

RECALIBRATION **DUE DATE:**

October 20, 2022

Certificate of Calibration

					on Informat	· ·		°K	
Cal. Date:	October 20), 2021	Roots	meter S/N:	438320	Ta:	Ta: 295		
Operator:	Jim Tisch					Pa:	753.9	mm Hg	
Calibration	Model #:	TE-5025A	Calil	orator S/N:	3543				
		No.1 Justa	Mal Pinal		A 771			1	
	Run	Vol. Init (m3)	Vol. Final (m3)	ΔVol. (m3)	ΔTime (min)	ΔP (mm Ha)	ΔH (i= 1120)		
	1	<u>(ms)</u>	2	1		(mm Hg) 3.2	(in H2O) 2.00		
	2	3	4	1	1.0060	6.4	4.00		
	3	5	6	1	0.8990	7.9	5.00		
	4	7	8	1	0.8550	8.8	5.50		
	5	9	10	1	0.7050	12.8	8.00		
			<u> </u>	Data Tabula	tion			1	
				V Tetal			[
	Vstd	Qstd	$\sqrt{\Delta H \left(\frac{Pa}{Pstd} \right)}$	<u>)(Tstd</u>) Ta		Qa	√∆H(Ta/Pa)		
	(m3)	(x-axis)	(y-ax	is)	Va	(x-axis)	(y-axis)		
	0.9978	0.6977	1.41		0.9958	0.6963	0.8847		
	0.9935	0.9876	2.002	20	0.9915	0.9856	1.2511		
	0.9915	1.1029	2.238		0.9895	1.1007	1.3988		
	0.9903	1.1583	2.34		0.9883	1.1559	1.4670		
	0.9850	1.3972	2.83		0.9830	1.3944	1.7693		
	QSTD	b=	2.024		0.0	<u>m=</u> b=	1.26761 0.00217		
	QJID	r=	1.000		QA	r=	1.00000		
		·····		Calculatio	nc				
	Vstd=	ΔVol((Pa-ΔP)	/Pstd)(Tstd/Ta	Calculations a) Va=ΔVol((Pa-ΔP)/Pa)					
		Vstd/∆Time	// 500/(1500/ /2	·,		Qa= Va/ATime			
			For subsequ	ent flow ra	te calculation	and the second sec			
	Qstd=	1/m ((\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Pa <u>Tstd</u> Pstd Ta))-b)	$\mathbf{Qa=1/m}\left(\left(\sqrt{\Delta H(Ta/Pa)}\right)-b\right)$				
	Standard	Conditions							
					RECALIBRATION				
Tstd:			1. · · · · · · · · · · · · · · · · · · ·			US EPA recommends annual recalibration per 1998			
Tstd: Pstd:	760	mm Hg			US EPA reco	mmonds a	nual recalibratio	n nor 100	
Pstd:	760 K	mm Hg Cey	n H2O)					-	
Pstd: AH: calibrate	760 K pr manomet	mm Hg C ey er reading (ii			40 Code	of Federal F	egulations Part 5	50 to 51,	
Pstd: ΔH: calibrato ΔP: rootsme	760 K or manomet ter manome	mm Hg Cey			40 Code Appendix E	of Federal F 8 to Part 50,	egulations Part 5 Reference Meth	50 to 51, od for the	
Pstd: ΔΗ: calibrato ΔΡ: rootsme Γa: actual ab	760 K or manomet ter manome solute temp	mm Hg er reading (ii eter reading ((mm Hg)		40 Code Appendix E Determinat	of Federal F 8 to Part 50, ion of Susp	egulations Part 5	50 to 51, od for the Matter in	

Tisch Environmental, Inc.

