

RECALIBRATION **DUE DATE:**

October 28, 2023

Calibration Certification Information

Cal. Date: October 28, 2022 Rootsmeter S/N: 438320

Ta: 297

°K

Operator: Jim Tisch

Pa: 751.1

mm Hg

Calibration Model #:

Calibrator S/N: 4088 TE-5025A

Run	Vol. Init (m3)	Vol. Final (m3)	ΔVol. (m3)	ΔTime (min)	ΔP (mm Hg)	ΔH (in H2O)
1	1	2	1	1.4470	3.2	2.00
2	3	4	1	1.0270	6.4	4.00
3	5	6	1	0.9160	8.0	5.00
4	7	8	1	0.8740	8.8	5.50
5	9	10	1	0.7230	12.8	8.00

	Data Tabulation						
Vstd	Qstd	$\sqrt{\Delta H \left(\frac{Pa}{Pstd}\right) \left(\frac{Tstd}{Ta}\right)}$		Qa	$\sqrt{\Delta H \left(\text{Ta/Pa} \right)}$		
(m3)	(x-axis)	(y-axis)	Va	(x-axis)	(y-axis)		
0.9874	0.6824	1.4083	0.9957	0.6881	0.8893		
0.9831	0.9573	1.9916	0.9915	0.9654	1.2577		
0.9810	1.0710	2.2266	0.9893	1.0801	1.4061		
0.9800	1.1212	2.3353	0.9883	1.1308	1.4747		
0.9747	1.3481	2.8165	0.9830	1.3596			
	m=	2.11365		m=	1.32353		
QSTD	b=	-0.03408	QA	b=	-0.02152		
QJID	r=	0.99999		r=	0.99999		

	Calculatio	ns			
Vstd=	ΔVol((Pa-ΔP)/Pstd)(Tstd/Ta)	Va=	ΔVol((Pa-ΔP)/Pa)		
Qstd=	Vstd/ΔTime	Qa= Va/ΔTime			
For subsequent flow rate calculations:					
Qstd=	$1/m\left(\left(\sqrt{\Delta H\left(\frac{Pa}{Pstd}\right)\left(\frac{Tstd}{Ta}\right)}\right)-b\right)$	Qa=	$1/m\left(\left(\sqrt{\Delta H\left(Ta/Pa\right)}\right)-b\right)$		

Standard Conditions						
Tstd:						
Pstd:	760 mm Hg					
	Кеу					
ΔH: calibrator manometer reading (in H2O)						
ΔP: rootsmeter manometer reading (mm Hg)						
Ta: actual absolute temperature (°K)						
Pa: actual barometric pressure (mm Hg)						
b: intercept						
m: slope	m: slope					

RECALIBRATION

US EPA recommends annual recalibration per 1998 40 Code of Federal Regulations Part 50 to 51, Appendix B to Part 50, Reference Method for the Determination of Suspended Particulate Matter in the Atmosphere, 9.2.17, page 30

Tisch Environmental, Inc. 145 South Miami Avenue Village of Cleves, OH 45002 www.tisch-env.com

TOLL FREE: (877)263-7610

FAX: (513)467-9009

Site Information

Zones 2A at West
Location: AM3A
Site ID: Kowloon Cultural
Date: 28-Jan-23
Sampler: TE-5170
Serial No: 4340
Tech: CS Tang

Site Conditions

Barometric Pressure (in Hg): 30.24 Corrected Pressure (mm Hg): 768

Temperature (deg F): 55 Temperature (deg K): 286

Average Press. (in Hg): 30.24 Corrected Average (mm Hg): 768

Average Temp. (deg F): 55 Average Temp. (deg K): 286

Calibration Orifice

 Make: Tisch
 Qstd Slope: 2.11365

 Model: TE-5025A
 Qstd Intercept: -0.03408

 Serial#: 4088
 Date Certified: 28-Oct-22

Calibration Information

Plate or	H2O	Qstd	I	IC	
Test #	(in)	(m3/min)	(chart)	(corrected)	Linear Regression
1	12.50	1.733	53.0	54.40	Slope: 31.9610
2	10.60	1.597	48.0	49.27	Intercept: -1.0001
3	7.30	1.328	41.0	42.08	Corr. Coeff: 0.9975
4	4.60	1.058	33.0	33.87	
5	2.60	0.799	23.0	23.61	# of Observations: 5

Calculations

Qstd = 1/m[Sqrt(H2O(Pa/Pstd)(Tstd/Ta))-b] IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Qstd = standard flow rate IC = corrected chart response

I = actual chart response

m = calibrator Qstd slope

b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K)

Pa = actual pressure during calibration (mm Hg)

Tstd = 298 deg K

Pstd = 760 mm Hg

For subsequent calculation of sampler flow:

1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)

m = sampler slope

b = sampler intercept

I = chart response

Tav = daily average temperature

Pav = daily average pressure

Average I (chart): 40

Average Flow Calculation m3/min

1.302970043

Average Flow Calculation in CFM

46.00787222

Sample Time (Hrs): 1.0

Total Flow in m3/min

78.17820259

Total Flow in CFM

2760.472333

NOTE: Ensure calibration orifice has been certified within 12 months of use

Site Information

Zones 2A at West

Location: AM4A Site ID: Kowloon Cultural Date: 28-Jan-23

Sampler: TE-5170 Serial No: 3998 Tech: CS Tang

Site Conditions

	12 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	
Barometric Pressure (in Hg): 30.24	Corrected Pressure (mm Hg):	768
Temperature (deg F): 55	Temperature (deg K):	286
Average Press. (in Hg): 30.24	Corrected Average (mm Hg):	768
Average Temp. (deg F): 55	Average Temp. (deg K):	286

Calibration Orifice

Make: Tisch	Qstd Slope: 2.11365
Model: TE-5025A	Qstd Intercept: -0.03408
Serial#: 4088	Date Certified: 28-Oct-22

Calibration Information

Plate or	H2O	Qstd	I	IC	
Test #	(in)	(m3/min)	(chart)	(corrected)	Linear Regression
1	12.40	1.726	53.0	54.40	Slope: 30.6518
2	10.50	1.590	48.0	49.27	Intercept: 1.0559
3	7.60	1.355	41.0	42.08	Corr. Coeff: 0.9982
4	4.40	1.035	33.0	33.87	
5	2.30	0.753	23.0	23.61	# of Observations: 5

Calculations

Qstd = 1/m[Sqrt(H2O(Pa/Pstd)(Tstd/Ta))-b] IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Qstd = standard flow rate

IC = corrected chart response

I = actual chart response

m = calibrator Qstd slope

b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K)

Pa = actual pressure during calibration (mm Hg)

Tstd = 298 deg K

Pstd = 760 mm Hg

For subsequent calculation of sampler flow:

1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)

m = sampler slope

b = sampler intercept

I = chart response

Tav = daily average temperature

Pav = daily average pressure

Average I (chart): 40

Average Flow Calculation m3/min

1.291546502

Average Flow Calculation in CFM

45.60450697

Sample Time (Hrs): 1.0

Total Flow in m3/min

77.4927901

Total Flow in CFM

2736.270418

NOTE: Ensure calibration orifice has been certified within 12 months of use

Site Information

Zones 2A at West
Location: AM5A Site ID: Kowloon Cultural Date: 28-Jan-23
Sampler: TE-5170 Serial No: 4344 Tech: CS Tang

Site Conditions

Barometric Pressure (in Hg): 30.24 Corrected Pressure (mm Hg): 768

Temperature (deg F): 55 Temperature (deg K): 286

Average Press. (in Hg): 30.24 Corrected Average (mm Hg): 768

Average Temp. (deg F): 55 Average Temp. (deg K): 286

Calibration Orifice

 Make: Tisch
 Qstd Slope: 2.11365

 Model: TE-5025A
 Qstd Intercept: -0.03408

 Serial#: 4088
 Date Certified: 28-Oct-22

Calibration Information

Plate or	H2O	Qstd	I	IC	
Test #	(in)	(m3/min)	(chart)	(corrected)	Linear Regression
1	12.50	1.733	53.0	54.40	Slope: 31.4207
2	10.70	1.605	48.0	49.27	Intercept: -0.3595
3	7.50	1.346	41.0	42.08	Corr. Coeff: 0.9982
4	4.60	1.058	33.0	33.87	
5	2.50	0.784	23.0	23.61	# of Observations: 5

Calculations

Qstd = 1/m[Sqrt(H2O(Pa/Pstd)(Tstd/Ta))-b] IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Qstd = standard flow rate

IC = corrected chart response

I = actual chart response

m = calibrator Qstd slope

b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K)

Pa = actual pressure during calibration (mm Hg)

Tstd = 298 deg K

Pstd = 760 mm Hg

For subsequent calculation of sampler flow:

1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)

m = sampler slope

b = sampler intercept

I = chart response

Tav = daily average temperature

Pav = daily average pressure

Average I (chart): 40

Average Flow Calculation m3/min

1.304987198

Average Flow Calculation in CFM

46.07909795

Sample Time (Hrs): 1.0

Total Flow in m3/min

78.29923185

Total Flow in CFM

2764.745877

NOTE: Ensure calibration orifice has been certified within 12 months of use

CERTIFICATE OF ACCREDITATION

This is to attest that

AQUALITY TESTCONSULT LIMITED

11A&B, KAI FONG GARDEN, PING CHE ROAD FANLING, HONG KONG

Calibration Laboratory CL-207

has met the requirements of AC204, *IAS Accreditation Criteria for Calibration Laboratories*, and has demonstrated compliance with ISO/IEC Standard 17025:2017, *General requirements for the competence of testing and calibration laboratories*. This organization is accredited to provide the services specified in the scope of accreditation.

