibration (deg	K)			1.298538993
•	0	bration (mm Hg)	,		Avera	ge Flow Calculation in CFM
= 298 deg K	C C					45.85141186
= 760 mm H	Чg				Sam	ple Time (Hrs): 1.0
	calculation of s				1	Total Flow in m3/min
((I)[Sqrt(298	/Tav)(Pav/760)]-b)				77.91233961
						Total Flow in CFM 2751.084711

			Site Ir	formation		
				Zones 2A a		
Location:				Kowloon Cu	iltural	Date: 27-Nov-24
Sampler:	IE-5170		Serial No:	3998		Tech: CS Tang
			Site C	Conditions		
	Barometric Pr	ressure (in Hg): 3	0.14		Corrected Pres	ssure (mm Hg): 766
	•	erature (deg F): 6			•	erature (deg K): 292
Average Press. (in Hg): 30.14						erage (mm Hg): 766
	Average	Temp. (deg F): 6	7		Average	Temp. (deg K): 292
			Calibra	tion Orifice		
	Make:	Tisch			Qstd Slope:	2.12356
		TE-5025A			Qstd Intercept:	
	Serial#:	4088			Date Certified:	7-Nov-23
			Calibratio	on Informati	on	
Plate or	H2O	Qstd	 (-h-c-st)	IC (Line and Brannelian
Test #	(in) 12.60	(m3/min) 1.722	(chart) 53.0	(corrected) 53.72		Linear Regression
2	12.60	1.582	48.0	48.65		Slope: 31.7072 Intercept: -1.0466
3	7.70	1.352	41.0	41.56		Corr. Coeff: 0.9971
4	4.50	1.040	33.0	33.45		
5	2.60	0.798	23.0	23.31	# of	f Observations: 5
			Ca	lculations		
	(H2O(Pa/Pstd)(Tstd/Ta))-b]			m = sampler slo	ope
I[Sqrt(Pa/Ps	td)(Tstd/Ta)]				b = sampler int	
					I = chart response	
d = standard					•	age temperature
	hart response				Pav = daily avera	age pressure
ctual chart r calibrator C	•				A	verage I (chart): 40
	std intercept					e Flow Calculation m3/min
		calibration (deg	K)		Averag	1.298872443
•	0	bration (mm Hg)			Avera	ge Flow Calculation in CFM
•	0					45.86318597
= 298 deg K					Sam	ple Time (Hrs): 1.0
0	0	ampler flow:				Fotal Flow in m3/min
d = 760 mm ł	calculation of sa		77.9323466			
•	S/Tav)(Pav/760)]-b)				77.9323400
d = 760 mm H subsequent]-b)				Total Flow in CFM 2751.791158

				formation		
Location:			Site ID:	Zones 2A a Kowloon Cu		Date: 27-Nov-24
Sampler: 5			Serial No:		liculai	Tech: CS Tang
Sumpler			Schullto.			
			Site C	Conditions		
		essure (in Hg): 3				ssure (mm Hg): 766
	•	rature (deg F): 6			erature (deg K): 292	
	-	Press. (in Hg): 3				erage (mm Hg): 766
	Average	Temp. (deg F): 6			Average	Temp. (deg K): 292
			Calibra	tion Orifice		
	Make:				Qstd Slope:	
		TE-5025A			Qstd Intercept:	
	Serial#:	4088			Date Certified:	7-Nov-23
			Calibratio	on Informati	on	
Plate or	H2O	Qstd (m2(min)	 (ahart)	IC (connected)		
Test #	(in) 12.30	(m3/min) 1.702	(chart) 53.0	(corrected) 53.72		Linear Regression Slope: 32.2350
2	10.80	1.596	48.0	48.65		Intercept: -1.8942
3	7.80	1.361	41.0	41.56		Corr. Coeff: 0.9974
4	4.70	1.063	33.0	33.45		
5	2.60	0.798	23.0	23.31	# o	f Observations: 5
			Ca	lculations		
	(H2O(Pa/Pstd)(Tstd/Ta))-b]			m = sampler sl	•
I[Sqrt(Pa/Ps	td)(Tstd/Ta)]				b = sampler int	•
	(I				I = chart respon	
d = standard	now rate				Pav = daily avera	age temperature
ctual chart r	•					
calibrator C	•				Av	verage I (chart): 40
calibrator Q	std intercept					ge Flow Calculation m3/min
actual temp	erature during	calibration (deg	K)			1.303898107
•	0	oration (mm Hg)			Avera	ge Flow Calculation in CFM
= 298 deg K						46.04064215
= 760 mm H	0					nple Time (Hrs): 1.0
	calculation of sa (Tay)(Pay/760)					Total Flow in m3/min 78.23388641
(()[3411(298	/Tav)(Pav/760)]-n)				78.23388641 Total Flow in CFM
						2762.438529

				Zones 2A a	t West	
Location:	АМЗА		Site ID:	Kowloon Cu		Date: 24-Jan-25
Sampler:			Serial No:			Tech: CS Tang
	Development of a De			Conditions	Comparison I Dura	
		essure (in Hg): 2 rature (deg F): 6			ssure (mm Hg): 761 rature (deg K): 292	
	•	Press. (in Hg): 2		•	erage (mm Hg): 761	
	•	Temp. (deg F): 6				Temp. (deg K): 292
			Calibra	tion Orifice		
	Make:	Tisch			Qstd Slope:	2.12356
		TE-5025A			Qstd Intercept:	
	Serial#:	4088			Date Certified:	15-0ct-24
			Calibratio	on Informati	on	
Plate or	H2O	Qstd	I	IC		
Test #	(in)	(m3/min)	(chart)	(corrected)		Linear Regression
1	12.60	1.719	53.0	53.63		Slope: 32.3611
2	10.70	1.587 1.342	48.0	48.57 41.49		Intercept: -2.1244 Corr. Coeff: 0.9978
3 4	7.60 4.70	1.342	41.0 33.0	41.49 33.39		Corr. Coerr : 0.9978
5	2.70	0.811	23.0	23.27	# of	Observations: 5
			Ca	lculations		
d = 1/m[Sart	(H2O(Pa/Pstd)(Tstd/Ta))-b]			m = sampler slo	ppe
I[Sqrt(Pa/Psi					b = sampler int	•
						150
			I = chart respor			
d = standard	flow rate				Tav = daily avera	ige temperature
corrected ch	art response				•	ige temperature
corrected ch actual chart re	art response esponse				Tav = daily avera Pav = daily avera	ge temperature ge pressure
corrected ch actual chart r calibrator Q	art response esponse std slope				Tav = daily avera Pav = daily avera Av	nge temperature nge pressure erage I (chart): 40
corrected ch actual chart re calibrator Q calibrator Q	art response esponse std slope std intercept				Tav = daily avera Pav = daily avera Av	ge temperature age pressure erage I (chart): 40 e Flow Calculation m3/min
corrected ch actual chart re calibrator Q calibrator Q actual temp	art response esponse std slope std intercept erature during	calibration (deg	K)		Tav = daily avera Pav = daily avera Av Averag	ge temperature age pressure erage I (chart): 40 e Flow Calculation m3/min 1.303912339
corrected ch actual chart ru calibrator Q calibrator Q actual temp actual press	art response esponse std slope std intercept erature during sure during calil	calibration (deg pration (mm Hg)	K)		Tav = daily avera Pav = daily avera Av Averag	ge temperature age pressure erage I (chart): 40 e Flow Calculation m3/min 1.303912339 ge Flow Calculation in CFM
corrected ch actual chart ru = calibrator Q calibrator Q = actual temp = actual press d = 298 deg K	aart response esponse std slope std intercept erature during ure during calib		K)		Tav = daily avera Pav = daily avera Av Averag Averag	ge temperature age pressure erage I (chart): 40 e Flow Calculation m3/min 1.303912339 ge Flow Calculation in CFM 46.0411447
e corrected ch actual chart ru e calibrator Q e calibrator Q e actual temp = actual press d = 298 deg K d = 760 mm H	art response esponse std slope std intercept erature during ure during calif	pration (mm Hg)	K)		Tav = daily avera Pav = daily avera Av Averag Averag Sam	ge temperature age pressure erage I (chart): 40 e Flow Calculation m3/min 1.303912339 ge Flow Calculation in CFM 46.0411447 ple Time (Hrs): 1.0
corrected ch actual chart ru calibrator Q calibrator Q actual temp actual press d = 298 deg K d = 760 mm H subsequent d	aart response esponse std slope std intercept erature during sure during calif lg calculation of sa	pration (mm Hg) ampler flow:	K)		Tav = daily avera Pav = daily avera Av Averag Averag Sam	ge temperature age pressure erage I (chart): 40 e Flow Calculation m3/min 1.303912339 ge Flow Calculation in CFM 46.0411447 ple Time (Hrs): 1.0 Total Flow in m3/min
e corrected ch actual chart ru e calibrator Q e calibrator Q e actual temp = actual press d = 298 deg K d = 760 mm H subsequent d	art response esponse std slope std intercept erature during ure during calif	pration (mm Hg) ampler flow:	K)		Tav = daily avera Pav = daily avera Av Averag Averag Sam	ge temperature age pressure erage I (chart): 40 e Flow Calculation m3/min 1.303912339 ge Flow Calculation in CFM 46.0411447 ple Time (Hrs): 1.0

			Site Ir	nformation				
			Zones 2A at West Kowloon Cultural 3998		Date: 24-Jan-25 Tech: CS Tang			
			Site C	Conditions				
	Barometric Pressure (in Hg): 29.97 Temperature (deg F): 65 Average Press. (in Hg): 29.97 Average Temp. (deg F): 65					Corrected Pressure (mm Hg): 761 Temperature (deg K): 292 Corrected Average (mm Hg): 761 Average Temp. (deg K): 292		
			Calibra	tion Orifice				
	Make: 5 Model: 5 Serial#: 4	TE-5025A		Qstd Slope: Qstd Intercept: Date Certified:	-0.05931			
			Calibratio	on Informati	on			
Plate or Test # 1 2 3 4 5	H2O (in) 12.30 10.50 7.80 4.60 2.50	Qstd (m3/min) 1.699 1.572 1.359 1.050 0.781	I (chart) 53.0 48.0 41.0 33.0 23.0	IC (corrected) 53.63 48.57 41.49 33.39 23.27	# o	Linear Regression Slope: 32.0256 Intercept: -1.3133 Corr. Coeff: 0.9980		
Qstd = 1/m[Sqrt(IC = I[Sqrt(Pa/Psi Qstd = standard IC = corrected ch I = actual chart re	flow rate hart response	Fstd/Ta))-b]	Ca	lculations	m = sampler sl b = sampler ini l = chart respo Tav = daily aver Pav = daily aver	tercept inse rage temperature		
m = calibrator Q b = calibrator Q Ta = actual temp Pa = actual press Tstd = 298 deg K Pstd = 760 mm H For subsequent o 1/m((I)[Sqrt(298,	std slope std intercept erature during sure during calib lg calculation of sa /Tav)(Pav/760)]	impler flow:		nonths of use	Averaş Avera San	verage I (chart): 40 ge Flow Calculation m3/min 1.29224672 ge Flow Calculation in CFM 45.6292317 nple Time (Hrs): 1.0 Total Flow in m3/min 77.53480322 Total Flow in CFM 2737.753902		

				Zones 2A a	at West					
Location:	AM5A		Site ID:	Kowloon Cu		Date: 24-Jan-25				
Sampler:	TE-5170		Serial No:	4344		Tech: CS Tang				
			Cite							
	Paramatric Dr	occure (in Ha).		Conditions	Corrected Bree	acura (mm Ha), 761				
		essure (in Hg): 2 erature (deg F): 6			ssure (mm Hg): 761 rature (deg K): 292					
	•	Press. (in Hg): 2				erage (mm Hg): 761				
	-	Temp. (deg F): 6				Temp. (deg K): 292				
			Calibra	tion Orifice						
		Tisch			Qstd Slope: 2					
		TE-5025A			Qstd Intercept:					
	Serial#:	4088			Date Certified:	15-Oct-24				
			Calibratio	on Informati	on					
Plate or Test #	H2O (in)	Qstd (m3/min)	l (chart)	IC (corrected)		Linear Regression				
1	12.50	1.713	53.0	53.63		Slope: 30.7204				
2	10.80	1.594	48.0	48.57		Intercept: 0.5459				
3	7.50	1.333	41.0	41.49		Corr. Coeff: 0.9971				
4	4.40	1.027	33.0	33.39						
5	2.40	0.766	23.0	23.27	# of	Observations: 5				
			Ca	lculations						
	t(H2O(Pa/Pstd)(Tstd/Ta))-b]			m = sampler slo	•				
I[Sqrt(Pa/Ps	std)(Tstd/Ta)]				b = sampler inte	•				
l = standard	flow rate				I = chart respor Tav = daily avera					
	hart response				Pav = daily avera	0 1				
ctual chart	•					Be pressure				
	, Qstd slope				Av	erage I (chart): 40				
calibrator (std intercept					e Flow Calculation m3/min				
	perature during	calibration (deg	К)			1.286627568				
calibrator C		bration (mm Hg)			Averag	ge Flow Calculation in CFM				
calibrator C actual tem actual pres	0			45.43081943						
calibrator C actual tem actual pres = 298 deg I	<			td = 760 mm Hg						
calibrator C actual tem actual pres = 298 deg I = 760 mm	K Hg					ple Time (Hrs): 1.0				
calibrator C actual tem actual pres = 298 deg I = 760 mm subsequent	< Hg calculation of sa	•				ple Time (Hrs): 1.0 Total Flow in m3/min				
calibrator C actual tem actual pres = 298 deg I = 760 mm subsequent	K Hg	•				ple Time (Hrs): 1.0				

华测计量检测有限公司

CTI MEASUREMENT AND TESTING CO., LTD.

校准证书

Calibration Certificate

证书编号 Certificate No.	C2403132280003			第1页共7页 Page of		
委托单位 Customer	上峰检测认证有限公司					
委托单位地址 Address	香港荃湾海盛路3号TML					
器 具 名 称 Name of instrument	声级计					
型 号 规 格 Model	AWA5661					
制 造 商 Manufacturer	杭州爱华仪器有限公司					
出厂编号 Serial No.	304718	管理编号 Management No.				
接收日期 Received date	2024/03/13	校准日期 Calibration date	2024/03/14			
发布日期 Issue date	2024/03/17	建议下次校准日期 Next calibration date	2025/03/13			
で し に に に に に に に に に に に に に		批 准 Approved by 軍 核 Inspected by 校 准 Calibrated by	一词。周九	· 许彦 文法 ② 劳、周旭宗		
	5宝安区西乡街道铁岗社区桃花源和 ch Innovation Park, Tiegang Community, Xixiang		n Guangdong China			

实验室地址:广东省深圳市宝安区西乡街道铁岗社区桃花源科技创新园B、C栋

Laboratory address :Building B and C, Taohuayuan Sci-Tech Innovation Park, Tiegang Community, Xixiang Sub-district, Bao'an District, Shenzhen, Guangdong, China								
邮编: 518101	电话: 86-755-33682045	传真: 86-755-33683385	电子邮箱: calibration@cti-cert.com					
Post code	Tel.	Fax	E-mail					

说明

Directions

证书编号 C2403132280003 Certificate No. 第2页共7页 Page of

- 1. 本证书校准结果均可溯源至国际单位制(SI)单位。 The results are traceable to International System of Units(SI).
- 2. 证书未盖本公司证书/报告章及骑缝章无效。未经本公司书面批准,不得部分复制此证书。 Any certificate is deemed to be invalid without both the certificate/report seal and its across-page seal. This certificate shall not be copied partly without the written approval.