145 South Miami Avenue Village of Cleves, OH 45002

www.tisch-env.com TOLL FREE: (877)263-7610 FAX: (513)467-9009

Location: A	AM3A		Site ID:	Zones 2A a Kowloon Cu		Date: 3-Oct-22
Sampler: ¹	TE-5170		Serial No:	4340		Tech: CS Tang
			Site (Conditions		
	Barometric Pro	essure (in Hg): 2			Corrected Press	ure (mm Hg): 761
Temperature (deg F): 86					Temper	ature (deg K): 303
Average Press. (in Hg): 29.96				Corrected Avera	ige (mm Hg): 761	
	Average	Temp. (deg F): 8	6		Average T	emp. (deg K): 303
			Calibra	tion Orifice		
	Make:				Qstd Slope: 2	
		TE-5025A			Qstd Intercept: 0	
	Serial#:	3543			Date Certified: 20)-Oct-21
			Calibratio	on Informatic	n	
Plate or	H2O	Qstd	I	IC		.
Test #	(in)	(m3/min)	(chart)	(corrected)		Linear Regression
1	12.70	1.745	53.0	52.59		Slope: 30.1884
2	10.50	1.587	48.0	47.63		Intercept: -0.0532
3	7.70	1.359	41.0	40.69		Corr. Coeff: 0.9972
4 5	4.50 2.60	1.038 0.789	33.0 23.0	32.75 22.82	# of	Observations: 5
· • •	2.00	0.705	23.0	22:02	" 01	
э						
			C	alculations		
= 1/m[Sqrt(H	H2O(Pa/Pstd)(Ts	std/Ta))-b]	C	alculations	m = sampler slope	
		std/Ta))-b]	C	alculations	b = sampler interc	ept
= 1/m[Sqrt(F I[Sqrt(Pa/Pst	td)(Tstd/Ta)]	std/Ta))-b]	C	alculations	b = sampler intero I = chart response	ept
= 1/m[Sqrt(F I[Sqrt(Pa/Pst = standard fl	td)(Tstd/Ta)] low rate	std/Ta))-b]	C	alculations	b = sampler interc I = chart response Tav = daily averag	ept e temperature
= 1/m[Sqrt(F I[Sqrt(Pa/Pst = standard f1 corrected cha	td)(Tstd/Ta)] low rate art response	std/Ta))-b]	C	alculations	b = sampler intero I = chart response	ept e temperature
= 1/m[Sqrt(F I[Sqrt(Pa/Pst = standard fl corrected cha ctual chart res	td)(Tstd/Ta)] low rate art response sponse	std/Ta))-b]	C	alculations	 b = sampler intero I = chart response Tav = daily averag Pav = daily average 	ept e temperature e pressure
= 1/m[Sqrt(F I[Sqrt(Pa/Pst = standard fl corrected cha ctual chart re: calibrator Qs	td)(Tstd/Ta)] low rate art response sponse std slope	std/Ta))-b]	C	alculations	 b = sampler interd I = chart response Tav = daily average Pav = daily average 	ept e temperature e pressure rage I (chart): 40
= 1/m[Sqrt(F I[Sqrt(Pa/Pst = standard fl corrected cha ctual chart re- calibrator Qs calibrator Qst	td)(Tstd/Ta)] low rate art response sponse std slope td intercept		C	alculations	 b = sampler interd I = chart response Tav = daily average Pav = daily average 	ept e temperature e pressure rage I (chart): 40 Flow Calculation m3/min
= 1/m[Sqrt(F I[Sqrt(Pa/Pst = standard fl corrected cha ctual chart re: calibrator Qst calibrator Qst actual tempe	id)(Tstd/Ta)] low rate art response sponse std slope td intercept erature during cal	libration (deg K)	C	alculations	b = sampler interd I = chart response Tav = daily average Pav = daily average Average	e temperature e pressure rage I (chart): 40 Flow Calculation m3/min 1.303499577
= 1/m[Sqrt(F I[Sqrt(Pa/Pst = standard fl corrected cha tual chart re: calibrator Qst actual tempe actual pressu	id)(Tstd/Ta)] low rate art response sponse std slope td intercept erature during calibra ure during calibra	libration (deg K)	C	alculations	 b = sampler interor I = chart response Tav = daily average Pav = daily average Average Average 	e temperature e pressure rage I (chart): 40 Flow Calculation m3/min 1.303499577 Flow Calculation in CFM
= 1/m[Sqrt(F I[Sqrt(Pa/Pst = standard fl corrected cha ctual chart re- calibrator Qst calibrator Qst actual tempe actual pressu = 298 deg K	id)(Tstd/Ta)] low rate art response sponse std slope td intercept erature during cal are during calibra	libration (deg K)	C	alculations	 b = sampler interor I = chart response Tav = daily average Pav = daily average Average Average 	e temperature e pressure rage I (chart): 40 Flow Calculation m3/min 1.303499577 Flow Calculation in CFM 46.02657007
= 1/m[Sqrt(F I[Sqrt(Pa/Pst = standard fl corrected cha ctual chart re: calibrator Qst actual tempe actual pressu = 298 deg K = 760 mm Hg	ad)(Tstd/Ta)] low rate art response sponse std slope td intercept erature during cal ure during calibra g	libration (deg K) ation (mm Hg)	C	alculations	 b = sampler interor I = chart response Tav = daily average Pav = daily average Average Average Sample 	e temperature e pressure rage I (chart): 4 0 Flow Calculation m3/min 1.303499577 Flow Calculation in CFM 46.02657007 e Time (Hrs): 1.0
= 1/m[Sqrt(F I[Sqrt(Pa/Pst = standard fl corrected cha ctual chart res calibrator Qst actual tempe actual pressu = 298 deg K = 760 mm Hg	id)(Tstd/Ta)] low rate art response sponse std slope td intercept erature during cal ure during calibra g lculation of sam	libration (deg K) ation (mm Hg) pler flow:	C	alculations	 b = sampler interor I = chart response Tav = daily average Pav = daily average Average Average Sample 	e temperature e pressure rage I (chart): 40 Flow Calculation m3/min 1.303499577 Flow Calculation in CFM 46.02657007
= 1/m[Sqrt(F I[Sqrt(Pa/Pst = standard fl corrected cha ctual chart res calibrator Qst actual tempe actual pressu = 298 deg K = 760 mm Hg	ad)(Tstd/Ta)] low rate art response sponse std slope td intercept erature during cal ure during calibra g	libration (deg K) ation (mm Hg) pler flow:	C	alculations	 b = sampler interor I = chart response Tav = daily average Pav = daily average Average Average Sample To 	e temperature e pressure rage I (chart): 40 Flow Calculation m3/min 1.303499577 Flow Calculation in CFM 46.02657007 e Time (Hrs): 1.0 ttal Flow in m3/min