Effective Date December 17, 2021

Expiration Date December 1, 2022

President

International Accreditation Service, Inc. 3060 Saturn Street, Suite 100, Brea, California 92821, U.S.A. | www.iasonline.org

AQUALITY TESTCONSULT LIMITED

Contact Name Lee Mei Yee

Contact Phone + 852-6309-2280

Accredited to ISO/IEC 17025:2017

Effective Date December 17, 2021

CALIBRATION AND MEASUREMENT CAPABILITY (CMC)*

MEASURED QUANTITY or DEVICE TYPE CALIBRATED	RANGE	UNCERTAINTY ^{1,2} (±)	CALIBRATION PROCEDURE AND/OR STANDARD EQUIPMENT USED
	Dimensio	onal	
Caliper -Vernier, Dial & Electronic ³	0 mm to 300 mm	30 μm	Checker by comparison method (BS 887:1982)
Steel Ruler ³	1 mm to 1000 mm	280 μm	Reference Steel Rule by comparison method (BS 4372:1968)
Dial Indicator/Gauge (Plunger) ³	0 mm to 50 mm	8 µm	Reference micrometer head by comparison method (BS 907:2008)
Feeler Gauge ³	0.01 mm to 1 mm	8 μm	Reference Dial Gauge by comparison method (BS 957: 2008)
Measuring tape ³	0 m to 5 m	1200 µm	Reference steel ruler by comparison method (BS 4035:1966)
Engineering Square ³	Length: 0 mm to 160 mm	20 μm	Reference engineering square and Feeler Gauge (BS 939:2007)
Slump cone ³	Diameter: 0 mm to 200 mm	560 µm	Reference Caliper & Reference Steel ruler by direct measurement
	Thickness: 1.5 mm	100 μm	(Verification in accordance with in-house method for the
	Height: 0 mm to 300 mm	560 μm	dimensional requirements as specified CS1:1990 Vol.1 A4; CS1: 2010 Vol. 1, A5)

^{*} If information in this CMC is presented in non-SI units, the conversion factors stated in NIST Special Publication 811 "Guide for the Use of the International System of Units (SI)" apply.

International Accreditation Service, Inc.

3060 Saturn Street, Suite 100, Brea, California 92821, U.S.A. | www.iasonline.org

MEASURED QUANTITY or DEVICE TYPE CALIBRATED	RANGE	UNCERTAINTY ^{1,2} (±)	CALIBRATION PROCEDURE AND/OR STANDARD EQUIPMENT USED
Tamping rod ³	Diameter: 0 mm to 16 mm	600 µm	Reference steel ruler & Reference Caliper by direct
	Length: 600 mm	950 μm	measurement (Verification in accordance with in-house method for the dimensional requirements as specified CS1:1990 Vol.1 A5; CS1: 2010 Vol. 1, A6)
Cube mould ³	(Max dimensions 150 mm per side)		Reference Caliper, straight edge & feeler gauge by
	Dimension	50 μm	direct measurement. (Verification in accordance with in-house method for the
	Flatness	10 μm	dimensional requirements as specified in BS1881: Part
	Perpendicularity	10 μm	108:1983; CS1:1990 Vol1, A21; CS1:2010 Vol 1, A25;
	Parallelism	50 μm	BS EN 12390-2:2000)
Compacting Bar ³	Ramming Face: 25 mm	100 μm	Reference Caliper & Steel ruler by direct measurement.
	Length: 380 mm	560 μm	(Verification in accordance with in-house method for the
	Weight: 1.8 kg	1 g	dimensional & mass requirements as specified in BS 1881: Part 105:1984 CI 3.3; CS1:1990 Vol 2, E3 CS1:2010 Vol 1, A15.3; BS EN 12350 -5:2000 CI 4.3.)
Covermeter	20 mm to 103 mm	2.9 mm	Reference concrete block (Verification in accordance with in-house method for the dimensional requirements as specified in BS 1881- 204:1988 Cl.6.4- Method C)
Flow table ³	15 kg to 17 kg 1 mm up to 71 mm	12 g 600 μm	Weighing Balance, Reference caliper & Reference steel ruler by direct measurement
Test Sieve ³	4 mm to 50 mm	50 μm	Reference Caliper by direct measurement
	Mechan	nical	
Force Measuring Machine ³ (Compression Mode)	1 kN to 3000 kN	0.4 %	Reference Load cell by direct measurement BS 1610: Part 1:1985; BS 1610: Part 1:1992; BS EN ISO 12390-4:2000 Annex B; BS EN ISO 7500-1:2004

International Accreditation Service, Inc.

3060 Saturn Street, Suite 100, Brea, California 92821, U.S.A. | www.iasonline.org

MEASURED QUANTITY or DEVICE TYPE CALIBRATED	RANGE	UNCERTAINTY ^{1,2} (±)	CALIBRATION PROCEDURE AND/OR STANDARD EQUIPMENT USED
Laser Dust Meter ³ Dust particles 0.001 mg/m ³ to 10.0 mg/m ³		0.9 mg/m ³	By comparison method by using reference laser dust meter
Rebound Hammer ³	80 unit (hardness)	1.6 rebound count	Reference Rebound count by comparison method. BS1881: Part 202:1986; BS EN 12504-2:2001; BS EN 12504-2:2012
Mass (F2 class and coarser)	0 g to 200 g 200 g to 5 kg 5 kg to 10 kg 10 kg to 50 kg	1.3 mg 0.5 g 0.88 g 3 g	Standard Weight E2/ F1 Class & Weighing Balances by comparison method (OIML-R-111)
Weighing Scale & Balance ³	0 g to 200 g 0 kg to 5 kg 0 kg to 50 kg	0.8 mg 0.13 g 7.7 g	Standard weight of E2/F1 Grade by direct measurement (OIML-R-111)
Volumetric Glassware	1 mL to 100 mL 100 mL to 1000 mL	0.004 mL 0.09 mL	Standard weight E2 Class, Weighing Balances & Distilled water by gravimetric method
	Ther	mal	
Digital/Liquid in Glass Thermometers & RTD/ Thermocouples with or without Indicators	15 °C to 55 °C 55 °C to 95 °C	0.4 °C 0.9 °C	Water Baths, Reference Sensor and Indictor by Comparison Method (OIML R133)
Curing Tank ³	(Calibration at 20 °C & 27 °C @ 30 min) 20 °C Temperature distribution	0.4 °C	Reference Temperature datalogger by Mapping Method & Reference Stop Watch (Verification in accordance with in-house method for the Temp & Time
	27 °C Temperature distribution Efficiency of circulation	0.8 °C 5 s	requirements as specified in BS1881-111:1983 CS1:1990 Vol 1 App A24 CS1:2010 Vol 1 App A28 BE EN 12390-2:2000
Oven ³	40.0 °C to 180.0 °C	1.5 °C	Reference Temperature datalogger by Mapping Method (AS 2853:1986)
Furnace ³	200 °C to 1300 °C	6 °C	Reference Thermocouple with Indicator By single point Calibration (AS 2853:1986)
Water bath ³	15 °C to 95 °C	0.2 °C	Reference Temperature datalogger by Mapping Method (AS 2853:1986)

International Accreditation Service, Inc.