3. 本证书校准结果只与受校准仪器有关。如证书中的英文内容与中文内容有差异,以中文为准。 The results relate only to the items calibrated.In case of any discrepancy between the English version and Chinese version of the certificate(if generated), the Chinese version shall prevail.

4. 本次校准的技术依据:

Reference documents for the calibration JJG 188-2017 声级计检定规程

5. 本次校准所使用的主要计量标准器具:

名称/型号规格	编号	测量范围	计量特性	证书号/溯源机构	有效期
Name/Model	Serial No.	Measurement range	Technical characteristic	Certificate No./Traceability to	Due date
测量放大器 AWA5810D	089909	4Hz~20kHz	灵敏度: <i>U</i> =0.04dB, <i>k</i> =2 频率计权: <i>U</i> =0.2dB, <i>k</i> =2 线性计权: 4Hz~10Hz: <i>U</i> =0.11dB, <i>k</i> =2 10Hz~ 20kHz: <i>U</i> =0.04dB, <i>k</i> =2	SXE202380707 广东省计量科学研究院	2024/07/25
声校准器 4231	3014336	94dB~114dB	1级	SXE202330553 广东省计量科学研究院	2024/07/30
消声箱 AWA188	080312	10Hz~20kHz (20~130) dB	U=0.8dB,k=2	JL2383018051 深圳市计量质量检测研究院	2024/09/20
实验室标准传 声器 4180	3055317	10Hz~25000Hz	U=(0.05~0.12)dB,k=2	LSsx2023-07079 中国计量科学研究院	2024/06/05
信号发生器 AWA1650	089943	0.5Hz~20kHz	电压: $U_{rel}=0.2\%, k=2$ 频率: $U_{rel}=0.1\%, k=2$	SXE20231181 广东省计量科学研究院	2024/07/30
有源耦合腔 AWA6153S+	2006409	10Hz~400kHz	声压级:U=0.2dB,k=2 失真度:U=0.2%,k=2	SSD202201977 广东省计量科学研究院	2024/08/18

说明

Directions

证书编号 C2403132280003 Certificate No.

第3页共7页 Page of

名称/型号规格	编号	测量范围	计量特性	证书号/溯源机构	有效期
Name/Model	Serial No.	Measurement range	Technical characteristic	Certificate No./Traceability to	Due date
测试声源(扬声 器) AWA5511A	090677	400Hz~20kHz	1	SSD202300428 广东省计量科学研究院	2024/07/26
声频功率放大 器 AWA5871	080649	/	U=0.03dB,k=2	SXE202301182 广东省计量科学研究院	2024/07/30

校准地点、环境条件: 6.

Place and environment condition during calibration 地点:本实验室力学室(6) Place 温度: 22.6°C Temperature

相对湿度: 59% R.H.

校准结果

Results of calibration

ù	E书编号	C2403132	280003				第4页共7页
С	ertificate No.						Page of
	1. 外观及工作正常	的性检查					
	Appearance and						
	正常 Normal						
	2. 指示声级调整	(1000117)					
	2. 油小户级调整 声级计频率计						
	产级计频率11 权	户仅在品 <u>频</u> 率	声校准器标准值	调校前声级计元	杀值 调校后声级计	示值 接受[限 结论
		(Hz)	(dB)	(dB)	(dB)	(dB) Pass/Fail
	Α	1000	94	93.9	未调	93.7~9	Pass Pass
	3. 频率计权的声信	言号实验	(频率: 1000Hz/A频	率计权)			
	声压级标准		声压级指示值		接受限		结论
	(dB)	- HEL	(dB)		(dB)		Pass/Fail
	44		44.2		43.2~44.8		Pass
	54		54.1		53.2~54.8		Pass
	64		64.0		63.2~64.8		Pass
	74		74.1		73.2~74.8		Pass
	84		84.1		83.2~84.8		Pass
	94		94.1		93.2~94.8		Pass
	104		104.1		103.2~104.8		Pass
	114		114.2		113.2~114.8		Pass
	124		124.1		123.2~124.8		Pass
	4. 本机自生噪音						
	测试类型	j		频率计权			实测值 (dB)
	声信号	•		A			35.1
	7 HA V			А			34.9
	电信号			С			38.4
				Z			39.7
	5. 级线性(1dB~	·10dB内变化)	: 起始点指示声	级	90 dB		
	频率		测量项目		实测值	接受限	结论
	(Hz)				(dB)	(dB)	Pass/Fail
		起始点以	上每间隔10dB最大偏差	差	-0.1	± 0.3	Pass
	1000	起始点以~	下每间隔10dB最大偏差	差	-0.2	± 0.3	Pass
	1000	距上限5d	B内每隔1dB最大偏差		+0.1	± 0.3	Pass
		距下限5d	B内每隔1dB最大偏差	1	+0.1	± 0.3	Pass
		起始点以_	上每间隔10dB最大偏差	差	-0.1	± 0.3	Pass
	8000	起始点以~	下每间隔10dB最大偏差	差	-0.2	± 0.3	Pass
	8000		B内每隔1dB最大偏差		-0.1	± 0.3	Pass
		距下限5d	B内每隔1dB最大偏差		-0.1	± 0.3	Pass

C2403132280003

校准结果

Results of calibration

证书编号 Certificate No.

÷

第5页共7页 Page of

6. 频率计权				
频率	A计权标准值	声压级指示值	接受限	结论
(Hz)	(dB)	(dB)	(dB)	Pass/Fail
20	-50.5	-50.3	-48.5~-52.5	Pass
31.5	-39.4	-39.6	-37.9~-40.9	Pass
63	-26.2	-26.3	-25.2~-27.2	Pass
125	-16.1	-16.3	-15.1~-17.1	Pass
250	-8.6	-8.8	-7.6~-9.6	Pass
500	-3.2	-3.3	-2.2~-4.2	Pass
1000	0.0	0.0	+0.7~-0.7	Pass
2000	+1.2	+1.2	+2.2~+0.2	Pass
4000	+1.0	+1.2	$+2.0 \sim 0.0$	Pass
8000	-1.1	-0.5	+0.4~-3.6	Pass
16000	-6.6	-9.8	-4.1~-22.6	Pass
20000	-9.3	-21.5	-6.3~-∞	Pass
频率	C计权标准值	声压级指示值	接受限	结论
(Hz)	(dB)	(dB)	(dB)	Pass/Fail
20	-6.2	-6.6	-4.2~-8.2	Pass
31.5	-3.0	-3.1	-1.5~-4.5	Pass
63	-0.8	-0.9	+0.2~-1.8	Pass
125	-0.2	-0.2	+0.8~-1.2	Pass
250	0.0	0.0	+1.0~-1.0	Pass
500	0.0	0.0	+1.0~-1.0	Pass
1000	0.0	0.0	+0.7~-0.7	Pass
2000	-0.2	0.0	+0.8~-1.2	Pass
4000	-0.8	-0.5	+0.2~-1.8	Pass
8000	-3.0	-2.4	-1.5~-4.5	Pass
16000	-8.5	-11.7	-6.0~-24.5	Pass
20000	-11.2	-23.5	-8.2~-∞	Pass

校准结果

Results of calibration

证书编号 (Certificate No.	22403132280003					页共7页 ige of
Jertificate No.						
	Z计权标准值	声压级指示值		接受限		结论
(Hz)	(dB)	(dB)		(dB)		Pass/Fail
20	0.0	0.0		+2.0~-2.0		Pass
31.5	0.0	0.0		+1.5~-1.5		Pass
63	0.0	0.0		+1.5~-1.5		Pass
125	0.0	0.0		+1.0~-1.0		Pass
250	0.0	0.0		+1.0~-1.0		Pass
500	0.0	0.0		+1.0~-1.0		Pass
1000	0.0	0.0		$+0.7$ \sim -0.7		Pass
2000	0.0	0.0		+1.0~-1.0		Pass
4000	0.0	0.0		+1.0~-1.0		Pass
8000	0.0	0.0		+1.5~-2.5		Pass
16000	0.0	0.0		+2.5~-16.0		Pass
20000	0.0	-0.2		+3.0~-∞		Pass
7. 1kHz处的频率计权 A计权参考声级		率计权的偏差 Z频率	《计权相对A频》	率计权的偏差	结论	接受限
A计权参考声级 (dB)	C频率计权相对A频 (dB)	率计权的偏差 Z频率	(dB)	率计权的偏差	Pass/Fail	(dB)
A计权参考声级	C频率计权相对A频	率计权的偏差 Z频率		率计权的偏差		
A计权参考声级 (dB)	C频率计权相对A频 (dB)	率计权的偏差 Z频率	(dB)	率计权的偏差	Pass/Fail	(dB)
A计权参考声级 (dB) 94	C频率计权相对A频 (dB) -0.1	率计权的偏差 Z频率 实测值	(dB)	率计权的偏差 接受限	Pass/Fail	(dB)
A计权参考声级 (dB) 94 8. F和S时间计权	C频率计权相对A频 (dB) -0.1		(dB)		Pass/Fail	(dB) ± 0.2
A计权参考声级 (dB) 94 8. F和S时间计权 衰减速率	C频率计权相对A频 (dB) -0.1	实测值	(dB)	接受限	Pass/Fail	(dB) ± 0.2 结论
A计权参考声级 (dB) 94 8. F和S时间计权 衰减速率 (dB/s)	C频率计权相对A频 (dB) -0.1	实测值 (dB/s)	(dB)	接受限 (dB/s)	Pass/Fail	(dB) ± 0.2 结论 Pass/Fail
A计权参考声级 (dB) 94 8. F和S时间计权 衰减速率 (dB/s) 快(F)计 慢(S)计	C频率计权相对A频 (dB) -0.1	实测值 (dB/s) 32.0	(dB)	接受限 (dB/s) 31.0~38.5	Pass/Fail	(dB) ± 0.2 结论 Pass/Fail Pass
A计权参考声级 (dB) 94 8. F和S时间计权 衰减速率 (dB/s) 快(F)计 慢(S)计 9. 猝发音响应(A计标	C频率计权相对A频 (dB) -0.1 权 权 权	实测值 (dB/s) 32.0 4.6	(dB)	接受限 (dB/s) 31.0~38.5	Pass/Fail Pass	(dB) ± 0.2 结论 Pass/Fail Pass
A计权参考声级 (dB) 94 8. F和S时间计权 衰减速率 (dB/s) 快(F)计 慢(S)计 9. 猝发音响应(A计和 猝发音持续时间	C频率计权相对A频 (dB) -0.1 权 权 权 汉) (LAFmax-LA)标	实测值 (dB/s) 32.0 4.6 集值 (LAFmax-	(dB) +0.1	接受限 (dB/s) 31.0~38.5 3.6~5.1	Pass/Fail Pass	(dB) ± 0.2 结论 Pass/Fail Pass Pass
A计权参考声级 (dB) 94 8. F和S时间计权 衰减速率 (dB/s) 快(F)计 慢(S)计 9. 猝发音响应(A计和 猝发音持续时间 (ms)	C频率计权相对A频 (dB) -0.1 权 权 权	实测值 (dB/s) 32.0 4.6 隹值 (LAFmax- (c	(dB) +0.1	接受限 (dB/s) 31.0~38.5 3.6~5.1 接受	Pass/Fail Pass 限	(dB) ± 0.2 结论 Pass/Fail Pass Pass 结论
A计权参考声级 (dB) 94 8. F和S时间计权 衰减速率 (dB/s) 快(F)计 慢(S)计 9. 猝发音响应(A计和 猝发音持续时间	C频率计权相对A频 (dB) -0.1 权 权 权 (LAFmax-LA)标 (dB)	实测值 (dB/s) 32.0 4.6 集值 (LAFmax- (d -((dB) +0.1 LA)指示值 IB)	接受限 (dB/s) 31.0~38.5 3.6~5.1 接受 (dB	Pass/Fail Pass 限 3) -1.5	(dB) ± 0.2 结论 Pass/Fail Pass Pass 结论 Pass/Fail
A计权参考声级 (dB) 94 8. F和S时间计权 衰减速率 (dB/s) 快(F)计 慢(S)计 9. 猝发音响应(A计和 猝发音持续时间 (ms) 200 2	C频率计权相对A频 (dB) -0.1 权 权 权 权 (LAFmax-LA)标 (dB) -1.0 -18.0	实测值 (dB/s) 32.0 4.6 隹值 (LAFmax- (d -(-1	(dB) +0.1 LA)指示值 IB) 0.9	接受限 (dB/s) 31.0~38.5 3.6~5.1 接受 (dB -0.5~	Pass/Fail Pass Pass -1.5 -18.5	(dB) ± 0.2 结论 Pass/Fail Pass 结论 Pass/Fail Pass
A计权参考声级 (dB) 94 8. F和S时间计权 衰减速率 (dB/s) 快(F)计 慢(S)计 9. 猝发音响应(A计和 猝发音持续时间 (ms) 200 2 0.25	C频率计权相对A频 (dB) -0.1 权 权 权 权 (dB) -1.0 -18.0 -27.0	实测值 (dB/s) 32.0 4.6 隹值 (LAFmax- (c -1 -1 -2	(dB) +0.1 HB) 0.9 8.1 7.0	接受限 (dB/s) 31.0~38.5 3.6~5.1 接受 (dB -0.5~ -17.0~	Pass/Fail Pass Pass -1.5 -18.5 -30.0	(dB) ± 0.2 结论 Pass/Fail Pass Pass 结论 Pass/Fail Pass Pass Pass Pass
A计权参考声级 (dB) 94 8. F和S时间计权 衰减速率 (dB/s) 快(F)计 慢(S)计 9. 猝发音响应(A计标 猝发音持续时间 (ms) 200 2 0.25 猝发音持续时间	C频率计权相对A频 (dB) -0.1 权 权 权 (LAFmax-LA)标 (dB) -1.0 -18.0 -27.0 」 (LASmax-LA)标	实测值 (dB/s) 32.0 4.6 集值 (LAFmax- (ć -1 -2 集值 (LSFmax-	(dB) +0.1 LA)指示值 IB) 0.9 8.1	接受限 (dB/s) 31.0~38.5 3.6~5.1 接受 (dB -0.5~ -17.0~ -26.0~	Pass/Fail Pass Pass Pass Pass Pass Pass Pass Pas	(dB) ± 0.2 结论 Pass/Fail Pass 名论 Pass/Fail Pass Pass Pass
A计权参考声级 (dB) 94 8. F和S时间计权 衰减速率 (dB/s) 快(F)计 慢(S)计 9. 猝发音响应(A计和 猝发音持续时间 (ms) 200 2 0.25	C频率计权相对A频 (dB) -0.1 权 权 权 权 (dB) -1.0 -18.0 -27.0	实测值 (dB/s) 32.0 4.6 维值 (LAFmax- (d -1 -2 集值 (LSFmax- (d	(dB) +0.1 LA)指示值 IB) 0.9 8.1 7.0 LA)指示值	接受限 (dB/s) 31.0~38.5 3.6~5.1 接受 (dB -0.5~ -17.0~ -26.0~ 接受限	Pass/Fail Pass Pass (限 3) -1.5 -18.5 -30.0 2(dB) 3)	(dB) ± 0.2 结论 Pass/Fail Pass Pass 结论 Pass/Fail Pass Pass Pass 结论

Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

校准结果

Results of calibration

证书编号 C2403132280003 Certificate No.