Tisch Environmental 145 South Miami Ave, Cleves OH 45002 ● 877.263.7610 ● sales@tisch-env.com ● www.tisch-env.com

			Site I	nformation	
T	7. N. 4. 7.		0'4- TD-	Zones 2A a	
Location: 7				Kowloon Cu	
Sampler:	IE-51/0		Serial No:	2990	Tech: CS Tang
			Site C	Conditions	
		essure (in Hg): 2			Corrected Pressure (mm Hg): 761
	-	erature (deg F): 8			Temperature (deg K): 303
Average Press. (in Hg): 29.96					Corrected Average (mm Hg): 761
	Average	Temp. (deg F): 8	6		Average Temp. (deg K): 303
			Calibra	tion Orifice	
	Make:				Qstd Slope: 2.02434
		TE-5025A			Qstd Intercept: 0.00347
	Serial#:	3543			Date Certified: 20-Oct-21
			Calibratic	on Informatio	n
Plate or	H2O	Qstd	Ι	IC	
Test #	(in)	(m3/min)	(chart)	(corrected)	Linear Regression
1	12.50	1.731	53.0	52.59	Slope: 30.3829
2	10.60	1.594	48.0	47.63	Intercept: -0.0968
3	7.30	1.323	41.0	40.69	Corr. Coeff: 0.9986
4	4.70	1.061	33.0	32.75	# .f 01
5	2.50	0.773	23.0	22.82	# of Observations: 5
			Ca	alculations	
		$+1/T_{-} > 1.1$			
	H2O(Pa/Pstd)(Ts	sta/1a))-b]			m = sampler slope
		std/1a))-b]			b = sampler intercept
C = I[Sqrt(Pa/Pst	td)(Tstd/Ta)]	sta/1a))-b]			b = sampler interceptI = chart response
t = I[Sqrt(Pa/Pst std = standard f	td)(Tstd/Ta)] low rate	sta/1a))-b]			 b = sampler intercept I = chart response Tav = daily average temperature
t = I[Sqrt(Pa/Pst std = standard fl = corrected ch	td)(Tstd/Ta)] low rate art response	sta/1a))-b]			b = sampler interceptI = chart response
C = I[Sqrt(Pa/Pst std = standard fl C = corrected ch = actual chart re	td)(Tstd/Ta)] low rate art response esponse	sta/1a))-oj			 b = sampler intercept I = chart response Tav = daily average temperature Pav = daily average pressure
C = I[Sqrt(Pa/Pst std = standard fl C = corrected ch actual chart re = calibrator Qs	td)(Tstd/Ta)] low rate art response esponse std slope	sta/1a))-oj			 b = sampler intercept I = chart response Tav = daily average temperature Pav = daily average pressure Average I (chart): 40
C = I[Sqrt(Pa/Pst std = standard fl C = corrected ch actual chart re = calibrator Qs = calibrator Qs	td)(Tstd/Ta)] low rate art response esponse std slope std slope std intercept				 b = sampler intercept I = chart response Tav = daily average temperature Pav = daily average pressure Average I (chart): 40 Average Flow Calculation m3/min
t = I[Sqrt(Pa/Pst std = standard fl = corrected char = actual chart re = calibrator Qs = calibrator Qs a = actual tempe	td)(Tstd/Ta)] low rate art response esponse std slope std intercept erature during cal	libration (deg K)			 b = sampler intercept I = chart response Tav = daily average temperature Pav = daily average pressure Average I (chart): 40 Average Flow Calculation m3/min 1.296587665
t = I[Sqrt(Pa/Pst std = standard fl = corrected cha = actual chart re = calibrator Qs = calibrator Qs = actual tempe = actual pressu	td)(Tstd/Ta)] low rate art response esponse std slope std slope erature during cal ure during calibra	libration (deg K)			 b = sampler intercept I = chart response Tav = daily average temperature Pav = daily average pressure Average I (chart): 40 Average Flow Calculation m3/min 1.296587665 Average Flow Calculation in CFM