3060 Saturn Street, Suite 100, Brea, California 92821, U.S.A. | www.iasonline.org

MEASURED QUANTITY or DEVICE TYPE CALIBRATED	RANGE	UNCERTAINTY ^{1,2} (±)	CALIBRATION PROCEDURE AND/OR STANDARD EQUIPMENT USED
	Time and Fre	quency	
Stop Watch / Timer ³	0 s to 3600 s 0 s to 21600 s (6 hours) 0 s to 86400 s (24 hours)	0.2 s 0.6 s 0.61 s	Reference stop watch
Grout Flow Cone ³	7 s to 9 s	0.2 s	Reference stop watch by direct method (ASTM C939-10 Cl.9)

¹The uncertainty covered by the Calibration and Measurement Capability (CMC) is expressed as the expanded uncertainty having a coverage probability of approximately 95 %. It is the smallest measurement uncertainty that a laboratory can achieve within its scope of accreditation when performing calibrations of a best existing device. The measurement uncertainty reported on a calibration certificate may be greater than that provided in the CMC due to the behavior of the calibration item and other factors that may contribute to the uncertainty of a specific calibration.

²When uncertainty is stated in relative terms (such as percent, a multiplier expressed as a decimal fraction or in scientific notation), it is in relation to instrument reading or instrument output, as appropriate, unless otherwise indicated.

³Also available as site calibration. Note that actual measurement uncertainties achievable at a customer's site can normally be expected to be larger than the uncertainties listed on this Scope of Accreditation

FAQ / Information

Mutual Recognition Arrangements (MRA) / Multilateral Recognition Arrangements (MLA)

Mutual Recognition Arrangement (MRA) Partners for HOKLAS ^

Every effort is made to promote acceptance of test data from accredited laboratories, both internationally and locally. HKAS has concluded mutual recognition arrangements with accreditation bodies listed below by being one of the signatories of the <u>International Laboratory Accreditation Cooperation Mutual Recognition Arrangement (ILAC MRA)</u> and the <u>Asia Pacific Accreditation Cooperation Mutual Recognition Arrangement (APAC MRA)</u> for testing, calibration, medical testing, Proficiency Testing Providers (PTP) and Reference Material Producers (RMP). Click <u>here</u> to view the up-to-date signatories of ILAC and <u>here</u> to access the up-to-date signatories of APAC.

Visitors checking the names, logos and accreditation symbols shown on an endorsed certificate or report should note that some of our MRA partners may have their names, logos or accreditation symbols changed recently and test reports or certificates endorsed by displaying their old accreditation symbols may still be valid during the change-over period. For details, please visit their websites or contact them directly.

» Mutual Recognition Arrangement (MRA) Partners for HOKLAS

HKAS MRA partners will recognise HOKLAS endorsed test certificates as having the same technical validity as certificates endorsed by their respective schemes.

Multilateral Recognition Arrangements (MLA) for HKCAS ^

HKAS has been a signatory of <u>Asia Pacific Accreditation Cooperation Mutual Recognition Arrangement (APAC MRA)</u> for Quality Management System (QMS), Environmental Management System (EMS), Food Safety Management System (FSMS), Energy Management System (EnMS), Occupational Health and Safety Management System (OHSMS) certifications, product certifications, and Greenhouse Gas (GHG) validation and verification.

HKAS has also been a signatory of the <u>International Accreditation Forum Multilateral Recognition Arrangement (IAF MLA)</u> for Quality Management System (QMS), Environmental Management System (EMS), Food Safety Management System (FSMS), Energy Management System (EnMS), Occupational Health and Safety Management System (OHSMS) certifications, product certifications, and Greenhouse Gas (GHG) validation and verification.

Click <u>here</u> to view the up-to-date signatories of IAF and <u>here</u> to access the up-to-date signatories of APAC.

» Mutual / Multilateral Recognition Arrangements (MRA / MLA) Partners for HKCAS

HKAS has concluded mutual recognition arrangements with accreditation bodies listed below by being one of the signatories of the <u>International Laboratory Accreditation Cooperation Mutual Recognition Arrangement (ILAC MRA)</u> and <u>Asia Pacific Accreditation Cooperation Mutual Recognition Arrangement (APAC MRA)</u> for inspection. Click <u>here</u> to view the up-to-date signatories of ILAC and <u>here</u> to access the up-to-date signatories of APAC.

HKAS MRA partners will recognise HKIAS endorsed inspection reports or certificates having the same technical validity as reports or certificates endorsed by their respective schemes.

» Mutual Recognition Arrangement (MRA) Partners for HKIAS

Hong Kong Laboratory Accreditation Scheme (HOKLAS) - Mutual Recognition Arrangement (MRA) Partners

Economy	Logo	Name of Partner	URL	Test Area
United States of America	IAS INTERNATIONAL ACCREDITATION SERVICE"	International Accreditation Service Inc. (IAS)	www.iasonline.org	Calibration, Non-medical Testing
United States of America	mvlap*	National Voluntary Laboratory Accreditation Program (NVLAP)	www.nist.gov/nvlap	Calibration, Non-medical Testing
United States of America	FJIA	Perry Johnson Laboratory Accreditation, Inc. (PJLA)	www.pjlabs.com	Calibration, Medical Testing, Non-medical Testing, Proficiency Testing Provider, Reference Material Producer
Uruguay	ORGANISMO URUGUAYO DE ACREDIFACION	Organismo Uruguayo de Acreditación (OUA)	www.organismourugua yodeacreditacion.org	Calibration, Non-medical Testing
Viet Nam		Accreditation Office for Standards Conformity Assessment Capacity (AOSC)	aosc.vn/	Calibration, Medical Testing, Non-medical Testing
Viet Nam		Bureau of Accreditation (BoA)	www.boa.gov.vn	Calibration, Medical Testing, Non-medical Testing

26 Aug 2022

香港新界粉嶺坪黃路啟芳園11A&11B號

No. 11A&B, KAI FONG GARDEN, PING CHE ROAD, FANLING, NEW TERRITORIES, HONG KONG

TEL: 852-3582-9589 FAX: 852-2674-1177 EMAIL: cal.aqtl@gmail.com WEBSITE: www.aqtlgroup.com

CERTIFICATE OF CALIBRATION

Report Number : 220908MCA-166F

Date of Report : 10-Sep-22 Page Number : 1 of 2

Customer * : Apex Testing & Certification Ltd.

Customer Address* : Unit D6A, 10/F, TML Tower, 3 Hoi Shing Road, Tsuen Wan, N.T., HK

Customers Ref. * : A005

Item Under Calibration (IUC)*

Equipment No. : N/A

Manufacturer : Sibata Scientific Technology Ltd

Model No. : LD-3B Serial No. : 235811

Scale Division : 0.001 mg/m3 Range : 0.001 to 1 mg/m3

Condition of Item : Normal

Date Item Received : 8-Sep-22 Date Calibrated : 8-Sep-22

Calibration Location : AQuality Calibration Lab.

Date of Next Calibration : 7-Sep-23
Calibrated By : Jessica Liu

Test Environment

Ambient Temperature : 25.7 °C to 33.8 °C Relative Humidity : 46 % to 83 %

Calibration Results

Reference	Average	Correction	Error of	Expanded	Coverage
True Reading	IUC Reading	3	IUC Reading	Uncertainty	Factor
(mg/m3)	(mg/m^3)	(mg/m^3)	(%)	(mg/m^3)	K
0.158	0.167	-0.008	5.1%	0.020	2.0
5.164	5.647	-0.484	8.5%	0.463	2.0
10.100	11.141	-1.041	9.3%	0.904	2.0

Remarks

- 1. * Denotes information supplied by customer.
- 2. The results relate only to the items calibrated.
- 3. The results apply to the items as received.
- 4. Correction = Average of (Ref reading IUC reading)
- 5. The technical requirement of laser dust meter. +/- 20% error for the particles concentration.

Approved by:

LEE Mei Yee, Julia Managing Director 香港新界粉嶺坪黃路啟芳園11A&11B號

No. 11A&11B, KAI FONG GARDEN, PING CHE ROAD, FANLING, NEW TERRITORIES, HONG KONG

TEL: 852-3582-9589 FAX: 852-2674-1177 EMAIL: cal.aqtl@gmail.com WEBSITE: www.aqtlgroup.com

CERTIFICATE OF CALIBRATION

Report Number : 220908MCA-166F

Date of Report : 10-Sep-22 Page Number : 2 of 2

Customer * : Apex Testing & Certification Ltd.