10. 重复猝发音响应(A计权)

单个猝发音持 续时间	相邻单个猝发音之间时间间隔	(LAeqT-LA)标准值	(LAeqT-LA)标准值	接受限	结论
(ms)	(ms)	(dB)	(dB)	(dB)	Pass/Fail
200	800	-7.0	-7.0	-6.5~-7.5	Pass
2	8	-27	-27.0	-26.0~-28.5	Pass
0.25	1	-36	-36.0	-35.0~-39.0	Pass

注: 仪器配传声器型号: AWA14425, 传声器编号: 21038

本次校准结果的扩展不确定度为:

Expanded uncertainty of measurement:

声信号: 20Hz~200Hz, U= 0.5 dB, k=2; 250Hz~400Hz, U= 0.4 dB, k=2; 500Hz~1250Hz, U= 0.4 dB, k=2; 1600Hz~10000Hz, U= 0.6 dB, k=2; 12.5kHz~20kHz, U= 1.0 dB;

正弦电信号: (0~140) dB, (20~20000) Hz, U= 0.3 dB, k=2; 猝发音电信号: (0~140) dB, (1000~8000) Hz, (0.25~1000)ms U= 0.3 dB, k=2; 时间计权 F 和 S: F:(25~40)dB/s, U= 3.2 dB/s, k=2; S:(1~10)dB/s, U= 0.3 dB/s, k=2。

备注:

Notes

1. 依据JJF1059.1-2012测量不确定度评定与表示。 According to JJF1059.1-2012 Evaluation and Expression of Uncertainty in Measurement.

2. 校准项目符合1级技术要求。

The calibrated measurand are accord with class 1 technical specifications.

以下空白 Blank below

华南国家计量测试中心 广东省计量科学研究院 SOUTH CHINA NATIONAL CENTER OF METROLOGY GUANGDONG INSTITUTE OF METROLOGY

校	准	证	书

CALIBRATION CERTIFICATE

证书编号 SXE202411475 Certificate No. 第 1 页, 共 4 页 Page of

客户名称 Name of the Custom	上峰检测i er	人证有限	公司	d'	5		1		1. A	
联络信息 Contact Information	香港荃湾海县	盛路3号TI	ML广场	10楼	D6A	室				
计量器具名称 Description	声校准器	14 - 20 14 - 20	21.5	500	n M	5		-5 ⁰	10 M	
型号/规格 Model/Type	QC-10	The second	300	10	-5 ⁰⁷	ind.		5.00		5
制造厂 Manufacturer	QUEST	Contraction of the second	C.M.		de o		C.M.	. BI	201	C. al
出厂编号 Serial No.	QI9010183	500	5		音管理 ipme				N.	
接收日期 Receipt on	30 ³⁴ 3	C.M. S.	2024	年 Y	09	月 M	06	日 D	10 20 10	
	合JJG 176-202 ply with JJG 17									
校准日期 Calibration on	V S S CAL	S.C.W. J.	2024	年 Y	09	月 M	11	日 D	100	50
发布日期 Issue on			2024	年 Y	09	月 M	11	日 D		
批准	Call SCAR									
Authorized by 7	的使假	杨德俊								
核验 Reviewed by	5 39	李广智				书专用 Stamp				
校 准 Calibrated by	寻藏	何卓斌								C ST

本中心地址:中国广州市广园中路松柏东街30号

邮政编码: 510405

电话: (8620)86594172 传真: (8620)86590743 投诉电话: (8620)36611242 E-mail: scm@scm.com.cn Add: No.30, Songbai East Street, Guangyuan Middle Road, Guangzhou, Guangdong, China Post Code: 510405 Tel: (8620)86594172 Fax: (8620)86590743 Complaint Tel: (8620)36611242 证书真伪查询: <u>www.scm.com.cn</u>; <u>cert.scm.com.cn</u> Certificate AuthenticityIdentify: <u>www.scm.com.cn</u>; <u>cert.scm.com.cn</u>

扫一扫查真伪

华南国家计量测试中心 广东省计量科学研究院

SOUTH CHINA NATIONAL CENTER OF METROLOGY

GUANGDONG INSTITUTE OF METROLOGY

明 证书编号 SXE202411475 第2页,共4页 DIRECTIONS Certificate No. Page of 1. 本中心是国家市场监督管理总局在华南地区设立的国家法定计量检定机构,本中心的质量管理体系符 合1S0/IEC 17025:2017标准的要求。 This laboratory is the National Legal Metrological Verification Institution in southern China set up by the State Administration for Market Regulation. The quality system is in accordance with ISO/IEC 17025:2017. 2. 本中心所出具的数据均可溯源至国家计量基准和/或国际单位制(SI)。 All data issued by this laboratory are traceable to national primary standards and/or International System of Units (SI). 3. 校准地点、环境条件: Location and environmental conditions of the calibration: 声学/振动实验室 Acoustics/Vibration 地点 温度 (25±1) ℃ 相对湿度 $(30 \sim 40)$ % Location Lab. Temperature R.H. 4. 本次校准的技术依据: Reference documents for the calibration: JJG 176-2022 声校准器检定规程 V.R. of Sound Calibrators

5. 本次校准所使用的主要计量标准器具:

Major standards of measurement used in the calibration:

设备名称/型号规格/测量范围	编号	证书号/有效期/溯源单位	计量特性
Name of Equipment	Serial No.	Certificate No./Due Date	Metrological
/Model/Type/Range		/Traceability to	Characteristic
动态信号分析仪	2392397	SXE202400567	电压:Ure=0.2%,频
Dynamical Signal Analyzer		/2025-04-17	率:U _{rel} =0.002%(k=2)
/3560C(3110模块)/0.1		/本中心	Voltage: $U_{rel}=0.2\%$, Frequency
$Hz\sim 200 \text{ kHz}$		2 M. C. S.	$U_{rel} = 0.002\% (k = 2)$
工作标准传声器	2383233	SXE202400278	$20 \text{ Hz} \sim 4 \text{ kHz}, U=0.20 \text{ dB}$
Working standard microphone		/2025-03-04	$5 \text{ kHz} \sim 20 \text{ kHz}, U = 0.50 \text{ dB}$
/4190/20 Hz~20 kHz		/本中心	(<i>k</i> =2)
声校准器	2730392	SXE202400209	1级
Sound Level Calibrator		/2025-02-17	Class 1
/4231/94 dB, 114 dB		/本中心	

注: 1. 本证书校准结果只与受校准仪器有关。 The results relate only to the items calibrated.

Note: 2. 未经本机构书面批准, 不得部分复制此证书。 This certificate shall not be reproduced except in full, without the written approval of our laboratory.

3. "客户名称"、"联络信息"由委托方提供, "制造厂"、"型号规格"、"出厂编号"以及"设备编号"为仪器上标注,委托方对上面内容如有异议,须在收到证书后二十个工作日内提出。

The information Name of the Customer and Contact Information are provided by client, and the Manufacturer, Model/Type, Serial No. and Equipment No. are marked on the items. Client shall submit any objection within 20 working days after receiving the certificate for the information above.

华南国家计量测试中心 广东省计量科学研究院 SOUTH CHINA NATIONAL CENTER OF METROLOGY GUANGDONG INSTITUTE OF METROLOGY

校准结果 RESULTS OF CALIBRATION

证书编号 SXE202411475 Certificate No. 原始记录号 SXE202411475 Record No.

第 3 页,共 4 页 Page of

1 外观: 符合要求

Apparent inspection: Pass

2 声压级: 见表1

Sound Pressure Level: Shown in table 1

表1 Table 1

标称频率/Hz	规定声压级/dB	测得的声压级/dB	测得的声压级与 规定声压级之差 的绝对值/dB	接受限/dB	结论
Nominal Frequency	Specified sound pressure level	Measured sound pressure level	absolute value of Error	Acceptance limit	Conclusion
1000	114	114.07	0.07	0.25	符合要求(Pass)

3 频率: 见表2

Frequency: Shown in table 2

表2 Table 2 测得的频率与规 规定频率/Hz 标称声压级/dB 测得的频率/Hz 定频率相对误差 接受限/% 结论 的绝对值/% Specified Nominal sound Measured absolute value of Acceptance limit Conclusion frequency pressure level frequency Error 1000 114 1001.52 符合要求(Pass) 0.152 0.7

4 总失真+噪声: 见表3

Total distortion + noise: Shown in table 3

	24 200 30	表3 Table 3	300 30	
规定频率/Hz	标称声压级/dB	总失真+噪声/%	接受限/%	结论
Specified frequency	Nominal sound pressure level	Total Distortion+ noise	Acceptance limit	Conclusion
1000	114	0.2	2.5	符合要求(Pass)

华南国家计量测试中心 广东省计量科学研究院

SOUTH CHINA NATIONAL CENTER OF METROLOGY GUANGDONG INSTITUTE OF METROLOGY

国际互认 校准 CALIBRATION CNAS L0730

校准结果 RESULTS OF CALIBRATION

证书编号 SXE202411475 Certificate No. 原始记录号 SXE202411475 Record No.

第4页,共4页 Page of

说明:

Note:

1 测量结果扩展不确定度:

Expanded uncertainty of measurement results:

声压级: U=0.15 dB, 频率: U_{rel}=0.1%, 总失真+噪声: U=0.4%, 包含因子: k=2

Sound Pressure Level, Frequency, Total distortion + noise, Coverage factor

2 本证书中给出的扩展不确定度依据JJF1059.1-2012《测量不确定度评定与表示》评定,由合成标准不确定 度乘以包含概率约为95%时对应的包含因子k得到。

The expanded uncertainty given in this certificate is evaluated according to JJF 1059.1-2012 "Evaluation and Expression of Uncertainty in Measurement", which is obtained by multiplying the combined standard uncertainty by the coverage factor k corresponding to the coverage probability of about 95%.

- 3 校准结果符合性判定依据JJF 1094-2002《测量仪器特性评定》之5.3.1和JJG 176-2005《声校准器检定规程》。 Decision rules of conformity are JJF 1094-2002 *Evaluation of the Characteristics of Measuring Instruments* (5.3.1) and JJG 176-2005 *V.R. of Sound Calibrators*.
- 4 结论: 被校准仪器校准结果符合 JJG 176-2005 (1级)全部后续项目技术要求。

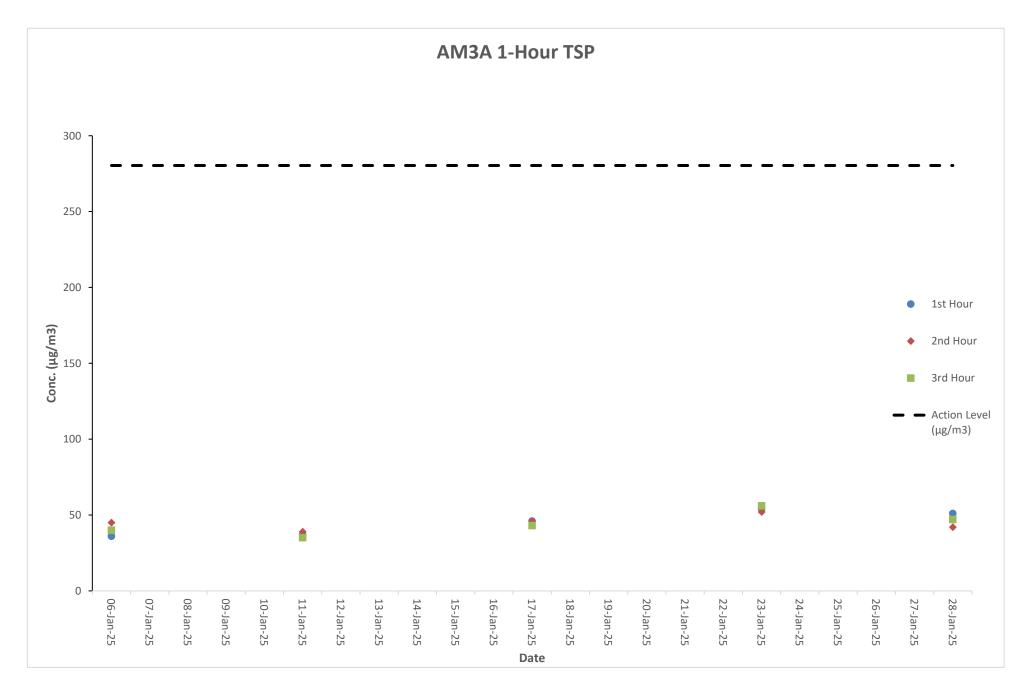
Conclusion: The data of instrument calibrated comply with the technical characteristics of all subsequent items in JJG 176-2005 (for Class 1).

5 该仪器的溯源日期为本证书的"校准日期",按照所依据技术文件的规定,建议复校时间间隔不超过1年。 更换重要部件、维修或对仪器性能有怀疑时,应及时校准。

The traceability date of this instrument is the "Calibration Date" on this certificate, According to the demand of reference document, next calibration is proposed within 1 year. In case of replacement of important parts, maintenance or doubt on the performance of the instrument, it shall be calibrated in time.