t = I[Sqrt(Pa/Pst std = standard fl = corrected char = actual chart re = calibrator Qs = calibrator Qs a = actual tempe a = actual pressu std = 298 deg K	td)(Tstd/Ta)] low rate art response esponse std slope std intercept erature during cal ure during calibra	libration (deg K)			 b = sampler intercept I = chart response Tav = daily average temperature Pav = daily average pressure Average I (chart): 40 Average Flow Calculation m3/min 1.296587665 Average Flow Calculation in CFM 45.78251045
t = I[Sqrt(Pa/Pst std = standard fl = corrected ch = actual chart re = calibrator Qs = calibrator Qs = actual tempe a = actual pressu std = 298 deg K ttd = 760 mm H	td)(Tstd/Ta)] low rate art response esponse std slope std intercept erature during cal ure during calibra g	libration (deg K) ation (mm Hg)			 b = sampler intercept I = chart response Tav = daily average temperature Pav = daily average pressure Average I (chart): 40 Average Flow Calculation m3/min 1.296587665 Average Flow Calculation in CFM 45.78251045 Sample Time (Hrs): 1.0
t = I[Sqrt(Pa/Pst std = standard fl = corrected ch = actual chart re = calibrator Qs = calibrator Qs = actual tempe = actual pressu td = 298 deg K td = 760 mm H or subsequent ca	td)(Tstd/Ta)] low rate sart response sponse std slope std intercept erature during cal ure during calibra lg alculation of sam	libration (deg K) ation (mm Hg) pler flow:			 b = sampler intercept I = chart response Tav = daily average temperature Pav = daily average pressure Average I (chart): 40 Average Flow Calculation m3/min 1.296587665 Average Flow Calculation in CFM 45.78251045 Sample Time (Hrs): 1.0 Total Flow in m3/min
C = I[Sqrt(Pa/Pst]] std = standard fl C = corrected ch: = actual chart re = calibrator Qs = calibrator Qs a = actual tempe a = actual pressu std = 298 deg K std = 760 mm H pr subsequent ca	td)(Tstd/Ta)] low rate art response esponse std slope std intercept erature during cal ure during calibra g	libration (deg K) ation (mm Hg) pler flow:			 b = sampler intercept I = chart response Tav = daily average temperature Pav = daily average pressure Average I (chart): 4 0 Average Flow Calculation m3/min 1.296587665 Average Flow Calculation in CFM 45.78251045 Sample Time (Hrs): 1.0 Total Flow in m3/min 77.79525989
C = I[Sqrt(Pa/Pst]] std = standard fl C = corrected ch: = actual chart re = calibrator Qs = calibrator Qs a = actual tempe a = actual pressu std = 298 deg K std = 760 mm H pr subsequent ca	td)(Tstd/Ta)] low rate sart response sponse std slope std intercept erature during cal ure during calibra lg alculation of sam	libration (deg K) ation (mm Hg) pler flow:			 b = sampler intercept I = chart response Tav = daily average temperature Pav = daily average pressure Average I (chart): 40 Average Flow Calculation m3/min 1.296587665 Average Flow Calculation in CFM 45.78251045 Sample Time (Hrs): 1.0 Total Flow in m3/min