Customers Ref. * : A005

Details of Calibration

- 1. The calibration was performed in accordance with AQuality Testconsult Procedure Number ENV-L-003 (in-house method), by comparison with the laboratory's reference equipment which have traceable international standards of measurement.
- 2. The item under calibration (IUC) was allowed to stabilize in the laboratory for 0.25 hour before commencement of calibration.
- 3. A set of readings were made at each calibration concentration. The values quoted in the results are the average of each set of readings.
- 4. The values given in this calibration certificate only relate to the values measured at the time of calibration. Any uncertainties quoted do not include allowance for the capability of any other laboratory to repeat the measurement. The uncertainty quoted relate only to item at time of calibration. AQuality Testconsult Limited is not liable for any loss or damage resulting from the use of this equipment.
- 5. The identification, calibration certificate numbers for the reference equipment used were as follows:

Equipment Number	Certificate Number	Description
CH-LDM-1	HBW202101714	粉尘测试仪

6. Copies of the Calibration certificates of the reference equipment used in this calibration may be obtained from AQuality Testconsult Limited, if necessary.

- End of Report -

東恒測試顧問有限公司

AQUALITY TESTCONSULT LIMITED

香港新界粉嶺坪輋路啟芳園11A&11B號

TEL: 852-3582-9589

FAX: 852-2674-1177

EMAIL: cal.aqtl@gmail.com

WEBSITE: www.aqtlgroup.com

No. 11A&11B, KAI FONG GARDEN, PING CHE ROAD, FANLING, N.T., HONG KONG

CERTIFICATE OF CALIBRATION

Apex Testing & Certification Ltd.	Test Report No.	220908MCA-166F
Unit D6A, 10/F, TML Tower, 3 Hoi Shing Road, Tsuen Wan, N.T., HK	Date of Issue	10-Sep-22
	Date of Testing	8-Sep-22
	Page	1 of 1

Item for Calibration

Description : Laser Dust Monitor

Manufacturer : Sibata Scientific Technology Ltd

Model No. : <u>LD-3B</u> Serial No. : <u>235811</u>

Standard Equipment

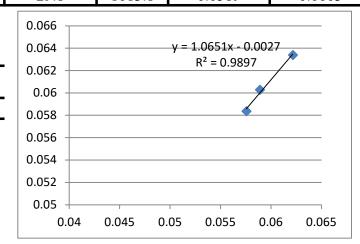
Description : High Volume Sampler / Calibration Orifice

Manufacturer : Tisch Environmental, Inc.

Model No. : TE-5170 / TE-5025A

Serial No. 3476 / 3543

Last Calibration : 6-SEP-22 / 20-OCT-21


			Mean	Concentration	Concentration
Data	Time	Mean Temp	Pressure	Standard	Calibrated
Date		1		Equipment	Equipment
		(°C)	(hPa)	(mg/m3)	(mg/m3)
8-Sep-22	19:00	29.8	1013.8	0.0622	0.0634
8-Sep-22	20:05	29.8	1013.8	0.0576	0.0584
8-Sep-22	21:10	29.8	1013.8	0.0589	0.0603

By Linear Regression of Y or X

Slope (K-factor) : 1.0651

Correlation Coefficient: 0.9897

Validity of Calibration: 7-Sep-23

Recorded by :

Jessica Liu

Signature:

Date: 8-Sep-22

Checked by

S Tang

Signature:

Date: 8-Sep-22

香港新界粉嶺坪黃路啟芳園11A&11B號

No. 11A&B, KAI FONG GARDEN, PING CHE ROAD, FANLING, NEW TERRITORIES, HONG KONG

TEL: 852-3582-9589 FAX: 852-2674-1177 EMAIL: cal.aqtl@gmail.com WEBSITE: www.aqtlgroup.com

CERTIFICATE OF CALIBRATION

Report Number : 220908MCA-163F

Date of Report : 10-Sep-22 Page Number : 1 of 2

Customer * : Apex Testing & Certification Ltd.

Customer Address* : Unit D6A, 10/F, TML Tower, 3 Hoi Shing Road, Tsuen Wan, N.T., HK

Customers Ref. * : A005

Item Under Calibration (IUC)*

Equipment No. : N/A

Manufacturer : Sibata Scientific Technology Ltd

Model No. : LD-3B Serial No. : 336338 Scale Division : 0.001 mg/m3

Range : 0.001 to 1 mg/m3

Condition of Item : Normal

Date Item Received : 8-Sep-22 Date Calibrated : 8-Sep-22

Calibration Location : AQuality Calibration Lab.

Date of Next Calibration : 7-Sep-23 Calibrated By : Jessica Liu

Test Environment

Ambient Temperature : 25.7 °C to 33.8 °C Relative Humidity : 46 % to 83 %

Calibration Results

Reference	Average	Correction	Error of	Expanded	Coverage
True Reading	IUC Reading	3	IUC Reading	Uncertainty	Factor
(mg/m3)	(mg/m^3)	(mg/m^3)	(%)	(mg/m^3)	K
0.158	0.168	-0.010	5.7%	0.026	2.0
5.164	5.562	-0.398	7.1%	0.462	2.0
10.100	10.936	-0.837	7.6%	0.905	2.0

Remarks

- 1. * Denotes information supplied by customer.
- 2. The results relate only to the items calibrated.
- 3. The results apply to the items as received.
- 4. Correction = Average of (Ref reading IUC reading)
- 5. The technical requirement of laser dust meter. +/- 20% error for the particles concentration.

Approved by:

LEE Mei Yee, Julia Managing Director

The results shown in this certificate are metrologically traceable to the International System of Units (SI) or recognised measurement standards. The certificate shall not be reproduced except in full without approval of the laboratory.

香港新界粉嶺坪黃路啟芳園11A&11B號

No. 11A&11B, KAI FONG GARDEN, PING CHE ROAD, FANLING, NEW TERRITORIES, HONG KONG

TEL: 852-3582-9589 FAX: 852-2674-1177 EMAIL: cal.aqtl@gmail.com WEBSITE: www.aqtlgroup.com

CERTIFICATE OF CALIBRATION

Report Number : 220908MCA-163F

Date of Report : 10-Sep-22 Page Number : 2 of 2

Customer * : Apex Testing & Certification Ltd.

Customers Ref. * : A005

Details of Calibration

- 1. The calibration was performed in accordance with AQuality Testconsult Procedure Number ENV-L-003 (in-house method), by comparison with the laboratory's reference equipment which have traceable international standards of measurement.
- 2. The item under calibration (IUC) was allowed to stabilize in the laboratory for 0.25 hour before commencement of calibration.
- 3. A set of readings were made at each calibration concentration. The values quoted in the results are the average of each set of readings.
- 4. The values given in this calibration certificate only relate to the values measured at the time of calibration. Any uncertainties quoted do not include allowance for the capability of any other laboratory to repeat the measurement. The uncertainty quoted relate only to item at time of calibration. AQuality Testconsult Limited is not liable for any loss or damage resulting from the use of this equipment.
- 5. The identification, calibration certificate numbers for the reference equipment used were as follows:

Equipment Number	Certificate Number	Description
CH-LDM-1	HBW202101714	粉尘测试仪

6. Copies of the Calibration certificates of the reference equipment used in this calibration may be obtained from AQuality Testconsult Limited, if necessary.

- End of Report -

東恒測試顧問有限公司

AQUALITY TESTCONSULT LIMITED

香港新界粉嶺坪輋路啟芳園11A&11B號

TEL: 852-3582-9589
FAX: 852-2674-1177
FMAIL: cal acti@gm:

EMAIL : cal.aqtl@gmail.com WEBSITE: www.aqtlgroup.com

No. 11A&11B, KAI FONG GARDEN, PING CHE ROAD, FANLING, N.T., HONG KONG

CERTIFICATE OF CALIBRATION

Apex Testing & Certification Ltd.	Test Report No.	220908MCA-163F
Unit D6A, 10/F, TML Tower, 3 Hoi Shing Road, Tsuen Wan, N.T., HK	Date of Issue	10-Sep-22
	Date of Testing	8-Sep-22
	Page	1 of 1

Item for Calibration

Description : Laser Dust Monitor

Manufacturer : Sibata Scientific Technology Ltd

Model No. : <u>LD-3B</u> Serial No. : <u>336338</u>

Standard Equipment

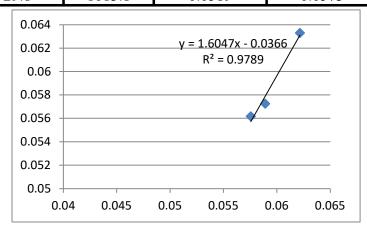
Description : High Volume Sampler / Calibration Orifice

Manufacturer : Tisch Environmental, Inc.