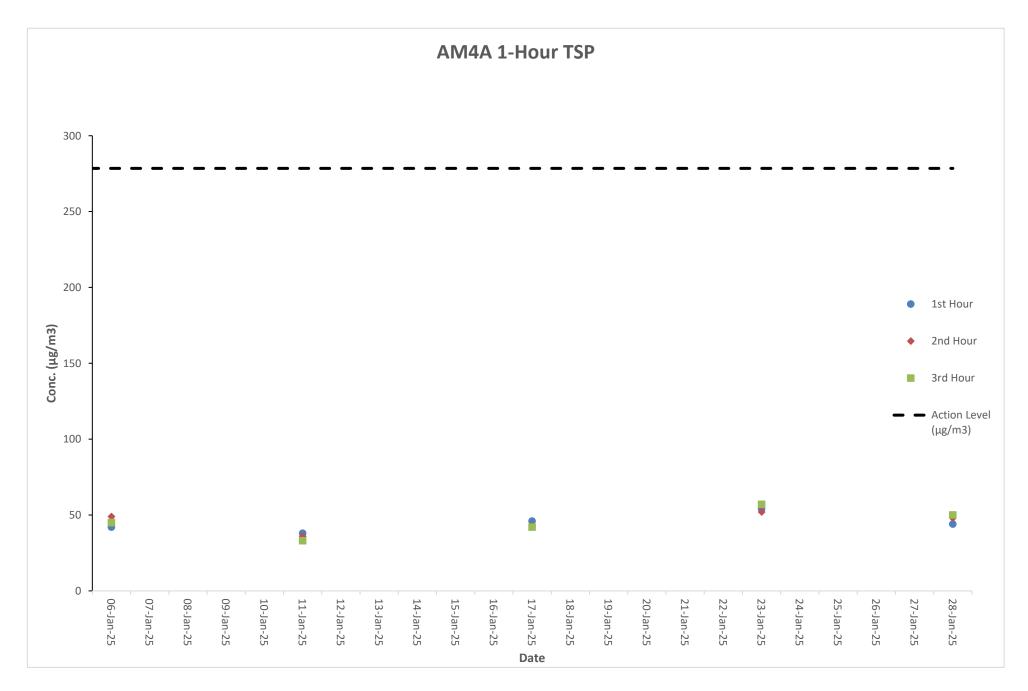
6 校准活动中对测量结果有影响的条件:

Conditions under which the calibrations were made that have an influence on the measurement results

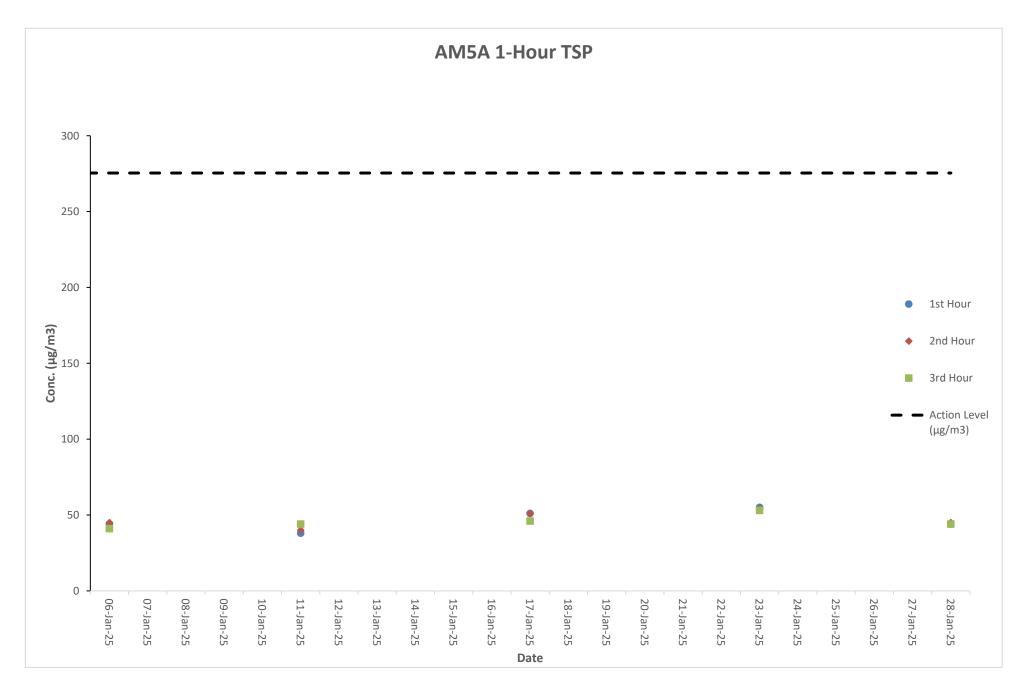

- 温度(Temperature): (25±1)℃
- 湿度(Humidity): (30~40)%RH
- 静压 (Static pressure): (100.0~101.0) kPa

G. Graphical Plots of the Monitoring Results

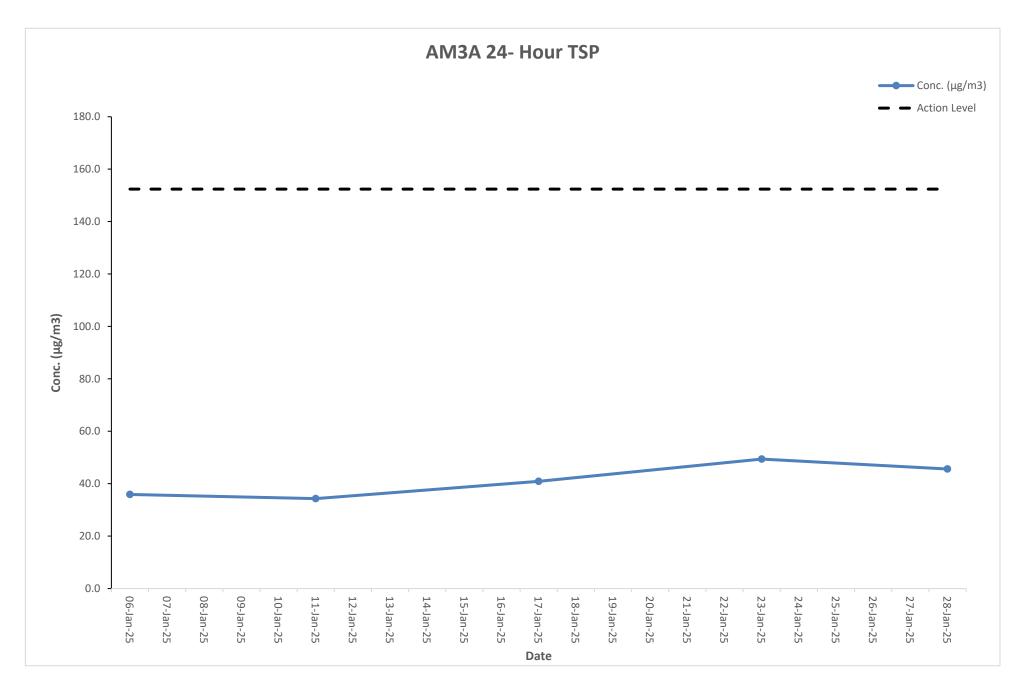
30


Air Quality Monitoring Result at Station AM3A (1-hour TSP)

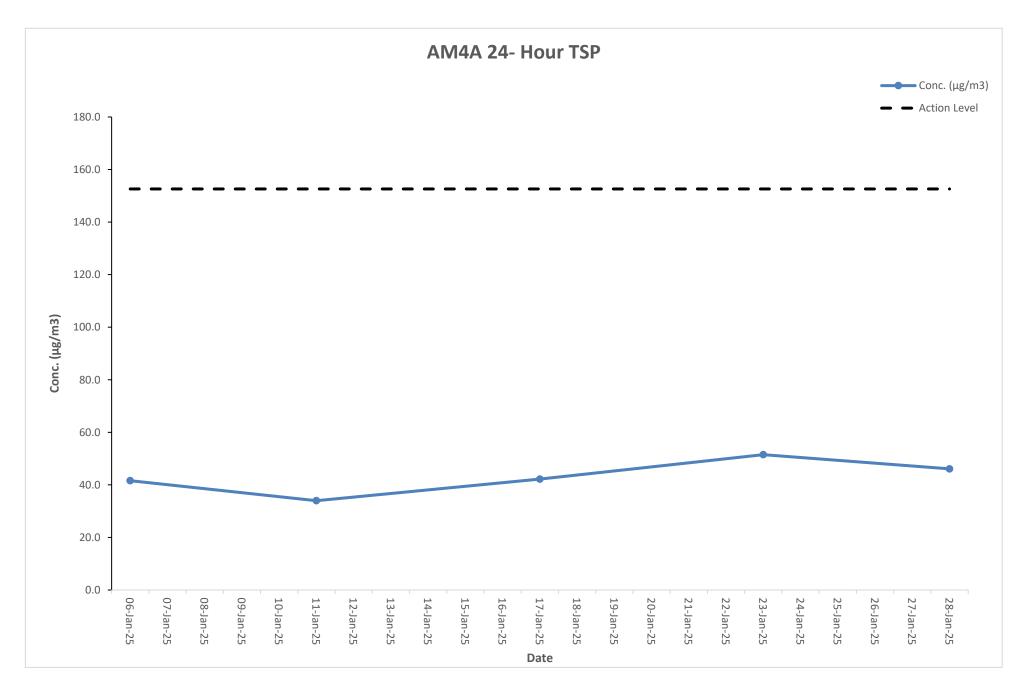
Date	Weather	Tir	ne	C	onc. (µg/m3	Action	Limit	
Dale	Condition	Start	Finish	1st Hour	2nd Hour	3rd Hour	Level	Level
06-Jan-25	Fine	08:00	11:00	36	45	40	280.4	500
11-Jan-25	Fine	14:07	17:07	37	39	35	280.4	500
17-Jan-25	Fine	08:03	11:03	46	46	43	280.4	500
23-Jan-25	Cloudy	14:05	17:05	54	52	56	280.4	500
28-Jan-25	Fine	08:08	11:08	51	42	47	280.4	500


Air Quality Monitoring Result at Station AM4A (1-hour TSP)

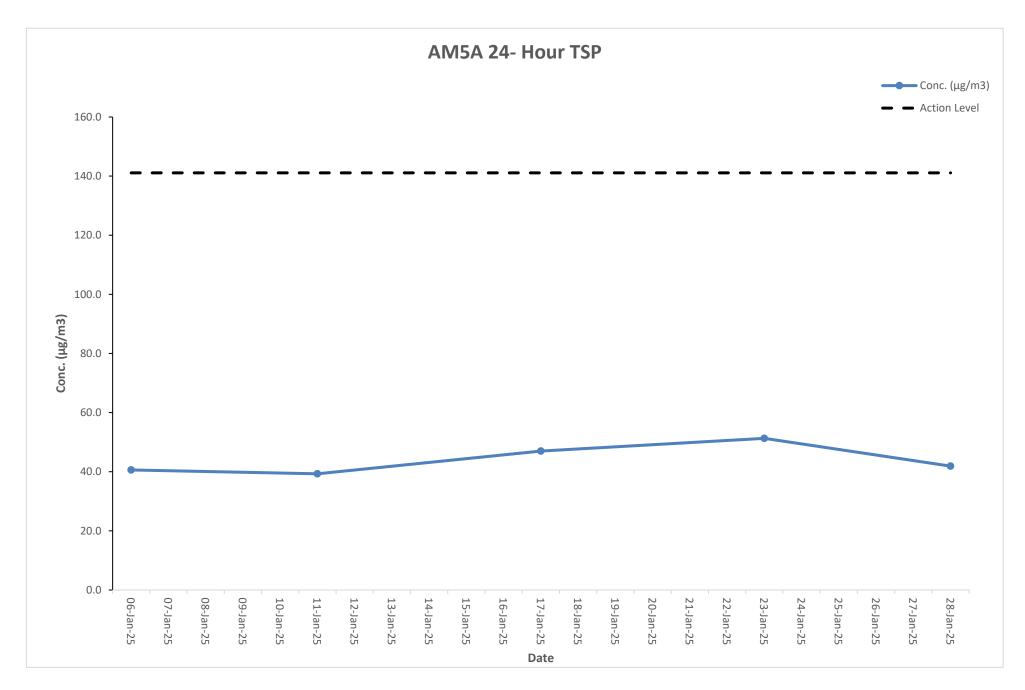
Date	Weather	Tir	ne	C	onc. (µg/m3	Action	Limit	
Dale	Condition	Start	Finish	1st Hour	2nd Hour	3rd Hour	Level	Level
06-Jan-25	Fine	08:08	11:08	42	49	45	278.5	500
11-Jan-25	Fine	14:15	17:15	38	36	33	278.5	500
17-Jan-25	Fine	08:11	11:11	46	43	42	278.5	500
23-Jan-25	Cloudy	14:13	17:13	54	52	57	278.5	500
28-Jan-25	Fine	08:16	11:16	44	48	50	278.5	500


Air Quality Monitoring Result at Station AM5A (1-hour TSP)

Date	Weather	Tir	ne	C	onc. (µg/m3	Action	Limit	
Dale	Condition	Start	Finish	1st Hour	2nd Hour	3rd Hour	Level	Level
06-Jan-25	Fine	08:23	11:23	44	45	41	275.4	500
11-Jan-25	Fine	14:32	17:32	38	40	44	275.4	500
17-Jan-25	Fine	08:26	11:26	51	51	46	275.4	500
23-Jan-25	Cloudy	14:30	17:30	55	54	53	275.4	500
28-Jan-25	Fine	08:31	11:31	44	45	44	275.4	500


Air Quality Monitoring Result at Station AM3A (24-hour TSP)

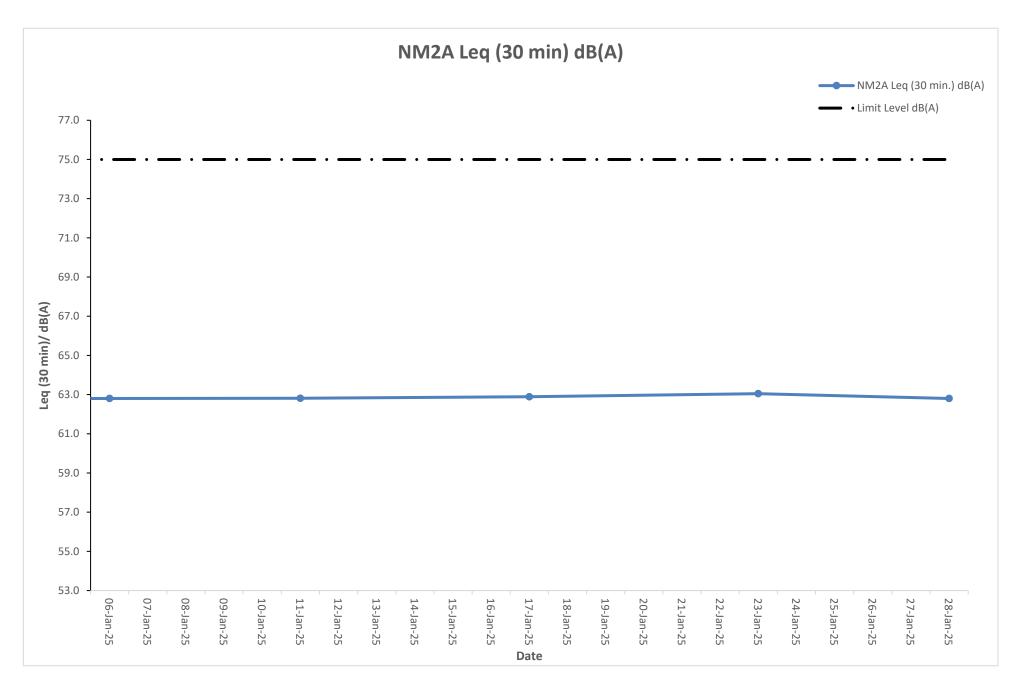
Star	t	Finis	sh	Filter We	eight (g)	Elapsed Time Reading		Sampling	Flow Rate (m ³ /min)		Conc.	Weather	Action	Limit	
Date	Time	Date	Time	Initial	Final	Initial	Final	Time (hrs)	Initial	Final	Average	(µg/m3)	Condition	Level	Level
06-Jan-25	10:00AM	07-Jan-25	10:00AM	2.8081	2.8659	7771.8	7795.8	24	1.12	1.12	1.12	35.9	Sunny	152.4	260
11-Jan-25	10:00AM	12-Jan-25	10:00AM	2.8033	2.8585	7795.8	7819.8	24	1.12	1.12	1.12	34.3	Sunny	152.4	260
17-Jan-25	10:00AM	18-Jan-25	10:00AM	2.8090	2.8748	7819.8	7843.8	24	1.12	1.12	1.12	40.9	Sunny	152.4	260
23-Jan-25	10:00AM	24-Jan-25	10:00AM	2.8032	2.8827	7843.8	7867.8	24	1.12	1.12	1.12	49.4	Rainy	152.4	260
28-Jan-25	10:00AM	29-Jan-25	10:00AM	2.8042	2.8775	7867.8	7891.8	24	1.12	1.12	1.12	45.6	Sunny	152.4	260