Tisch Environmental 145 South Miami Ave, Cleves OH 45002 ● 877.263.7610 ● sales@tisch-env.com ● www.tisch-env.com

			Site Ir	ofrmation	
Location:	ΔΜ5Δ			Zones 2A a	
Sampler: 5			Site ID: Kowloon Cu Serial No: 4344		Tech: CS Tang
bampier.			Jonar 140.		1001. 19 19
				Conditions	
		essure (in Hg): 2			Corrected Pressure (mm Hg): 761
	-	erature (deg F): 8			Temperature (deg K): 303
Average Press. (in Hg): 29					Corrected Average (mm Hg): 761
Average Temp. (deg F): ⁸⁶					Average Temp. (deg K): 303
			Calibra	tion Orifice	
	Make:	Tisch			Qstd Slope: 2.02434
		TE-5025A			Qstd Intercept: 0.00347
	Serial#:	3543			Date Certified: 20-Oct-21
			Calibratio	n Informatio	n
Plate or	H2O	Qstd	Ι	IC	
Test #	(in)	(m3/min)	(chart)	(corrected)	Linear Regression
1	12.80	1.752	53.0	52.59	Slope: 31.2641
2	10.40	1.579	48.0	47.63	Intercept: -1.6130
3	7.40	1.332	41.0	40.69	Corr. Coeff: 0.9969
4	4.70	1.061	33.0	32.75	
5	2.80	0.819	23.0	22.82	# of Observations: 5
			Ca	lculations	
d = 1/m[Sqrt()	H2O(Pa/Pstd)(Ts	std/Ta))-b]	Ca	llculations	m = sampler slope
d = 1/m[Sqrt()		std/Ta))-b]	Ca	llculations	m = sampler slope b = sampler intercept
l = 1/m[Sqrt() I[Sqrt(Pa/Ps	std)(Tstd/Ta)]	std/Ta))-b]	Ca	lculations	 m = sampler slope b = sampler intercept I = chart response
d = 1/m[Sqrt() = I[Sqrt(Pa/Ps d = standard f	std)(Tstd/Ta)] Flow rate	std/Ta))-b]	Ca	lculations	 m = sampler slope b = sampler intercept I = chart response Tav = daily average temperature
d = 1/m[Sqrt(] = I[Sqrt(Pa/Ps d = standard f = corrected ch	std)(Tstd/Ta)] low rate nart response	std/Ta))-b]	Ca	lculations	 m = sampler slope b = sampler intercept I = chart response
l = 1/m[Sqrt() I[Sqrt(Pa/Ps l = standard f corrected ch actual chart re	std)(Tstd/Ta)] Tow rate hart response esponse	ttd/Ta))-b]	Ca	lculations	 m = sampler slope b = sampler intercept I = chart response Tav = daily average temperature Pav = daily average pressure
d = 1/m[Sqrt() = I[Sqrt(Pa/Ps d = standard f = corrected ch actual chart re = calibrator Q	td)(Tstd/Ta)] low rate nart response esponse lstd slope	ttd/Ta))-b]	Ca	lculations	 m = sampler slope b = sampler intercept I = chart response Tav = daily average temperature Pav = daily average pressure Average I (chart): 40
d = 1/m[Sqrt() = I[Sqrt(Pa/Ps d = standard f = corrected ch actual chart re = calibrator Q = calibrator Qs	ttd)(Tstd/Ta)] low rate hart response esponse lstd slope std intercept		Ca	lculations	 m = sampler slope b = sampler intercept I = chart response Tav = daily average temperature Pav = daily average pressure Average I (chart): 40 Average Flow Calculation m3/min
d = 1/m[Sqrt() = I[Sqrt(Pa/Ps d = standard f = corrected ch actual chart re = calibrator Q = calibrator Qs = actual tempe	ttd)(Tstd/Ta)] low rate aart response esponse lstd slope std intercept erature during cal	libration (deg K)	Ca	lculations	m = sampler slope b = sampler intercept I = chart response Tav = daily average temperature Pav = daily average pressure Average I (chart): 40 Average Flow Calculation m3/min 1.308542764