Model No. : TE-5170 / TE-5025A

Serial No. 3476 / 3543

Last Calibration : 6-SEP-22 / 20-OCT-21


			3.6	Concentration	Concentration
.	T.:	Mean Temp	Mean	Standard	Calibrated
Date	Time	1	Pressure	Equipment	Equipment
		(°C)	(hPa)	(mg/m3)	(mg/m3)
8-Sep-22	19:00	29.8	1013.8	0.0622	0.0633
8-Sep-22	20:05	29.8	1013.8	0.0576	0.0562
8-Sep-22	21:10	29.8	1013.8	0.0589	0.0573

By Linear Regression of Y or X

Slope (K-factor) : 1.6047

Correlation Coefficient: 0.9789

Validity of Calibration: 7-Sep-23

Recorded by : Jessica Liu Signature: Date: 8-Sep-22

Checked by : S Tang Signature: Date: 8-Sep-22

香港新界粉嶺坪黃路啟芳園11A&11B號

No. 11A&B, KAI FONG GARDEN, PING CHE ROAD, FANLING, NEW TERRITORIES, HONG KONG

TEL: 852-3582-9589 FAX: 852-2674-1177 EMAIL: cal.aqtl@gmail.com WEBSITE: www.aqtlgroup.com

CERTIFICATE OF CALIBRATION

Report Number : 220908MCA-165F

Date of Report : 10-Sep-22 Page Number : 1 of 2

Customer * : Apex Testing & Certification Ltd.

Customer Address* : Unit D6A, 10/F, TML Tower, 3 Hoi Shing Road, Tsuen Wan, N.T., HK

Customers Ref. * : A005

Item Under Calibration (IUC)*

Equipment No. : N/A

Manufacturer : Sibata Scientific Technology Ltd

Model No. : LD-3B Serial No. : 567188 Scale Division : 0.001 mg/m3 Range : 0.001 to 1 mg/m3

Condition of Item : Normal

Date Item Received : 8-Sep-22 Date Calibrated : 8-Sep-22

Calibration Location : AQuality Calibration Lab.

Date of Next Calibration : 7-Sep-23
Calibrated By : Jessica Liu

Test Environment

Ambient Temperature : 25.7 °C to 33.8 °C Relative Humidity : 46 % to 83 %

Calibration Results

Reference	Average	Correction	Error of	Expanded	Coverage
True Reading	IUC Reading	3	IUC Reading	Uncertainty	Factor
(mg/m3)	(mg/m^3)	(mg/m^3)	(%)	(mg/m^3)	K
0.158	0.167	-0.008	4.9%	0.023	2.0
5.164	5.693	-0.530	9.3%	0.463	2.0
10.100	11.045	-0.945	8.6%	0.905	2.0

Remarks

- 1. * Denotes information supplied by customer.
- 2. The results relate only to the items calibrated.
- 3. The results apply to the items as received.
- 4. Correction = Average of (Ref reading IUC reading)
- 5. The technical requirement of laser dust meter. +/- 20% error for the particles concentration.

Approved by:

LEE Mei Yee, Julia Managing Director 香港新界粉嶺坪黃路啟芳園11A&11B號

No. 11A&11B, KAI FONG GARDEN, PING CHE ROAD, FANLING, NEW TERRITORIES, HONG KONG

TEL: 852-3582-9589 FAX: 852-2674-1177 EMAIL: cal.aqtl@gmail.com WEBSITE: www.aqtlgroup.com

CERTIFICATE OF CALIBRATION

Report Number : 220908MCA-165F

Date of Report : 10-Sep-22 Page Number : 2 of 2

Customer * : Apex Testing & Certification Ltd.

Customers Ref. * : A005

Details of Calibration

- 1. The calibration was performed in accordance with AQuality Testconsult Procedure Number ENV-L-003 (in-house method), by comparison with the laboratory's reference equipment which have traceable international standards of measurement.
- 2. The item under calibration (IUC) was allowed to stabilize in the laboratory for 0.25 hour before commencement of calibration.
- 3. A set of readings were made at each calibration concentration. The values quoted in the results are the average of each set of readings.
- 4. The values given in this calibration certificate only relate to the values measured at the time of calibration. Any uncertainties quoted do not include allowance for the capability of any other laboratory to repeat the measurement. The uncertainty quoted relate only to item at time of calibration. AQuality Testconsult Limited is not liable for any loss or damage resulting from the use of this equipment.
- 5. The identification, calibration certificate numbers for the reference equipment used were as follows:

Equipment Number	Certificate Number	Description
CH-LDM-1	HBW202101714	粉尘测试仪

6. Copies of the Calibration certificates of the reference equipment used in this calibration may be obtained from AQuality Testconsult Limited, if necessary.

- End of Report -

東恒測試顧問有限公司

AQUALITY TESTCONSULT LIMITED

香港新界粉嶺坪輋路啟芳園11A&11B號

TEL : 852-3582-9589 FAX : 852-2674-1177 EMAIL : cal.aqtl@gmail.com

WEBSITE: www.aqtlgroup.com

No. 11A&11B, KAI FONG GARDEN, PING CHE ROAD, FANLING, N.T., HONG KONG

CERTIFICATE OF CALIBRATION

Apex Testing & Certification Ltd.	Test Report No.	220908MCA-165F
III.: DCA 10/E TMI Tayyan 2 IIa:	Date of Issue	10-Sep-22
Unit D6A, 10/F, TML Tower, 3 Hoi Shing Road, Tsuen Wan, N.T., HK	Date of Testing	8-Sep-22
Silling Road, Tsuell Wall, N.T., FIK	Page	1 of 1

Item for Calibration

Description : Laser Dust Monitor

Manufacturer : Sibata Scientific Technology Ltd

Model No. : <u>LD-3B</u> Serial No. : <u>567188</u>

Standard Equipment

Description : High Volume Sampler / Calibration Orifice

Manufacturer : Tisch Environmental, Inc.

Model No. : TE-5170 / TE-5025A

Serial No. 3476 / 3543

Last Calibration : 6-SEP-22 / 20-OCT-21

				Concentration	Concentration
D .	T.:	Mean Temp Mean Standard	Standard	Calibrated	
Date	Time		Pressure	Equipment	
		(°C)	(hPa)	(mg/m3)	(mg/m3)
8-Sep-22	19:00	29.8	1013.8	0.0622	0.0631
8-Sep-22	20:05	29.8	1013.8	0.0576	0.0581
8-Sep-22	21:10	29.8	1013.8	0.0589	0.0591

By Linear Regression of Y or X

Slope (K-factor) : 1.1031

Correlation Coefficient: 0.9898

Validity of Calibration: 7-Sep-23

Recorded by : Jessica Liu Signature: Date: 8-Sep-22

Checked by : S Tang Signature: Date: 8-Sep-22

Certificate of Calibration

Certificate No.: A220075

Description: Make: Model: Serial No.: Type:	Sound level meter Hangzhou Aihua AWA5661 301135	Microphone Hangzhou Aihua AWA14421 102497 -	Preamplifier Hangzhou Aihua - - -
---	--	---	---

Customer: Apex Testing & Certification Ltd

Department: -

Address: Unit D6A, 10/F, TML Tower, 3 Hoi Shing Road, Tsuen Wan, N.T. Hong

Kong

Date of receipt the calibration item: 2022-09-26

Environmental conditions:

 Pressure:
 $(100.45 \pm 0.50) \text{ kPa}$

 Temperature:
 $(24.7 \pm 1.0) ^{\circ}\text{C}$

 Humidity:
 $(32.3 \pm 2.0) ^{\circ}\text{RH}$

Date of calibration: 2022-10-11 **Date of issue:** 2022-10-11

Prepared by:

Wong Hau Chun

Checked by:

Choi Pui Sum

Approved Signatory:

Chọi Pu Sum

Preconditioning:

The equipment was preconditioned for more than 12 hours at the measurement conditions of pressure, temperature and humidity.

Measurement method:

A description of the in-house test procedure (ESG-NOISE-001) is available separately from the calibration laboratory.

Test Specification:

The Sound Level Meter has been calibrated in accordance with the requirements as specified the electrical tests in IEC 61672-3;2013 (Clause 11.2, 13, 14, 15, 16, 17(If necessary) *, 18, 19, 20 and 21).