Air Quality Monitoring Result at Station AM4A (24-hour TSP)

Sta	rt	Finis	h	Filter W	eight (g)		d Time ding	Sampling	Flov	v Rate (n	n³/min)	Conc.	Weather	Action	Limit
Date	Time	Date	Time	Initial	Final	Initial	Final	Time (hrs)	Initial	Final	Average	(µg/m3)	Condition	Level	Level
06-Jan-25	10:00AM	07-Jan-25	10:00AM	2.8057	2.8727	8191.4	8215.4	24	1.12	1.12	1.12	41.6	Sunny	152.6	260
11-Jan-25	10:00AM	12-Jan-25	10:00AM	2.8063	2.8611	8215.4	8239.4	24	1.12	1.12	1.12	34.0	Sunny	152.6	260
17-Jan-25	10:00AM	18-Jan-25	10:00AM	2.8016	2.8696	8239.4	8263.4	24	1.12	1.12	1.12	42.2	Sunny	152.6	260
23-Jan-25	10:00AM	24-Jan-25	10:00AM	2.8014	2.8843	8263.4	8287.4	24	1.12	1.12	1.12	51.5	Rainy	152.6	260
28-Jan-25	10:00AM	29-Jan-25	10:00AM	2.8071	2.8813	8287.4	8311.4	24	1.12	1.12	1.12	46.1	Sunny	152.6	260

Air Quality Monitoring Result at Station AM5A (24-hour TSP)

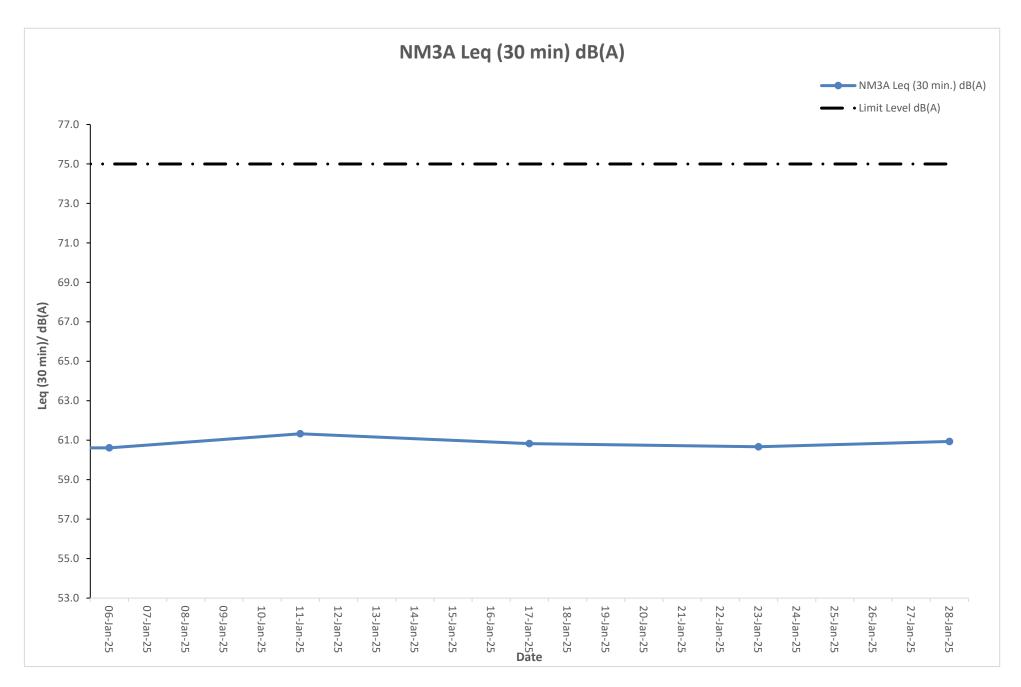
Sta	rt	Finis	sh	Filter We	eight (g)		d Time ding	Sampling	Flov	v Rate (n	n³/min)	Conc.	Weather	Action	Limit
Date	Time	Date	Time	Initial	Final	Initial	Final	Time (hrs)	Initial	Final	Average	(µg/m3)	Condition	Level	Level
06-Jan-25	10:00AM	07-Jan-25	10:00AM	2.8020	2.8674	8329.6	8353.6	24	1.12	1.12	1.12	40.6	Sunny	141.1	260
11-Jan-25	10:00AM	12-Jan-25	10:00AM	2.8061	2.8694	8353.6	8377.6	24	1.12	1.12	1.12	39.3	Sunny	141.1	260
17-Jan-25	10:00AM	18-Jan-25	10:00AM	2.8035	2.8791	8377.6	8401.6	24	1.12	1.12	1.12	47.0	Sunny	141.1	260
23-Jan-25	10:00AM	24-Jan-25	10:00AM	2.8052	2.8878	8401.6	8425.6	24	1.12	1.12	1.12	51.3	Rainy	141.1	260
28-Jan-25	10:00AM	29-Jan-25	10:00AM	2.8050	2.8725	8425.6	8449.6	24	1.12	1.12	1.12	41.9	Sunny	141.1	260



Noise Monitoring Result at Station NM2A

Date	Time	Measured L10 dB(A)	Measured L90 dB(A)	Leq (30 min.) dB(A)
06-Jan-25	8:00	64.6	61.5	
06-Jan-25	8:05	63.9	60.6	
06-Jan-25	8:10	63.6	60.3	63.1
06-Jan-25	8:15	63.9	61.2	03.1
06-Jan-25	8:20	64.8	60.6	
06-Jan-25	8:25	63.6	60.4	
11-Jan-25	14:07	64.7	60.3	
11-Jan-25	14:12	63.9	60.8	
11-Jan-25	14:17	64.2	60.6	62.4
11-Jan-25	14:22	64.4	61.5	02.4
11-Jan-25	14:27	63.8	61.3	
11-Jan-25	14:32	64.2	60.5	
17-Jan-25	8:03	64.3	60.6	
17-Jan-25	8:08	64.1	61.6	
17-Jan-25	8:13	63.8	60.7	62.6
17-Jan-25	8:18	64.9	60.4	02.0
17-Jan-25	8:23	64.2	61.4	
17-Jan-25	8:28	64.4	60.9	
23-Jan-25	14:05	63.6	60.8	
23-Jan-25	14:10	64.2	60.3	
23-Jan-25	14:15	65.0	61.4	62.8
23-Jan-25	14:20	64.0	61.1	02.0
23-Jan-25	14:25	63.8	60.6	
23-Jan-25	14:30	63.8	61.1	
28-Jan-25	8:08	64.3	60.2	
28-Jan-25	8:13	63.7	61.6	
28-Jan-25	8:18	63.9	61.1	62.5
28-Jan-25	8:23	64.6	60.8	02.5
28-Jan-25	8:28	63.7	60.5	
28-Jan-25	8:33	64.5	60.2	

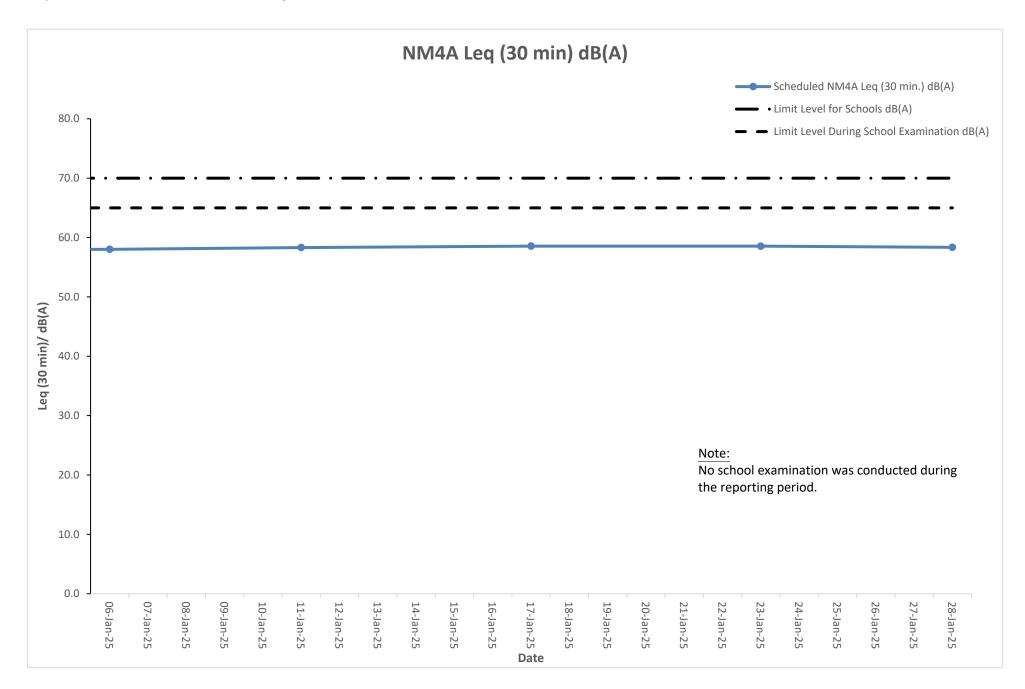
The station set-up of a façade measurement at station NM2A.



Noise Monitoring Result at Station NM3A

Date	Time	Measured L10 dB(A)	Measured L90 dB(A)	Leq (30 min.) dB(A)	
06-Jan-25	9:30	63.8	56.3		
06-Jan-25	9:35	62.4	56.9		
06-Jan-25	9:40	63.2	57.5	61.0	
06-Jan-25	9:45	63.2	56.7	01.0	
06-Jan-25	9:50	62.6	56.3		
06-Jan-25	9:55	62.1	56.2		
11-Jan-25	15:40	63.4	56.0		
11-Jan-25	15:45	62.5	57.2		
11-Jan-25	15:50	63.4	56.0	61.0	
11-Jan-25	15:55	63.5	57.2	01.0	
11-Jan-25	16:00	63.5	57.8		
11-Jan-25	16:05	62.8	56.0		
17-Jan-25	9:33	62.7	56.6		
17-Jan-25	9:38	61.9	56.5		
17-Jan-25	9:43	63.5	56.4	60.8	
17-Jan-25	9:48	62.1	56.6	00.0	
17-Jan-25	9:53	62.3	57.3		
17-Jan-25	9:58	63.5	56.1		
23-Jan-25	15:47	63.4	57.5		
23-Jan-25	15:52	63.5	57.1		
23-Jan-25	15:57	62.7	57.3	61.1	
23-Jan-25	16:02	63.3	57.3	01.1	
23-Jan-25	16:07	62.5	57.2		
23-Jan-25	16:12	63.5	57.0		
28-Jan-25	9:47	63.8	57.6		
28-Jan-25	9:52	63.8	56.6		
28-Jan-25	9:57	63.0	56.4	60.6	
28-Jan-25	10:02	62.4	57.2	00.0	
28-Jan-25	10:07	61.9	57.1		
28-Jan-25	10:12	62.4	56.2		

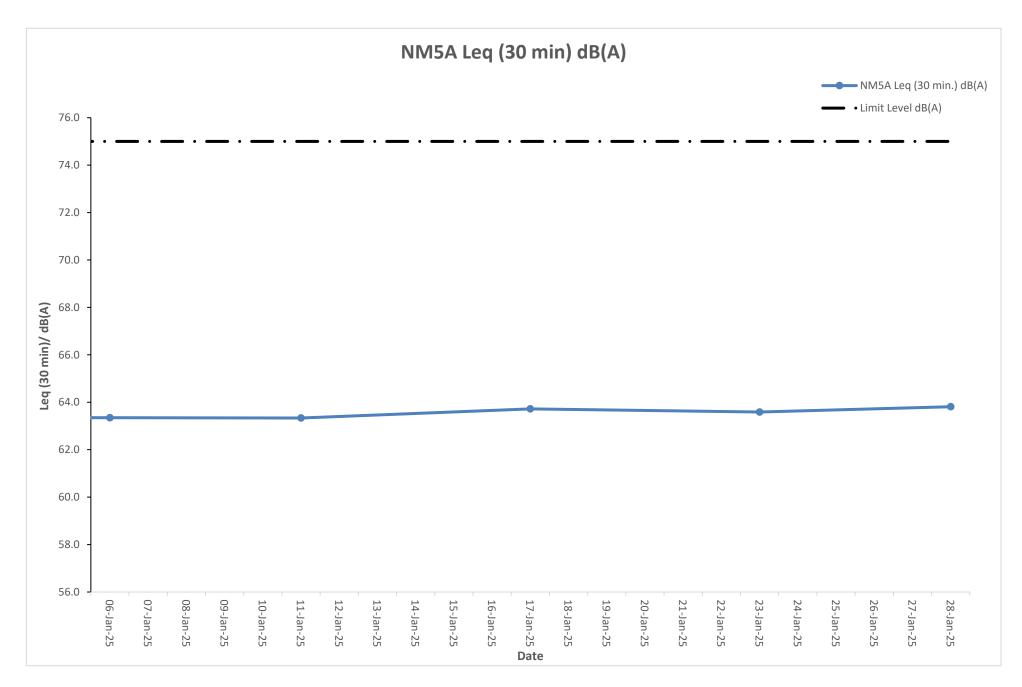
The station set-up of a façade measurement at station NM3A.