d = 1/m[Sqrt() = I[Sqrt(Pa/Ps d = standard f = corrected ch actual chart re = calibrator Q = calibrator Qs = actual tempe = actual pressu	td)(Tstd/Ta)] Tow rate aart response esponse estd slope std intercept erature during cal ure during calibra	libration (deg K)	Ca	lculations	 m = sampler slope b = sampler intercept I = chart response Tav = daily average temperature Pav = daily average pressure Average I (chart): 40 Average Flow Calculation m3/min 1.308542764 Average Flow Calculation in CFM
d = 1/m[Sqrt() = I[Sqrt(Pa/Ps d = standard f = corrected ch actual chart re = calibrator Qs = actual tempe = actual pressu 1 = 298 deg K	atd)(Tstd/Ta)] Tow rate nart response esponse estd slope std intercept erature during cal ure during calibra	libration (deg K)	Ca	lculations	m = sampler slope b = sampler intercept I = chart response Tav = daily average temperature Pav = daily average pressure Average I (chart): 40 Average Flow Calculation m3/min 1.308542764 Average Flow Calculation in CFM 46.20464501
d = 1/m[Sqrt() = I[Sqrt(Pa/Ps d = standard f = corrected ch actual chart re = calibrator Q = calibrator Qs = actual tempe = actual pressu d = 298 deg K d = 760 mm H	atd)(Tstd/Ta)] flow rate mart response esponse estd slope std intercept erature during cal ure during calibra g	libration (deg K) ation (mm Hg)	Ca	lculations	 m = sampler slope b = sampler intercept I = chart response Tav = daily average temperature Pav = daily average pressure Average I (chart): 40 Average Flow Calculation m3/min 1.308542764 Average Flow Calculation in CFM
d = 1/m[Sqrt() = I[Sqrt(Pa/Ps d = standard f = corrected ch actual chart re = calibrator Q = actual tempe = actual pressu d = 298 deg K d = 760 mm H subsequent ca	td)(Tstd/Ta)] flow rate mart response esponse estd slope std intercept erature during calibra c lg alculation of sam	libration (deg K) ation (mm Hg) pler flow:	Ca	lculations	m = sampler slope b = sampler intercept I = chart response Tav = daily average temperature Pav = daily average pressure Average I (chart): 40 Average Flow Calculation m3/min 1.308542764 Average Flow Calculation in CFM 46.20464501 Sample Time (Hrs): 1.0 Total Flow in m3/min
d = 1/m[Sqrt() = I[Sqrt(Pa/Ps d = standard f = corrected ch actual chart re = calibrator Q = calibrator Qs = actual tempe = actual pressi d = 298 deg K d = 760 mm H	atd)(Tstd/Ta)] flow rate mart response esponse estd slope std intercept erature during cal ure during calibra g	libration (deg K) ation (mm Hg) pler flow:	Ca	lculations	 m = sampler slope b = sampler intercept I = chart response Tav = daily average temperature Pav = daily average pressure Average I (chart): 40 Average Flow Calculation m3/min 1.308542764 Average Flow Calculation in CFM