Reference equipment used in the calibration:

terer ence equipment used in th	c cann acton.			
Description:	Model:	Serial No.	Calibration	Traceable to:
			Date:	
Signal generator	DS 360	123901	29-Jul-2021	The Government of
				HKSAR Standards and
				Calibration Laboratory
Meteo Station HM30	HM30	J120806	20-Aug-2021	Huber Instrumente
				Calibration Laboratory

Uncertainty:

The measurement uncertainty evaluation has been carried out in accordance with principles in the Evaluation of Measurement Data – Guide to the Expression of Uncertainty in Measurement, JCGM 100:2008. The expanded measurement uncertainty U, with its coverage factor k, corresponds to an approximate 95% probability that the value of measurand Y lies within the interval y-U to y+U. The combined standard measurement uncertainty uc can be calculated as uc = U/k and its degree of freedom Veff is given by the t-distribution with the respective k value.

^{*}The application of Clause 17 is based on the more than one level range of Sound Level Meter.

Summary of Measurement Results

Self-generated noise - IEC 61672-3 Ed.2.0 Clause 11

Frequency weightings: A Network - IEC 61672-3 Ed.2.0 Clause 13.3 Frequency weightings: C Network - IEC 61672-3 Ed.2.0 Clause 13.3 Frequency weightings: Z Network - IEC 61672-3 Ed.2.0 Clause 13.3 Frequency and time weightings at 1 kHz IEC 61672-3 Ed.2.0 Clause 14

Long term stability test - IEC 61672-3 Ed.2.0 Clause 15

Level linearity on the reference level range - IEC 61672-3 Ed.2.0 Clause 16 Level linearity including the level range control - IEC 61672-3 Ed.2.0 Clause 17

Toneburst response - IEC 61672-3 Ed.2.0 Clause 18 Peak C sound level - IEC 61672-3 Ed.2.0 Clause 19 Overload indication - IEC 61672-3 Ed.2.0 Clause 20 High level stability test - IEC 61672-3 Ed.2.0 Clause 21

Verification:

The verification measurements have been performed using the calibration system Nor1504A with software SlmCal62Y8.exe.

Detailed measurement results are printed on the following pages.

Comment:

The values given in this Certificate of Calibration only relate to values measured at the time of the test and any measurement uncertainties quoted will not include allowances for the equipment long term drift, variations with environmental changes, vibration and shock during transportation, or the capability of any other laboratory to repeat the measurement. The results apply to the item as received.

The results in this Certificate of Calibration only apply to the sample / calibration item as received.

Measurement results

Self-generated noise test - IEC 61672-3:2013 Clause 11		
Description:		
Relevant tests were carried out in accordance with Section 11 of IEC 61672-3:2013. The ne	oise test is perf	formed in
the most sensitive of the SLM with the microphone replaced by an equivalent impedance.		
Noise level in A weighting network	16.6	dB
Noise level in C weighting network	19.0	dB
Noise level in Z (Lin) weighting network	25.4	dB

Frequency weighting test - IEC 61672-3:2013 Clause 13.3

Description:

Relevant tests were carried out in accordance with Section 13.3 of IEC 61672-3:2013. The frequency response of the weighting networks are tested at octave intervals over the frequency ranges 63.1Hz to 15848.9 Hz.

On the reference level range and for each frequency weighting to be tested, the level of a 1 kHz input signal shall be adjusted to yield an indication that is 45 dB less than the upper boundary stated in the Instruction Manual for the linear operating range at 1 kHz on the reference level range.

Frequency v	weighting A:							
Frequency	Reference	Measured	Expanded	Coverage	Deviation	Acceptance		Maximum
	level	level	Measurement	Factor		limit	(dB)	permitted
			Uncertainty	k				uncertainty
			U					
Hz	dB	dB	dB		dB	+	-	dB
63.1	95.0	94.9	0.1		-0.1	1.0	1.0	
125.9	95.0	95.0	0.1		0.0	1.0	1.0	
251.2	95.0	94.9	0.1		-0.1	1.0	1.0	
501.2	95.0	95.0	0.1		0.0	1.0	1.0	0.6
1000.0	95.0	95.0	0.1	1.96	0.0	0.7	0.7	
1995.3	95.0	95.1	0.1		0.1	1.0	1.0	
3981.1	95.0	95.2	0.1		0.2	1.0	1.0	
7943.3	95.0	95.7	0.1		0.7	1.5	2.5	0.7
15848.9	95.0	92.0	0.1		-3.0	2.5	16	1.0
Г	' 1 ' C			-				

Frequency v	weighting C:							
Frequency	Reference	Measured	Expanded	Coverage	Deviation	Acceptance		Maximum
	level	level	Measurement	Factor		limit	(dB)	permitted
			Uncertainty	k				uncertainty
			U					
Hz	dB	dB	dB		dB	+	-	dB
63.1	95.0	94.9	0.1		-0.1	1.0	1.0	
125.9	95.0	95.0	0.1		0.0	1.0	1.0	
251.2	95.0	94.9	0.1		-0.1	1.0	1.0	
501.2	95.0	95.0	0.1		0.0	1.0	1.0	0.6
1000.0	95.0	95.0	0.1	1.96	0.0	0.7	0.7	
1995.3	95.0	95.0	0.1		0.0	1.0	1.0	
3981.1	95.0	95.2	0.1		0.2	1.0	1.0	
7943.3	95.0	95.6	0.1		0.6	1.5	2.5	0.7
15848.9	95.0	91.9	0.1		-3.1	2.5	16	1.0

Hong Kong Accreditation Service (HKAS) has accredited this laboratory (Reg. No. HOKLAS 302) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific calibration activities as listed in the HOKLAS directory of accredited laboratories. The results shown in this certificate are traceable to the International System of Unit (SI) or recognised measurement standards. This certificate shall not be reproduced except in full.

Tel: 2525 8033

Website: www.esgmatters.asia Email: email@esgmatters.asia

Frequency v	weighting Z:							
Frequency	Reference	Measured	Expanded	Coverage	Deviation	Accep	otance	Maximum
	level	level	Measurement	Factor		limit	(dB)	permitted
			Uncertainty	k				uncertainty
			U					
Hz	dB	dB	dB		dB	+	-	dB
63.1	95.0	95.0	0.1	10.	0.0	1.0	1.0	
125.9	95.0	95.0	0.1	<u> </u>	0.0	1.0	1.0	
251.2	95.0	95.0	0.1		0.0	1.0	1.0	
501.2	95.0	95.0	0.1		0.0	1.0	1.0	0.6
1000.0	95.0	95.0	0.1	1.96	0.0	0.7	0.7	
1995.3	95.0	95.0	0.1		0.0	1.0	1.0	
3981.1	95.0	94.9	0.1		-0.1	1.0	1.0	
7943.3	95.0	95.0	0.1		0.0	1.5	2.5	0.7
15848.9	95.0	94.8	0.1		-0.2	2.5	16	1.0

Frequency and time weighting test at 1kHz-IEC 61672-3:2013 Clause 14

Description:

Relevant tests were carried out in accordance with Section 14 of IEC 61672-3:2013. For a steady sinusoidal electrical input signal at 1 kHz on the reference level range and with an input signal that yields an indication of the reference sound pressure level with frequency weighting A ,C and Z, with the sound level meter set to display F-time-weighted sound level, or time averaged sound level, as available. In addition, the indications with frequency weighting A shall be recorded with the sound level meter set to display F-time-weighted sound level, S-timeweighted sound level, and time-averaged sound level.

Parameter setting	Reference level	Measured Level	Expanded Measurement Uncertainty U	Coverage Factor k	Deviation	Acceptance Limits (dB)		Maximum permitted uncertainty
	dB	dB	dB		dB	+	-	dB
L _{AF} SPL	94.0	94.0	0.1		0.0			1
Lc_FSPL	94.0	94.0	0.1		0.0	0.2	0.2	
Lz_FSPL	94.0	94.0	0.1	1.96	0.0			0.2
$L_{As}SPL$	94.0	94.0	0.1	1.90	0.0			0.2
LAeq	94.0	94.0	0.1		0.0	0.1	0.1	
LAE	114.0	114.1	0.1		0.1			and the same

Long term stability test - IEC 61672-3:2013 Clause 15

Description:

Relevant tests were carried out in accordance with Section 15 of IEC 61672-3:2013. The long-term stability of a sound level meter is evaluated from the difference between the A-weighted sound levels indicated in response to steady 1 kHz signals applied at the beginning and end of a period of operation. The period of continuous operation shall be between 25 min and 35 min are performed.