Noise Monitoring Result at Station NM4A

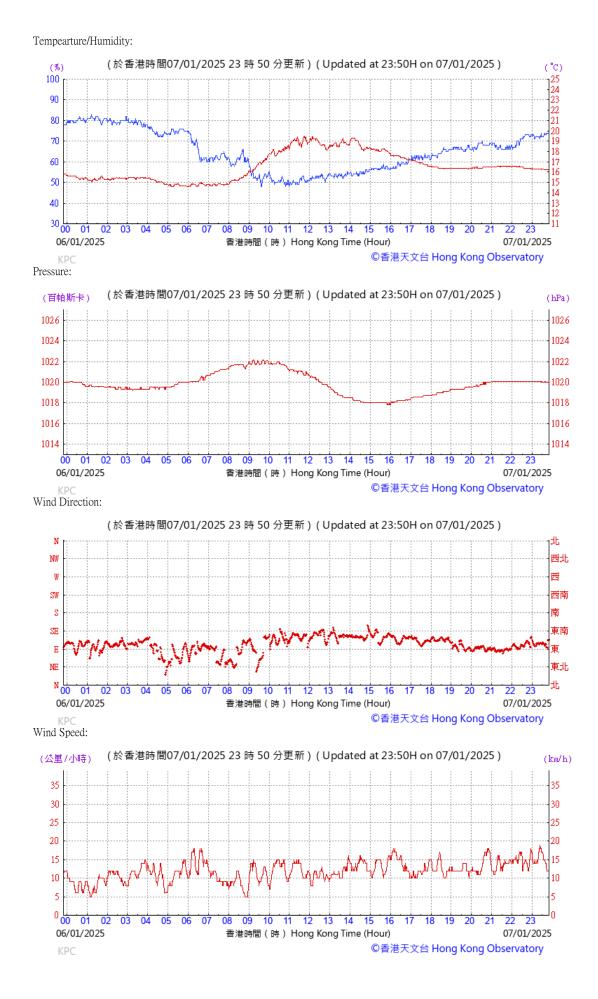
Date	Time	Measured L10 dB(A)	Measured L90 dB(A)	Leq (30 min.) dB(A)
06-Jan-25	10:05	59.8	55.9	
06-Jan-25	10:10	59.4	55.8	
06-Jan-25	10:15	59.3	56.9	58.1
06-Jan-25	10:20	60.2	55.9	56.1
06-Jan-25	10:25	59.7	56.9	
06-Jan-25	10:30	59.7	56.8	
11-Jan-25	16:15	59.9	56.1	
11-Jan-25	16:20	59.8	56.7	
11-Jan-25	16:25	60.6	56.8	58.3
11-Jan-25	16:30	60.0	57.0	58.5
11-Jan-25	16:35	60.5	56.2	
11-Jan-25	16:40	60.1	56.9	
17-Jan-25	10:08	60.1	56.1	
17-Jan-25	10:13	59.9	56.9	
17-Jan-25	10:18	60.5	57.1	58.3
17-Jan-25	10:23	59.7	56.3	56.5
17-Jan-25	10:28	59.8	56.6	
17-Jan-25	10:33	60.0	56.9	
23-Jan-25	16:22	59.3	56.0	
23-Jan-25	16:27	59.7	56.4	
23-Jan-25	16:32	59.7	57.0	58.2
23-Jan-25	16:37	60.0	56.2	58.2
23-Jan-25	16:42	59.5	56.2	
23-Jan-25	16:47	60.4	56.3	
28-Jan-25	10:22	59.8	56.0	
28-Jan-25	10:27	60.6	56.9	
28-Jan-25	10:32	60.2	56.9	58.2
28-Jan-25	10:37	60.3	55.8	00.2
28-Jan-25	10:42	59.2	57.1	
28-Jan-25	10:47	60.5	56.2	

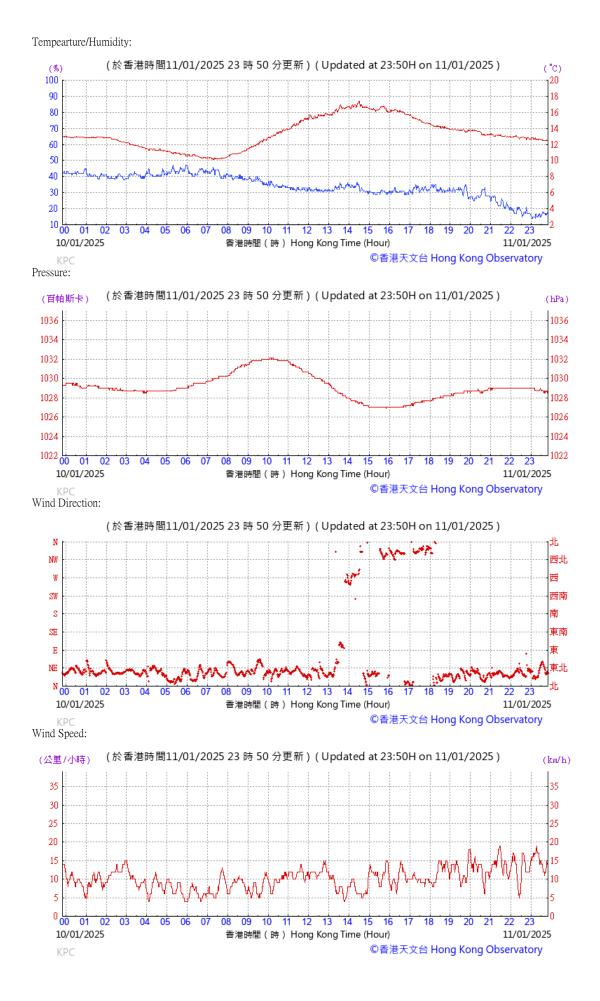
The station set-up of a façade measurement at station NM4A.

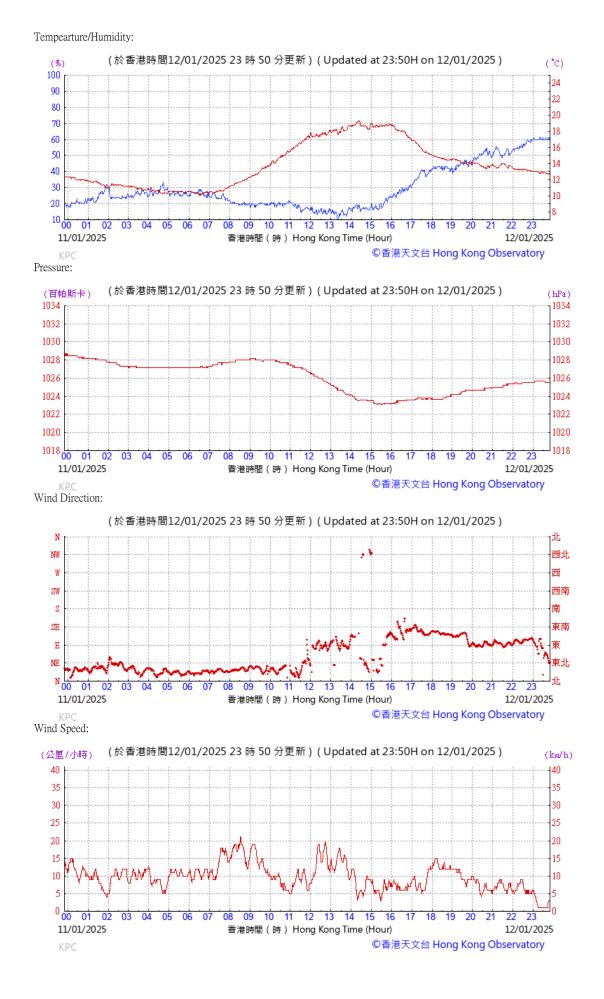


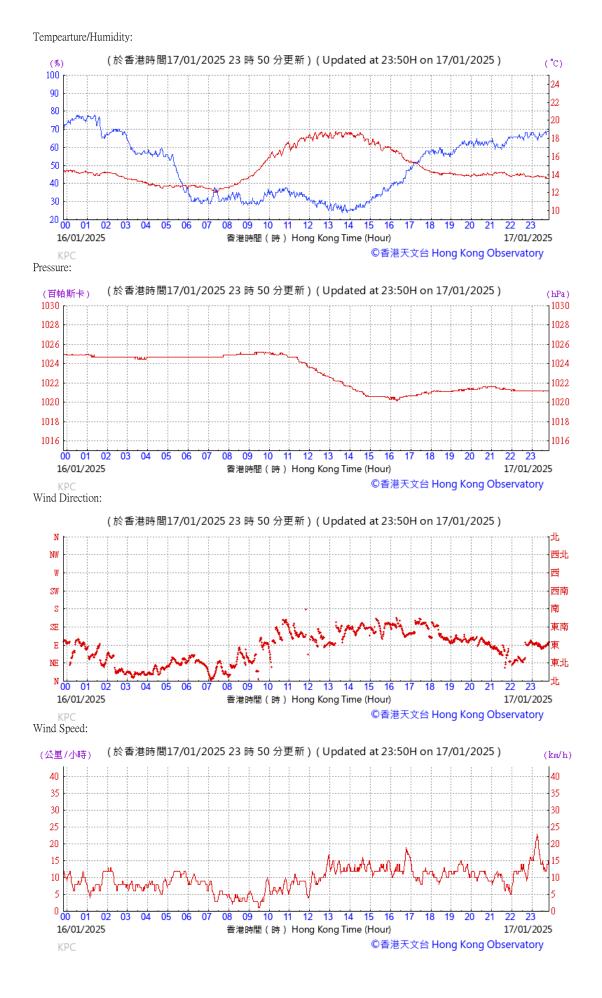
Noise Monitoring Result at Station NM5A

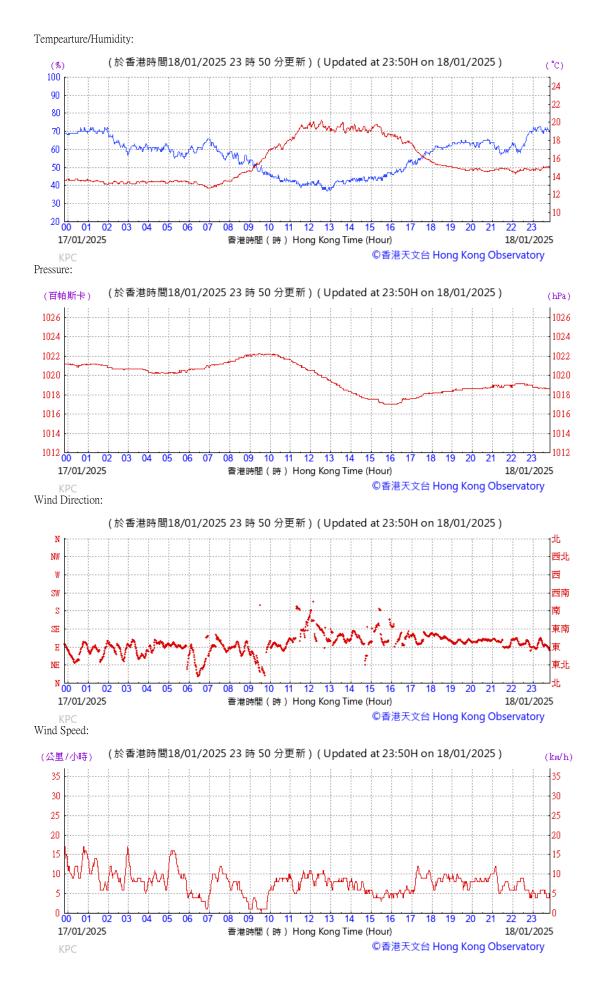

Date	Time	Measured L10 dB(A)	Measured L90 dB(A)	Leq (30 min.) dB(A)	Leq (30 min.) +3 dB(A)
06-Jan-25	8:50	61.6	57.6		
06-Jan-25	8:55	62.3	57.6		
06-Jan-25	9:00	61.8	57.6	60.3	63.3
06-Jan-25	9:05	62.2	59.1	00.5	03.5
06-Jan-25	9:10	62.0	57.8		
06-Jan-25	9:15	61.8	58.6		
11-Jan-25	14:59	61.6	59.1		
11-Jan-25	15:04	61.6	57.5		
11-Jan-25	15:09	61.5	57.6	60.5	63.5
11-Jan-25	15:14	61.6	59.2	00.5	03.5
11-Jan-25	15:19	62.5	57.9		
11-Jan-25	15:24	61.9	58.9		
17-Jan-25	8:53	62.3	59.1		
17-Jan-25	8:58	61.5	58.8		
17-Jan-25	9:03	62.8	58.6	60.5	63.5
17-Jan-25	9:08	62.3	57.8	00.5	00.0
17-Jan-25	9:13	62.2	57.9		
17-Jan-25	9:18	62.6	58.9		
23-Jan-25	14:57	62.2	58.9		
23-Jan-25	15:11	61.7	59.3		
23-Jan-25	15:16	61.4	58.7	60.3	63.3
23-Jan-25	15:21	61.6	57.5	00.5	00.0
23-Jan-25	15:26	61.5	58.6		
23-Jan-25	15:31	62.0	59.2		
28-Jan-25	8:58	62.3	58.0		
28-Jan-25	9:12	61.4	57.7		
28-Jan-25	9:17	62.7	58.1	60.9	63.9
28-Jan-25	9:22	62.3	58.7	60.9 63.9	
28-Jan-25	9:27	61.4	58.2		
28-Jan-25	9:32	62.3	58.9		

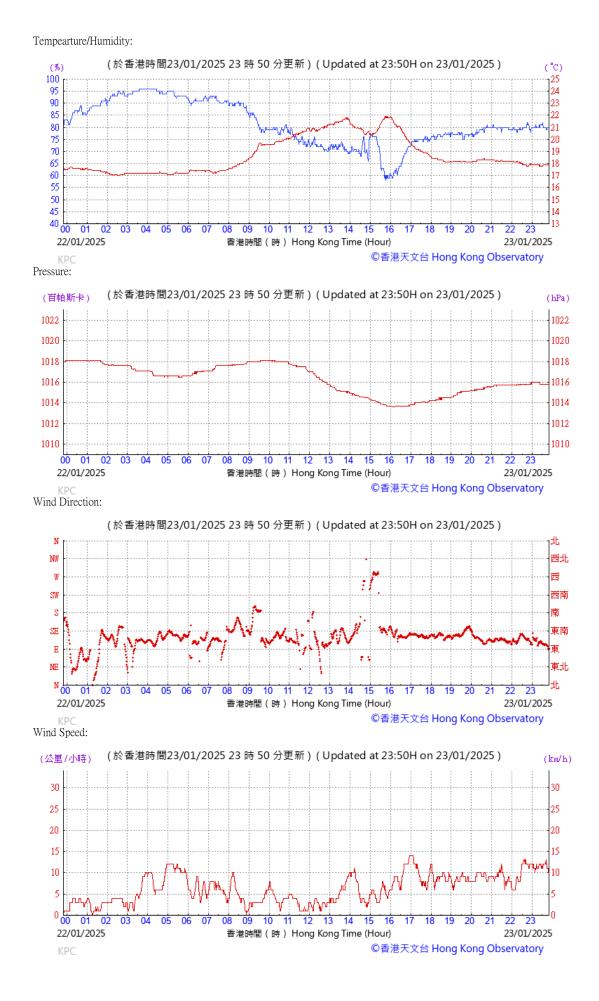


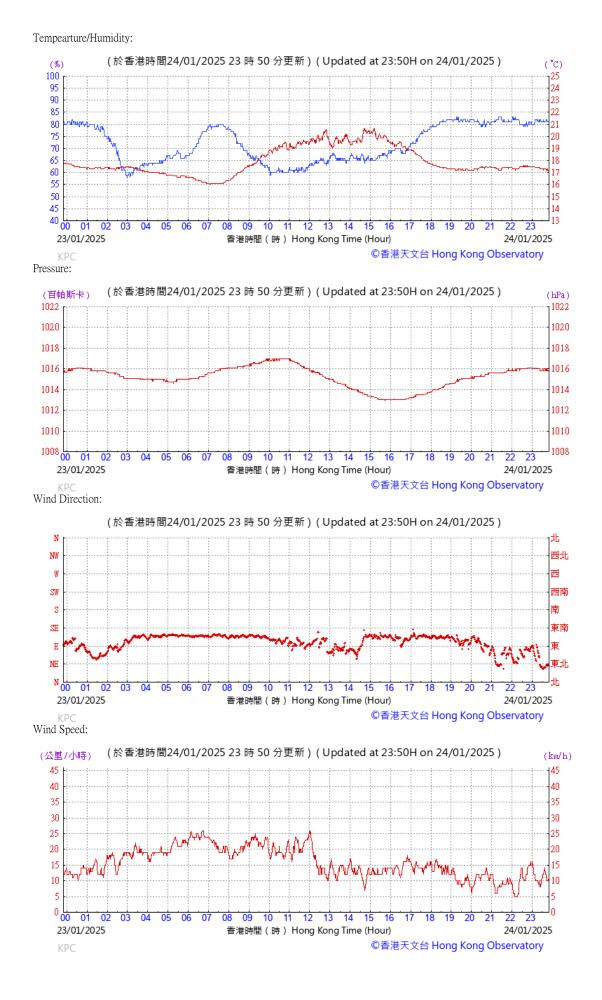

The station set-up of a free-field measurement at station NM5A.