Tisch Environmental 145 South Miami Ave, Cleves OH 45002 ● 877.263.7610 ● sales@tisch-env.com ● www.tisch-env.com

CERTIFICATE OF ACCREDITATION

This is to attest that

AQUALITY TESTCONSULT LIMITED

11A&B, KAI FONG GARDEN, PING CHE ROAD FANLING, HONG KONG

Calibration Laboratory CL-207

has met the requirements of AC204, *IAS Accreditation Criteria for Calibration Laboratories*, and has demonstrated compliance with ISO/IEC Standard 17025:2017, *General requirements for the competence of testing and calibration laboratories*. This organization is accredited to provide the services specified in the scope of accreditation.

Effective Date December 17, 2021

Expiration Date December 1, 2022

President

Visit www.iasonline.org for current accreditation information.

International Accreditation Service, Inc. 3060 Saturn Street, Suite 100, Brea, California 92821, U.S.A. | www.iasonline.org

AQUALITY TESTCONSULT LIMITED

Contact Name Lee Mei Yee

Contact Phone + 852-6309-2280

Accredited to ISO/IEC 17025:2017

Effective Date December 17, 2021

CALIBRATION AND MEASUREMENT CAPABILITY (CMC)*						
RANGE	UNCERTAINTY ^{1,2} (±)	CALIBRATION PROCEDURE AND/OR STANDARD EQUIPMENT USED				
Dimens	ional					
0 mm to 300 mm	30 µm	Checker by comparison method (BS 887:1982)				
1 mm to 1000 mm	280 µm	Reference Steel Rule by comparison method (BS 4372:1968)				
0 mm to 50 mm	8 µm	Reference micrometer head by comparison method (BS 907:2008)				
0.01 mm to 1 mm	8 µm	Reference Dial Gauge by comparison method (BS 957: 2008)				
0 m to 5 m	1200 µm	Reference steel ruler by comparison method (BS 4035:1966)				
Length: 0 mm to 160 mm	20 µm	Reference engineering square and Feeler Gauge (BS 939:2007)				
Diameter: 0 mm to 200 mm Thickness: 1.5 mm Height: 0 mm to 300 mm	560 μm 100 μm 560 μm	Reference Caliper & Reference Steel ruler by direct measurement (Verification in accordance with in-house method for the dimensional requirements as specified CS1:1990 Vol.1 A4; CS1: 2010 Vol. 1, A5)				
	RANGE Dimense 0 mm to 300 mm 1 mm to 1000 mm 1 mm to 50 mm 0 mm to 50 mm 0.01 mm to 1 mm 0.01 mm to 1 mm 0 m to 5 m Length: 0 mm to 160 mm Diameter: 0 mm to 200 mm Thickness: 1.5 mm	RANGE UNCERTAINTY ^{1,2} (±) Dimensional 0 mm to 300 mm 30 μm 1 mm to 1000 mm 280 μm 0 mm to 50 mm 8 μm 0 nm to 50 mm 8 μm 0.01 mm to 1 mm 8 μm 0 m to 5 m 1200 μm Length: 20 μm Diameter: 560 μm Thickness: 1.5 mm 100 μm				

* If information in this CMC is presented in non-SI units, the conversion factors stated in NIST Special Publication 811 "Guide for the Use of the International System of Units (SI)" apply.