Test signal	l: Sine wave a	t 1 kHz						
Time	Reading at	Reading at	Expanded	Coverage	Deviation	Acceptan	ce Limits	Maximum
interval	beginning	Ending	Measurement	Factor		(dB)		permitted
			Uncertainty	k				uncertainty
			U					
mm:ss	dB	dB	dB		dB	+	-	dB
25:10	94.0	94.0	0.1	1.96	0.0	0.1	0.1	0.1

Hong Kong Accreditation Service (HKAS) has accredited this laboratory (Reg. No. HOKLAS 302) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific calibration activities as listed in the HOKLAS directory of accredited laboratories. The results shown in this certificate are traceable to the International System of Unit (SI) or recognised measurement standards. This certificate shall not be reproduced except in full.

Tel: 2525 8033 Website: www.esgmatters.asia Email: email@esgmatters.asia

Level linearity on the reference level range test - IEC 61672-3:2013 Clause 16

Description:

Relevant tests were carried out in accordance with Section 16 of IEC 61672-3:2013. Level linearity shall be tested with steady sinusoidal electrical signals at a frequency of 8 kHz with the sound level meter set for frequency-weighting A. Level linearity shall be measured in 5 dB steps of increasing input signal level from the starting point up to within 5 dB of the upper boundary stated in the Instruction Manual for the linear operating range at 8 kHz, then at 1 dB steps of increasing input signal level up to, but not including, the first indication of overload. The test of level linearity shall then be continued at 5 dB steps of decreasing input signal level from the starting point down to within 5 dB of the specified lower boundary, then at 1 dB steps of decreasing input signal level down to, but not including, the first indication of an under-range condition.

Reference level	Measured level	Expanded Measurement Uncertainty U	Coverage Factor k	Deviation		otance (dB)	Maximum permitted uncertainty
dB	dB	dB		dB	+	-	dB
94.0	93.9	0.1		-0.1			
99.0	98.9	0.1		-0.1			
104.0	103.9	0.1		-0.1			
109.0	108.9	0.1		-0.1			
114.0	113.9	0.1		-0.1		- J	1
119.0	118.8	0.1		-0.2			0.3
124.0	123.8	0.1		-0.2			
129.0	128.8	0.1		-0.2		-	
134.0	133.8	0.1		-0.2		1	
136.0	135.8	0.1		-0.2			377
137.0	136.8	0.1		-0.2			
138.0	137.8	0.1		-0.2			
139.0	138.8	0.1	1.96	-0.2	0.8	0.8	
140.0	139.8	0.1	1.90	-0.2	0.8	0.8	
94.0	93.9	0.1		-0.1		H H	
89.0	88.9	0.1		-0.1			
84.0	83.8	0.1		-0.2			
79.0	78.8	0.1		-0.2			
74.0	73.8	0.1		-0.2			0.3
69.0	68.8	0.1		-0.2			
64.0	63.8	0.1		-0.2		1 - 1 - 1	
59.0	58.9	0.1		-0.1			
54.0	53.9	0.1		-0.1			
50.0	50.1	0.1		0.1			
49.0	49.1	0.1		0.1			
45.0	45.5	0.1		0.5			

Level linearity including the level range control test - IEC 61672-3:2013 Clause 17

Description:

Relevant tests were carried out in accordance with Section 17 of IEC 61672-3:2013. For sound level meters that have more than one level range, tests of level linearity deviations including deviations introduced by the level range control shall be performed with steady sinusoidal electrical input signals at a frequency of 1 kHz and with the sound level meter set for frequency weighting A.

For each level range, the level of the input signal shall then be adjusted to yield a signal level that is expected to be 5 dB

greater than the signal level that first causes an indication of under-range on a level range.

Full	Reference	Measured	Expanded	Coverage	Deviation	Acceptance		ce Maximum	
Scale	level	level	Measurement	Factor		limit	(dB)	permitted	
			Uncertainty	k				uncertainty	
			U						
dB	dB	dB	dB		dB	+	-	dB	
Measure	d at 1 kHz								
The follo	owing measurer	nents are SPL r	neasurements						
Measuri	ng the reference	level on the av	ailable ranges	14.5					
140.0	94.0	94.0	0.1	1.96	0.0	0.3	0.3	0.2	
120.0	94.0	94.1	0.1	1.90	0.1	0.3	0.3	0.3	
Measurii	ng 5 dB below t	full scale on all	available ranges						
140.0	135.0	135.0	0.1	1.06	0.0	0.0	0.8	0.2	
120.0	115.0	115.0	0.1	1.96	0.0	0.8	0.8	0.3	

Toneburst response test - IEC 61672-3:2013 Clause 18

Description:

Relevant tests were carried out in accordance with Section 18 of IEC 61672-3:2013. For the toneburst signals, indications of the sound level meter to be recorded are maximum F-time-weighted sound level, maximum S-time-weighted sound level, and sound exposure level. The level of the steady input signal shall be adjusted to display an F-time-weighted, S time-weighted, or time-averaged sound level, as appropriate, that is 3 dB less than the upper boundary stated in the Instruction Manual for the linear operating range at 4 kHz on the reference level range.

For tests with the F time weighting, the indication shall be recorded of the maximum F time-weighted sound level in response to tonebursts having durations of 200 ms, 2 ms, and 0.25 ms.

For tests with the S time weighting, the indication shall be recorded of the maximum S time-weighted sound level in response to tonebursts having durations of 200 ms and 2 ms.

For measurements of sound exposure level (or time-averaged sound level for an averaging time that includes the toneburst), the indications in response to tonebursts having durations of 200 ms, 2 ms, and 0.25 ms.

Parameter	Burst	Reference	Measured	Expanded	Coverage	Deviation	Accep	otance	Maximum
setting	duration	level	level	Measurement	Factor	- 1	limit	(dB)	permitted
				Uncertainty	k		1111		uncertaint
				U					у
	ms	dB	dB	dB		dB	+	Ŧ	dB
	200	136.0	136.0	0.1		0.0	0.5	0.5	4 20
$L_{AF}MAX$	2	119.0	118.7	0.1		-0.3	1.0	1.5	
	0.25	110.0	109.8	0.1		-0.2	1.0	3.0	
L _{AS} MAX	200	129.6	129.6	0.1	1.96	0.0	0.5	0.5	0.3
LASIVIAA	2	110.0	110.0	0.1	1.90	0.0	1.0	3.0	0.5
	200	130.0	130.1	0.1		0.1	0.5	0.5	
LAE	2	110.0	110.0	0.1		0.0	1.0	1.5	
LAE	0.25	101.0	100.9	0.1		-0.1	1.0	3.0	

Peak C sound level test - IEC 61672-3:2013 Clause 19

Description:

Relevant tests were carried out in accordance with Section 19 of IEC 61672-3:2013. Indications of C-weighted peak sound level shall be tested on the least-sensitive level range. The test signals consist of (a) a single complete cycle of an 8 kHz sinusoid starting and stopping at zero crossings and (b) positive and negative half cycles of a 500 Hz sinusoid that also start and stop at zero crossings.

The level of the steady sinusoidal 8 kHz electrical input signal, from which a single complete cycle is extracted, shall be adjusted to yield an indication of C-weighted, F-timeweighted sound level, or C-weighted, time-averaged sound level, that is 8 dB less than the upper boundary stated in the Instruction Manual for the peak level range at 8 kHz on the least sensitive level range.

The level of the steady sinusoidal 500 Hz electrical input signal, from which positive and negative half cycles are extracted, shall be adjusted to yield an indication of C-weighted, F time-weighted sound level, or C-weighted, time-averaged sound level, that is 8 dB less than the upper boundary stated in the Instruction Manual for the peak level range on the least-sensitive level range.

Anna Para santa sa										
Pulse	Pulse	Reference	Measured	Expanded	Coverage	Deviation	Accep	otance	Maximum	
type	frequency	Peak level	level	Measurement	Factor		limit	(dB)	permitted	
				Uncertainty	k				uncertainty	
				U						
	Hz	dB	dB	dB		dB	+	-	dB	
1 cycle	8000	138.40	137.90	0.10		-0.50	2.00	2.00		
Positive	500	140.40	139.60	0.10	1.06	-0.80			0.25	
cycle	1-6-17				1.96		1.00	1.00	0.35	
Negative cycle	500	140.40	139.50	0.10		-0.90	1,00	1,00		

Overload indication test - IEC 61672-3:2013 Clause 20

Description:

Relevant tests were carried out in accordance with Section 20 of IEC 61672-3:2013. The sound level meter set to display A-weighted, time-averaged sound level. Positive and negative one-half cycle sinusoidal electrical signals at a frequency of 4 kHz.