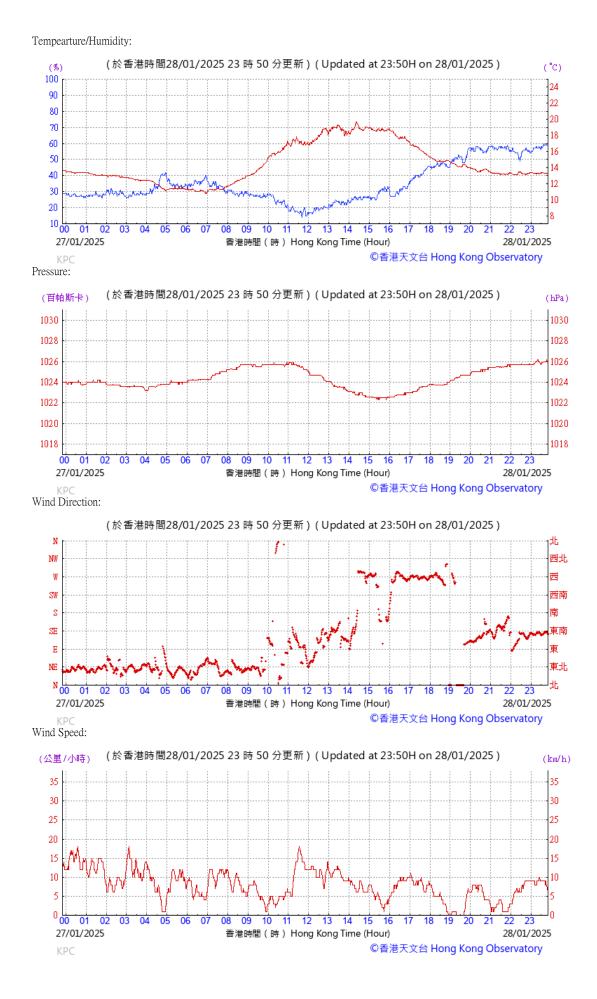

H. Meteorological Data Extracted from Hong Kong Observatory

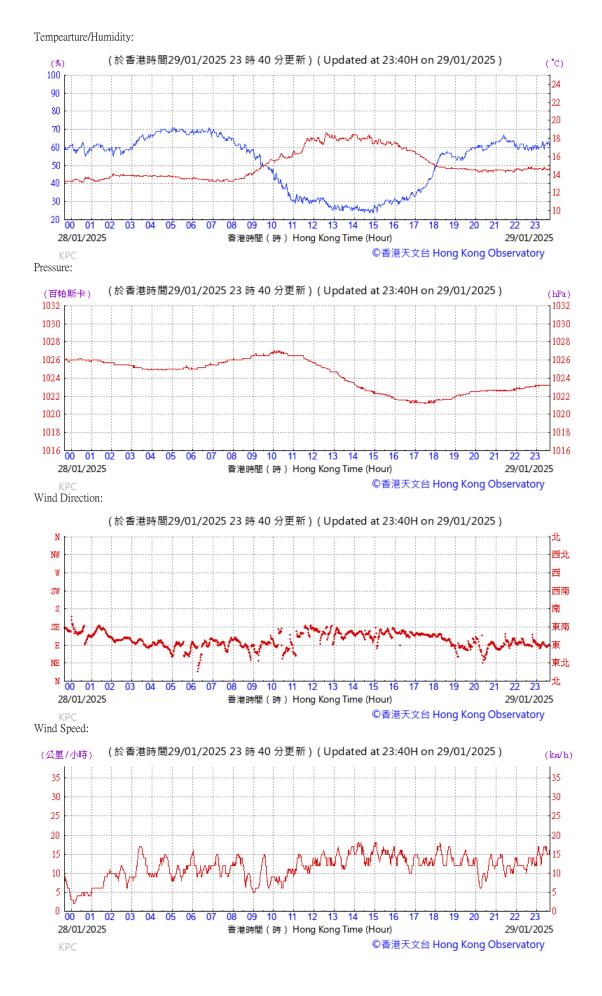







https://www.weather.org.hk/cgi-bin/awsquery.pl





I. Waste Flow table

32

Table I-1: Monthly Waste Flow Table for Zones 2A, 2B & 2C

		Actual Qua	ntities of Ine	ert C&D Mate	rials Generat	ed Monthly		Ac	tual Quantiti	es of C&D N	laterials Ger	erated Mont	hly
Month	Total Quantity Generated	Hard Rocks and Large Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Disposed to Sorting Facility	Imported Fill	Metals	Paper/ Cardboard Packaging	Plastics	Wood/ Timber	Chemical Waste	Others, e.g. General Refuse
	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)
2024	Λ /	· · · · · · · · · · · · · · · · · · ·	, , , , , , , , , , , , , , , , , , ,	ц <i>/</i>		IX /	n /		IX /	n /	IX /	IX /	
Jul	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Aug	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Sep	131.67	0.00	0.00	0.00	131.67	0.00	0.00	0.00	0.00	0.00	0.00	0.00	16.24
Oct	241.28	0.00	0.00	0.00	231.10	10.18	0.00	0.00	0.00	0.00	0.00	0.00	3.95
Nov	5383.52	0.00	0.00	4340.40	1043.12	0.00	0.00	0.00	0.00	0.00	0.00	0.00	155.23
Dec	5757.15	0.00	0.00	3082.05	2675.10	0.00	0.00	90.90	0.00	0.00	0.00	0.00	38.92
Sub-total (2024)	11513.62	0.00	0.00	7422.45	4080.99	10.18	0.00	90.90	0.00	0.00	0.00	0.00	214.34
2025	-		-	-	-		-	-	-	-	-		
Jan	4500.55	0.00	0.00	2090.69	2391.44	18.42	0.00	0.00	0.00	0.00	0.00	0.00	29.39
Feb													
Mar													
Apr													
May													
Jun													
Jul													
Aug													
Sep													
Oct													
Nov													
Dec													
Sub-total (2025)	4500.55	0.00	0.00	2090.69	2391.44	18.42	0.00	0.00	0.00	0.00	0.00	0.00	29.39
Total	16014.17	0.00	0.00	9513.14	6472.43	28.60	0.00	90.90	0.00	0.00	0.00	0.00	243.73

Note:

2259.18 tonnes and 132.26 tonnes of inert C&D material were disposed of as public fill to Tseung Kwan O Area 137 Public Fill and Tuen Mun Area 38 respectively in the reporting month.

One cargo of Metals material has been recycled on 13 Jan 25. Actual quantity of metal recycled would be supplemented in coming reporting month.

J. Environmental Mitigation Measures – Implementation Status

Table J-1: Environmental Mitigation Measures Implementation Status (January 2025)

		Implementation Stage
EM&A Ref.	Recommendation Measures	Zone 2A, 2B & 2C
Air Quality In	npact (Construction)	
2.1	General Dust Control Measures Frequent water spraying for active construction areas (12 times a day or once every one hour), including Heavy construction activities such as construction of buildings or roads, drilling, ground excavation, cut and fill operations (i.e., earth moving)	✓
2.1	 Best Practice for Dust Control The relevant best practices for dust control as stipulated in the Air Pollution Control (construction Dust) Regulation should be adopted to further reduce the construction dust impacts from the Project. These best practices include: Good Site Management Good site management is important to help reducing potential air quality impact down to an acceptable level. As a general guide, the Contractor should maintain high standard of housekeeping to prevent emission of fugitive dust. Loading, unloading, handling and storage of raw materials, wastes or by-products should be carried out in a manner so as to minimise the release of visible dust emission. Any piles of materials accumulated on or around the work areas should be cleaned up regularly. Cleaning, repair and maintenance of all plant facilities within the work areas should be carried out in a manner minimising generation of fugitive dust emissions. The material should be handled properly to prevent fugitive dust emission before cleaning. 	
	 Disturbed Parts of the Roads Each and every main temporary access should be paved with concrete, bituminous hardcore materials or metal plates and kept clear of dusty materials; or 	\checkmark
	 Unpaved parts of the road should be sprayed with water or a dust suppression chemical so as to keep the entire road surface wet. 	\checkmark
	Exposed Earth	N/A
	• Exposed earth should be properly treated by compaction, hydroseeding, vegetation planting or seating with latex, vinyl, bitumen within six months after the last construction	No exposed earth in this project.

		Implementation Stage
M&A Ref. R	ecommendation Measures	Zone 2A, 2B & 2C
	activity on the site or part of the site where the exposed earth lies.	
L	oading, Unloading or Transfer of Dusty Materials	1
•	All dusty materials should be sprayed with water immediately prior to any loading or transfer operation so as to keep the dusty material wet.	
D	ebris Handling	1
•	Any debris should be covered entirely by impervious sheeting or stored in a debris collection area sheltered on the top and the three sides.	
•	Before debris is dumped into a chute, water should be sprayed so that it remains wet	N/A
	when it is dumped.	No debris chute on-site
Т. •	ransport of Dusty Materials Vehicle used for transporting dusty materials/spoils should be covered with tarpaulin or similar material. The cover should extend over the edges of the sides and tailboards.	\checkmark
И •	/heel washing Vehicle wheel washing facilities should be provided at each construction site exit. Immediately before leaving the construction site, every vehicle should be washed to remove any dusty materials from its body and wheels.	✓
U •	se of vehicles The speed of the trucks within the site should be controlled to about 10km/hour in order to reduce adverse dust impacts and secure the safe movement around the site.	\checkmark
•	Immediately before leaving the construction site, every vehicle should be washed to remove any dusty materials from its body and wheels.	\checkmark
•	Where a vehicle leaving the construction site is carrying a load of dusty materials, the load should be covered entirely by clean impervious sheeting to ensure that the dusty materials do not leak from the vehicle.	\checkmark
S	ite hoarding	1
•	Where a site boundary adjoins a road, street, service lane or other area accessible to the public, hoarding of not less than 2.4m high from ground level should be provided along the entire length of that portion of the site boundary except for a site entrance or exit.	

		Implementation Stage
EM&A Ref.	Recommendation Measures	Zone 2A, 2B & 2C
.1	Best Practicable Means for Cement Works (Concrete Batching Plant)	
	The relevant best practices for dust control as stipulated in the Guidance Note on the Best	
	Practicable Means for Cement Works (Concrete Batching Plant) BPM 3/2(93) should be followed	
	and implemented to further reduce the construction dust impacts of the Project. These best	
	practices include:	
	Exhaust from Dust Arrestment Plant	N/A
	• Wherever possible the final discharge point from particulate matter arrestment plant,	No concrete batching plant in in this project.
	where is not necessary to achieve dispersion from residual pollutants, should be at low	
	level to minimise the effect on the local community in the case of abnormal emissions and	
	to facilitate maintenance and inspection	
	Emission Limits	N/A
	• All emissions to air, other than steam or water vapour, shall be colourless and free from	No concrete batching plant in in this project.
	persistent mist or smoke	
	Engineering Design/Technical Requirements	N/A
	• As a general guidance, the loading, unloading, handling and storage of fuel, raw materials,	No concrete batching plant in this project.
	products, wastes or by-products should be carried out in a manner so as to prevent the	
	release of visible dust and/or other noxious or offensive emissions	
	Non-Road Mobile Machinery (NRMM):	Obs
	All NRMMs operating on-site which are subject to emission control of Air Pollution Control (Non-	
	road Mobile Machinery) (Emission) Regulation are approved/exempted (as the case may be)	
	and affixed with the requisite approval/exemption labels.	

		Implementation Stage
EM&A Ref.	Recommendation Measures	Zone 2A, 2B & 2C
3.1	Good Site Practice	
	Good site practice and noise management can significantly reduce the impact of construction	
	site activities on nearby NSRs. The following package of measures should be followed during	
	each phase of construction:	
	 only well-maintained plant to be operated on-site and plant should be serviced regularly 	\checkmark
	during the construction works;	
	• machines and plant that may be in intermittent use to be shut down between work	1
	periods or should be throttled down to a minimum	
	• plant known to emit noise strongly in one direction, should, where possible, be orientated	\checkmark
	to direct noise away from the NSRs;	
	 mobile plant should be sited as far away from NSRs as possible; and 	\checkmark
	• material stockpiles and other structures to be effectively utilised, where practicable, to	\checkmark
	screen noise from on-site construction activities.	
3.1	Adoption of Quieter PME	✓
	The recommended quieter PME adopted in the assessment were taken from the EPD's QPME	
	Inventory and "Sound Power Levels of Other Commonly Used PME" are presented in Table 4.26	
	in the EIA report. It should be noted that the silenced PME selected for assessment can be found	
	in Hong Kong.	
3.1	Use of Movable Noise Barriers	✓
	Movable noise barriers can be very effective in screening noise from particular items of plant	
	when constructing the Project. Noise barriers located along the active works area close to the	
	noise generating component of a PME could produce at least 10 dB(A) screening for stationary	

		Implementation Stage
EM&A Ref.	Recommendation Measures	Zone 2A, 2B & 2C
	plant and 5 dB(A) for mobile plant provided the direct line of sight between the PME and the	
	NSRs is blocked.	
3.1	Use of Noise Enclosure/ Acoustic Shed	✓
	The use of noise enclosure or acoustic shed is to cover stationary PME such as air compressor	
	and concrete pump. With the adoption of the noise enclosure, the PME could be completely	
	screened, and noise reduction of 15 dB(A) can be achieved according to the EIAO Guidance Note	
	No. 9/2010.	
3.1	Use of Noise Insulating Fabric	1
	Noise insulating fabric can also be adopted for certain PME (e.g. drill rig, pilling machine etc).	
	The fabric should be lapped such that there are no openings or gaps on the joints. According to	
	the approved Tsim Sha Tsui Station Northern Subway EIA report (AEIAR-127/2008), a noise	
	reduction of 10 dB(A) can be achieved for the PME lapped with the noise insulating fabric.	
3.1	Scheduling of Construction Works outside School Examination Periods	1
	During construction phase, the contractor should liaise with the educational institutions	
	(including NSRs LCS and CRGPS) to obtain the examination schedule and avoid the noisy	
	construction activities during school examination periods.	
Water Quality	y Impact (Construction)	
4.1	Construction site runoff and drainage	
	The site practices outlined in ProPECC Note PN 1/94 should be followed as far as practicable in	
	order to minimise surface runoff and the chance of erosion. The following measures are	
	recommended to protect water quality and sensitive uses of the coastal area, and when properly	

implemented should be sufficient to adequately control site discharges so as to avoid water

1

1

1

1

1

quality impacts:

- At the start of site establishment, perimeter cut-off drains to direct off-site water around the site should be constructed with internal drainage works and erosion and sedimentation control facilities implemented. Channels, earth bunds or sand bag barriers should be provided on site to direct storm water to silt removal facilities. The design of the temporary on-site drainage system should be undertaken by the WKCDA's Contractor prior to the commencement of construction;
- Sand/silt removal facilities such as sand/silt traps and sediment basins should be provided to remove sand/silt particles from runoff to meet the requirements of the TM standards under the WPCO. The design of efficient silt removal facilities should be based on the guidelines in Appendix A1 of ProPECC Note PN 1/94. Sizes may vary depending upon the flow rate. The detailed design of the sand/silt traps should be undertaken by the WKCDA's Contractor prior to the commencement of construction.
- All drainage facilities and erosion and sediment control structures should be regularly
 inspected and maintained to ensure proper and efficient operation at all times and
 particularly during rainstorms. Deposited silt and grit should be regularly removed, at the
 onset of and after each rainstorm to ensure that these facilities are functioning properly
 at all times.
- Measures should be taken to minimize the ingress of site drainage into excavations. If
 excavation of trenches in wet periods is necessary, they should be dug and backfilled in
 short sections wherever practicable. Water pumped out from foundation excavations
 should be discharged into storm drains via silt removal facilities.
- All vehicles and plant should be cleaned before leaving a construction site to ensure no

- earth, mud, debris and the like is deposited by them on roads. An adequately designed and sited wheel washing facility should be provided at construction site exit where practicable. Wash-water should have sand and silt settled out and removed regularly to ensure the continued efficiency of the process. The section of access road leading to, and exiting from, the wheel-wash bay to the public road should be paved with sufficient backfall toward the wheel-wash bay to prevent vehicle tracking of soil and silty water to public roads and drains.
- Open stockpiles of construction materials or construction wastes onsite should be covered with tarpaulin or similar fabric during rainstorms. Measures should be taken to prevent the washing away of construction materials, soil, silt or debris into any drainage system.
- Manholes (including newly constructed ones) should be adequately covered and temporarily sealed so as to prevent silt, construction materials or debris being washed into the drainage system and stormwater runoff being directed into foul sewers.
- Precautions should be taken at any time of the year when rainstorms are likely. Actions should be taken when a rainstorm is imminent or forecasted and actions to be taken during or after rainstorms are summarized in Appendix A2 of ProPECC Note PN 1/94. Particular attention should be paid to the control of silty surface runoff during storm events, especially for areas located near steep slopes.
- Bentonite slurries used in piling or slurry walling should be reconditioned and reused wherever practicable. Temporary enclosed storage locations should be provided on-site for any unused bentonite that needs to be transported away after all the related construction activities are completed. The requirements in ProPECC Note PN 1/94 should be adhered to in the handling and disposal of bentonite slurries.