The test shall begin at an indicated time-averaged level for the steady input signal that corresponds to 1 dB less than the upper boundary specified for the linear operating range at 4 kHz. The level of the single positive one-half-cycle input signal shall be increased to the first indication of overload, to a resolution of 0,1 dB. The process shall be repeated for the single negative one-half-cycle signal.

Overload indication at 4 kHz		Expanded	Coverage Deviation Acceptance limi		nce limit	Maximum	
Positive one-	Negative one-	Measurement	Factor		(dB)		permitted
half-cycle	half-cycle	Uncertainty	k				uncertainty
		U	-				
dB	dB	dB		dB	+	-	dB
146.70	147.10	0.10	1.96	0.40	1.50	1.50	0.25

High level stability test - IEC 61672-3:2013 Clause 21

Description:

Relevant tests were carried out in accordance with Section 21 of IEC 61672-3:2013. The ability of a sound level meter to operate continuously in response to high signal levels without significant change in sensitivity is evaluated from the difference between the A weighted sound levels indicated in response to a steady 1 kHz electrical signal at the beginning and end of a 5 min period of continuous exposure to the signal.

The level of the steady electrical input signal shall be that which is required to display the sound level that is 1 dB

less than the upper boundary of the 1 kHz linear operating range on the least-sensitive level range.

icss man me	less than the upper boundary of the 1 kHz linear operating range on the least-sensitive level range.										
Reading at	Reading	Expanded	Coverage	Deviation	Acceptance		Acceptance Maximum p		Maximum permitted		
beginning	at Ending	Measurement	Factor		Limits (dB)		uncertainty				
		Uncertainty	k								
		U									
dB	dB	dB		dB	+	-	dB				
139.0	139.0	1.0	1.96	0.0	0.1	0.1	0.1				

Remark:

Acoustical levels are stated relative to 20µPa. Other dB levels are relative values.

Certificate of Calibration

Certificate No.: B220032

Description:	Sound calibrator
Make:	Quest

 Model:
 QC-10

 Serial No.:
 QI9010183

Class:

Customer: Apex Testing & Certificate Ltd

Department:

Address: Unit D6A, 10/F, TML Tower, 3 Hoi Shing Road, Tsuen Wan, N.T.

Date of receipt the calibration item: 2022-09-26

Environmental conditions:

 Pressure:
 $(100.34 \pm 0.50) \, \text{kPa}$

 Temperature:
 $(21.6 \pm 1.0) \, ^{\circ}\text{C}$

 Humidity:
 $(57,0 \pm 2.0) \, ^{\circ}\text{RH}$

Date of calibration: 2022-10-05 **Date of issue:** 2022-10-05

Prepared by:

Approved Signatory:

II. T.- Cl....

Checked by:

Cho Pui Sur

1

Preconditioning:

The equipment was preconditioned for more than 12 hours at the measurement conditions of pressure, temperature and humidity.

Measurement method:

A description of the in-house test procedure (ESG-NOISE-003) is available separately from the calibration laboratory.

Test Specification:

The Sound Calibrator has been calibrated in accordance with the requirements as specified the in-house test procedure ESG-NOISE-003.

The verification measurements were performed using the calibration system Nor1504A with software CalCal62NCL.exe. As acoustical reference was used WSM - Nor1225-215371 with sensitivity: 54.76 mV/Pa.

Reference equipment used in the cali	bration:
--------------------------------------	----------

xererence equipment used in	the cambi anon			
Description:	Model:	Serial No.	Calibration Date:	Traceable to:
Signal generator	DS 360	123901	2021-07-30	The Government of HKSAR
				Standards and Calibration
				Laboratory
Multimeter	Agilent	MY41030277	2021-08-03	The Government of HKSAR
	34401A			Standards and Calibration
				Laboratory
Meteo Station HM30	HM30	J120806	2021-08-20	Huber Instrumente Calibration
1,10000 2,0001211111200				Laboratory
Reference microphone	Nor 1225	215371	2021-06-28	The Government of HKSAR
rectorence imerophone	1101 1220	210071		Standards and Calibration
				Laboratory
Reference Calibrator	B&K 4231	3014997	2021-08-03	The Government of HKSAR
Reference Canonator	Ball 1231	301 1331	2021 00 00	Standards and Calibration
				Laboratory
Andia Analyzar	8903B	3011A11797	2021-08-13	China Ceprei Laboratory
Audio Analyzer	0303D	JU11/411/7/	2021-00-13	Calibration & Testing Centre
				Cantilation & resting Centre

Uncertainty:

The reported expanded uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k, which with the reported effective degree of freedom corresponds to coverage probability of approximately 95%. The standard uncertainty of measurement has been determined in accordance with EA publication EA-4/02.

The measurement uncertainty evaluation has been carried out in accordance with principles in the Evaluation of Measurement Data – Guide to the Expression of Uncertainty in Measurement, JCGM 100:2008. The expanded measurement uncertainty U, with its coverage factor k, corresponds to an approximate 95% probability that the value of measurand Y lies within the interval y-U to y+U. The combined standard measurement uncertainty uc can be calculated as uc = U/k and its degree of freedom Veff is given by the t-distribution with the respective k value.

Comment:

The values given in this Certificate of Calibration only relate to values measured at the time of the test and any measurement uncertainties quoted will not include allowances for the equipment long term drift, variations with environmental changes, vibration and shock during transportation, or the capability of any other laboratory to repeat the measurement. The results apply to the item as received.

All tests are performed according to in-house test procedure ESG-Noise-003.

The results in this Certificate of Calibration only apply to the sample / calibration item as received.

Table 1

Sound Pressure Level Test Results

Description:

Performance tests were carried out in accordance with Annex B.3.4.3.2 of IEC 60942:2003. The sound pressure level generated by the equipment was compare to the reference sound pressure level by the reference equipment B&K 4231 (Equipment No.:3014997).

Quest QC-10			N	Measured Deviation	Acceptance	Maximum	
				(b) - (a)		Limits	Permitted
Frequency	nency Sound Pressure Level		Value	Measurement Uncertainty			Uncertainty
Setting	Expected	Measured	у	Expanded	Coverage		
	Reading	Reading		Measurement	Factor		
	(a)	(b)		Uncertainty	k		
				U			
(Hz)	(dB)	(dB)	(dB)	(dB)		(dB)	(dB)
1000.00	114.00	113.85	-0.15	0.13	1.96	±0.40	0.15

The calibrator was placed on top of the reference microphone, only held in place by gravity. At least three repetitions have been performed. No adapter ring was needed to obtain half inch configuration.

The calibrator level was not adjusted.

Table 2

Frequency Test Results

Description:

Relevant tests were carried out in accordance with Annex B.3.5 of IEC 60942:2003. The frequency of sound pressure level generated by the equipment was measured by the multimeter (Equipment No.: MY41030277).

	Quest QC-10			Measured Deviation	Acceptance	Maximum	
			$[=([b]-[a])/[a] \times 100\%]$			Limits	Permitted
Sound	Frequ	uency	Value	Value Measurement Uncertainty		1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	Uncertainty
Pressure	Expected	Measured	у	Expanded	Coverage		
Level	Reading	Reading		Measurement	Factor		
Setting	(a)	(b)		Uncertainty	k		
		4		U			
(dB)	(Hz)	(Hz)	(%)	(%)		(%)	(%)
114.00	1000.00	998.68	-0.13	0.14	1.96	±1.00	0.30

The calibrator was placed on top of the reference microphone, only held in place by gravity. At least three repetitions have been performed. No adapter ring was needed to obtain half inch configuration.

The calibrator level was not adjusted.

Table 3

Total Distortion Test Results

Description:

Relevant tests were carried out in accordance with Annex B.3.6 of IEC 60942:2003. The total distortion of the acoustic signal generated by the equipment was measured by the Laboratory's audio analyzer (Equipment No.: 3011A11797).

Quest QC-10			Measured Total Dist	ortion	Acceptance Limits	Maximum Permitted
Frequency	Sound	Value	Measurement	Uncertainty		Uncertainty
Setting	Pressure	у	Expanded	Coverage		ا السط
	Level		Measurement	Factor		
	Setting		Uncertainty	k		
(d)			U		L 11	470
(Hz)	(dB)	(%)	(%)		(%)	(%)
1000.00	114.00	0.43	0.21	1.96	±3.00	0.50

The calibrator was placed on top of the reference microphone, only held in place by gravity. At least three repetitions have been performed. No adapter ring was needed to obtain half inch configuration.

The calibrator level was not adjusted.

The stated levels are relative to 20µPa. The distortion value (in %) is the signal to total noise ratio.