Zone 2A, 2B & 2C

N/A No bentonite slurries are used in this project.

√ √ √

		Implementation Stage
EM&A Ref.	Recommendation Measures	Zone 2A, 2B & 2C
4.1	Barging facilities and activities	
	Recommendations for good site practices during operation of the proposed barging point	
	include:	
	• All vessels should be sized so that adequate clearance is maintained between vessels and	N/A
	the seabed in all tide conditions, to ensure that undue turbidity is not generated by	No barging facilities in this project at this stage.
	turbulence from vessel movement or propeller wash;	
	 Loading of barges and hoppers should be controlled to prevent splashing of material into 	N/A
	the surrounding water. Barges or hoppers should not be filled to a level that will cause the	No barging facilities in this project at this stage.
	overflow of materials or polluted water during loading or transportation;	
	• All hopper barges should be fitted with tight fitting seals to their bottom openings to	N/A
	prevent leakage of material; and	No barging facilities in this project at this stage.
	• Construction activities should not cause foam, oil, grease, scum, litter or other	N/A
	objectionable matter to be present on the water within the site.	No barging facilities in this project at this stage.
4.1	Sewage effluent from construction workforce	✓
	Temporary sanitary facilities, such as portable chemical toilets, should be employed on-site	
	where necessary to handle sewage from the workforce. A licensed contractor should be	
	employed to provide appropriate and adequate portable toilets and be responsible for	
	appropriate disposal and maintenance.	
4.1	General construction activities	
	• Construction solid waste, debris and refuse generated on-site should be collected,	\checkmark
	handled and disposed of properly to avoid entering any nearby storm water drain.	
	Stockpiles of cement and other construction materials should be kept covered when not	

		Implementation Stage
EM&A Ref.	Recommendation Measures	Zone 2A, 2B & 2C
	being used.	
	Oils and fuels should only be stored in designated areas which have pollution prevention	Obs
	facilities. To prevent spillage of fuels and solvents to any nearby storm water drain, all fuel	
	tanks and storage areas should be provided with locks and be sited on sealed areas, within	
	bunds of a capacity equal to 110% of the storage capacity of the largest tank. The bund	
	should be drained of rainwater after a rain event.	
Naste Manag	ement Implications (Construction)	
6.1	Good Site Practices	
	Recommendations for good site practices during the construction activities include:	
	• Nomination of an approved person, such as a site manager, to be responsible for good site	Obs
	practices, arrangements for collection and effective disposal to an appropriate facility, of	
	all wastes generated at the site	
	• Training of site personnel in proper waste management and chemical handling procedures	1
	 Provision of sufficient waste disposal points and regular collection of waste 	1
	Appropriate measures to minimise windblown litter and dust/odour during transportation	1
	of waste by either covering trucks or by transporting wastes in enclosed containers	
	• Provision of wheel washing facilities before the trucks leaving the works area so as to	1
	minimise dust introduction to public roads	
	• Well planned delivery programme for offsite disposal such that adverse environmental	1
	impact from transporting the inert or non-inert C&D materials is not anticipated	

Recommendations to achieve waste reduction include:

		Implementation Stage	
EM&A Re	f. Recommendation Measures	Zone 2A, 2B & 2C	
	Sort inert C&D material to recover any recyclable portions such as metals	1	
	• Segregation and storage of different types of waste in different containers or skips to	\checkmark	
	enhance reuse or recycling of materials and their proper disposal		
	• Encourage collection of recyclable waste such as waste paper and aluminium cans by	\checkmark	
	providing separate labelled bins to enable such waste to be segregated from other general		
	refuse generated by the work force		
	• Proper site practices to minimise the potential for damage or contamination of inert C&D	\checkmark	
	materials		
	• Plan the use of construction materials carefully to minimise amount of waste generated	1	
	and avoid unnecessary generation of wastes		
6.1	Inert and Non-inert C&D Materials		
	In order to minimise impacts resulting from collection and transportation of inert C&D material		
	for off-site disposal, the excavated materials should be reused on-site as fill material as far as		
	practicable. In addition, inert C&D material generated from excavation works could be reused		
	as fill materials in local projects that require public fill for reclamation.		
	• The surplus inert C&D material will be disposed of at the Government's PFRFs for	\checkmark	
	beneficial use by other projects in Hong Kong.		
	• Liaison with the CEDD Public Fill Committee (PFC) on the allocation of space for disposal	\checkmark	
	of the inert C&D materials at PFRF is underway. No construction work is allowed to		
	proceed until all issues on management of inert C&D materials have been resolved and all		
	relevant arrangements have been endorsed by the relevant authorities including PFC and		
	EPD.		
	• The C&D materials generated from general site clearance should be sorted on site to	\checkmark	

1

1

1

EM8	A Ref. Recommendation Measures	Zone 2A, 2B & 2C
	corrected any inart materials for rouse or dispessed of at DEDEs wh	where the new inert

segregate any inert materials for reuse or disposal of at PFRFs whereas the non-inert materials will be disposed of at the designated landfill site.

In order to monitor the disposal of inert and non-inert C&D materials at respectively PFRFs and the designated landfill site, and to control fly-tipping, it is recommended that the Contractor should follow the Technical Circular (Works) No. 6/2010 for Trip Ticket System for Disposal of Construction & Demolition Materials issued by Development Bureau. In addition, it is also recommended that the Contractor should prepare and implement a Waste Management Plan detailing their various waste arising and waste management practices in accordance with the relevant requirements of the Technical Circular (Works) No. 19/2005 Environmental Management on Construction Site.

6.1 Chemical Waste

- If chemical wastes are produced at the construction site, the Contractor will be required to register with the EPD as a chemical waste producer and to follow the guidelines stated in the "Code of Practice on the Packaging Labelling and Storage of Chemical Wastes". Good quality containers compatible with the chemical wastes should be used, and incompatible chemicals should be stored separately. Appropriate labels should be securely attached on each chemical waste container indicating the corresponding chemical characteristics of the chemical waste, such as explosive, flammable, oxidizing, irritant, toxic, harmful, corrosive, etc. The Contractor should use a licensed collector to transport and dispose of the chemical wastes at the approved Chemical Waste Treatment Centre or other licensed recycling facilities, in accordance with the Waste Disposal (Chemical Waste) (General) Regulation.
- Potential environmental impacts arising from the handling activities (including storage,

		Implementation Stage
EM&A Ref.	Recommendation Measures	Zone 2A, 2B & 2C
	collection, transportation and disposal of chemical waste) are expected to be minimal	
	with the implementation of appropriate mitigation measures as recommended.	
6.1	General Refuse	✓
	General refuse should be stored in enclosed bins or compaction units separated from inert C&D	
	materials. A reputable waste collector should be employed by the Contractor to remove general	
	refuse from the site, separately from inert C&D materials. Preferably an enclosed and covered	
	area should be provided to reduce the occurrence of 'wind blown' light material.	
and Contam	ination (Construction)	
7.1	The potential for land contamination issues at the TST Fire Station due to its future relocation	
	will be confirmed by site investigation after land acquisition. Where necessary, mitigation	
	measures for minimising potential exposure to contaminated materials (if any) or remediation	
	measures will be identified. If contaminated land is identified (e.g., during decommissioning of	
	fuel oil storage tanks) after the commencement of works, mitigation measures are proposed in	
	order to minimise the potentially adverse effects on the health and safety of construction	
	workers and impacts arising from the disposal of potentially contaminated materials. The	
	following measures are proposed for excavation and transportation of contaminated material:	
	• To minimize the chance for construction workers to come into contact with any	N/A
	contaminated materials, bulk earth-moving excavation equipment should be employed;	TST Fire Station is out of this project boundary, no mitigation
		measure is required.
	• Contact with contaminated materials can be minimised by wearing appropriate clothing	N/A
	and personal protective equipment such as gloves and masks (especially when interacting	TST Fire Station is out of this project boundary, no mitigation
	directly with contaminated material), provision of washing facilities and prohibition of	measure is required.

		· · · · ·	
EM&A Ref.	Recommendation Measures	Zone 2A, 2B & 2C	
	smoking and eating on site;		
	• Stockpiling of contaminated excavated materials on site should be avoided as far as	N/A	
	possible;	TST Fire Station is out of this project boundary, no mitigation	
		measure is required.	
	• The use of contaminated soil for landscaping purpose should be avoided unless pre-	N/A	
	treatment was carried out;	TST Fire Station is out of this project boundary, no mitigation	
		measure is required.	
	• Vehicles containing any contaminated excavated materials should be suitably covered to	N/A	
	reduce dust emissions and/or release of contaminated wastewater;	TST Fire Station is out of this project boundary, no mitigation	
		measure is required.	
	 Truck bodies and tailgates should be sealed to stop any discharge; 	N/A	
		TST Fire Station is out of this project boundary, no mitigatio	
		measure is required.	
	• Only licensed waste haulers should be used to collect and transport contaminated	N/A	
	material to treatment/disposal site and should be equipped with tracking system to avoid	TST Fire Station is out of this project boundary, no mitigatio	
	fly tipping;	measure is required.	
	 Speed control for trucks carrying contaminated materials should be exercised; 	N/A	
		TST Fire Station is out of this project boundary, no mitigation	
		measure is required.	
	• Observe all relevant regulations in relation to waste handling, such as Waste Disposal	N/A	
	Ordinance (Cap. 354), Waste Disposal (Chemical Waste) (General) Regulation (Cap. 354)	TST Fire Station is out of this project boundary, no mitigation	
	and obtain all necessary permits where required; and	measure is required.	
	• Maintain records of waste generation and disposal quantities and disposal arrangements.	N/A	

Implementation Stage

J.	Zone 2A, 2B & 2C TST Fire Station is out of this project boundary, no mitigation measure is required.
1.	
ł.	measure is required.
ł.	
ł.	
n site as far as possible. Should tree removal be unavoidable	✓ ✓
es will be transplanted or felled with reference to the stated	
cations to be submitted to relevant government departments	
/B TCW No. 29/2004 and 3/2006.	
be incorporated to the proposed project and maximize the	N/A
etation planting to compensate tree felled and vegetation	Compensatory tree planting is being reviewed.
f compensatory planting should be of a ratio not less than 1:1	
vithin the site.	
es to soften the hard architectural and engineering structures	N/A
	Roof garden is designed to be built, but it has not been completed
	yet.
rtical green wall panel /planting of climbing and/or weeping	N/A
n coverage and soften the hard architectural and engineering	Climbing or weeping plants are designed to be planted, but
	proposal is being reviewed for the planting location.
ive and extensive green roof to maximize the green coverage	N/A
l visual quality of the building/structure.	Roof garden is designed to be built, but it has not been completed
	yet.
	n site as far as possible. Should tree removal be unavoidable es will be transplanted or felled with reference to the stated cations to be submitted to relevant government departments VB TCW No. 29/2004 and 3/2006. I be incorporated to the proposed project and maximize the retation planting to compensate tree felled and vegetation of compensatory planting should be of a ratio not less than 1:1 within the site. es to soften the hard architectural and engineering structures rtical green wall panel /planting of climbing and/or weeping in coverage and soften the hard architectural and engineering ive and extensive green roof to maximize the green coverage I visual quality of the building/structure.

		Implementation Stage	
EM&A Ref.	Recommendation Measures	Zone 2A, 2B & 2C	
Table 9.1	Sensitive streetscape design should be incorporated along all new roads and streets.	N/A	
(CM6)		Greening along the seafront is proposed, and under review.	
Table 9.1	Structure, ornamental planting shall be provided along amenity strips to enhance the landscape	N/A	
(CM7)	quality.	Gardens are designed to be built, and under review.	
Table 9.1	Landscape design shall be incorporated to architectural and engineering structures in order to	N/A	
(CM8)	provide aesthetically pleasing designs.	Roof garden is designed to be built, and under review.	
Table 9.1	Minimize the structure of marine facilities to be built on the seabed and foreshore in order to	N/A	
(CM9)	minimize the affected extent to the waterbody	No marine facilities for this project.	
Table 9.2	Use of decorative screen hoarding/boards	✓	
(MCP1)			
Table 9.2	Early introduction of landscape treatments	N/A	
(MCP2)		No landscape treatments during this stage.	
Table 9.2	Adoption of light colour for the temporary ventilation shafts for the basement during the	N/A	
(MCP3)	transition period.	No ventilation shafts for this project.	
Table 9.2	Control of night time lighting	\checkmark	
(MCP4)			
Table 9.2	Use of greenery such as grass cover for the temporary open areas will help achieve the visual	N/A	
(MCP5)	balance and soften the hard edges of the structures.	No temporary open areas for this project.	

- N/A Not Applicable
- Implemented
- Obs Observed

Rem - Reminder

K. Cumulative Statistics on Complaints, Notifications of Summons and Successful Prosecutions

Cumulative statistics for complaints, notifications of summons and successful prosecutions for the Project account for period starting from the date of commencement of construction works (i.e. 05 July 2024 for Zones 2A, 2B & 2C (Contract No.: CC/2023/2B/095)) to the end of the reporting month and are summarised in the Table K-1 below respectively.

Table K-1: Statistics for complaints, notifications of summons and successful prosecutions for Zones2A, 2B & 2C (Contract No.: CC/2023/2B/095)

Reporting Period	Cumulative Statistics			
	Complaints	Notifications of summons	Successful prosecutions	
This reporting month	1	0	0	
(January 2025)				
From 05 July 2024 to end of	2	0	0	
the reporting month				

END OF THE REPORT