Effective Date December 17, 2021 Page 2 of 5 IAS/CL/100-3

International Accreditation Service, Inc.

3060 Saturn Street, Suite 100, Brea, California 92821, U.S.A. | www.iasonline.org

MEASURED QUANTITY or DEVICE TYPE CALIBRATED	RANGE	UNCERTAINTY ^{1,2} (±)	CALIBRATION PROCEDURE AND/OR STANDARD EQUIPMENT USED
Tamping rod ³	Diameter: 0 mm to 16 mm	600 µm	Reference steel ruler & Reference Caliper by direct
	Length: 600 mm	950 µm	measurement (Verification in accordance with in-house method for the dimensional requirements as specified CS1:1990 Vol.1 A5; CS1: 2010 Vol. 1, A6)
Cube mould ³	(Max dimensions 150 mm per side)		Reference Caliper, straight edge & feeler gauge by
	Dimension	50 µm	direct measurement. (Verification in accordance with in-house method for the
	Flatness	10 µm	dimensional requirements as specified in BS1881: Part
	Perpendicularity	10 µm	108:1983; CS1:1990 Vol1, A21; CS1:2010 Vol 1, A25;
	Parallelism	50 µm	BS EN 12390-2:2000)
Compacting Bar ³	Ramming Face: 25 mm	100 µm	Reference Caliper & Steel ruler by direct measurement.
	Length: 380 mm	560 µm	(Verification in accordance with in-house method for the
	Weight: 1.8 kg	1 g	dimensional & mass requirements as specified in BS 1881: Part 105:1984 Cl 3.3; CS1:1990 Vol 2, E3 CS1:2010 Vol 1, A15.3; BS EN 12350 -5:2000 Cl 4.3.)
Covermeter	20 mm to 103 mm	2.9 mm	Reference concrete block (Verification in accordance with in-house method for the dimensional requirements as specified in BS 1881- 204:1988 CI.6.4- Method C)
Flow table ³	15 kg to 17 kg 1 mm up to 71 mm	12 g 600 μm	Weighing Balance, Reference caliper & Reference steel ruler by direct measurement
Test Sieve ³	4 mm to 50 mm	50 µm	Reference Caliper by direct measurement
	Mechar	nical	
Force Measuring Machine ³ (Compression Mode)		0.4 %	Reference Load cell by direct measurement BS 1610: Part 1:1985; BS 1610: Part 1:1992; BS EN ISO 12390-4:2000 Annex B; BS EN ISO 7500-1:2004

Effective Date December 17, 2021 Page 3 of 5 IAS/CL/100-3

International Accreditation Service, Inc.

3060 Saturn Street, Suite 100, Brea, California 92821, U.S.A. | www.iasonline.org

MEASURED QUANTITY or DEVICE TYPE CALIBRATED	RANGE	UNCERTAINTY ^{1,2} (±)	CALIBRATION PROCEDURE AND/OR STANDARD EQUIPMENT USED
Laser Dust Meter ³	Dust particles 0.001 mg/m ³ to 10.00 mg/m ³	0.9 mg/m ³	By comparison method by using reference laser dust meter
Rebound Hammer ³	80 unit (hardness)	1.6 rebound count	Reference Rebound count by comparison method. BS1881: Part 202:1986; BS EN 12504-2:2001; BS EN 12504-2:2012
Mass (F2 class and coarser)	0 g to 200 g 200 g to 5 kg 5 kg to 10 kg 10 kg to 50 kg	1.3 mg 0.5 g 0.88 g 3 g	Standard Weight E2/ F1 Class & Weighing Balances by comparison method (OIML-R-111)
Weighing Scale & Balance ³	0 g to 200 g 0 kg to 5 kg 0 kg to 50 kg	0.8 mg 0.13 g 7.7 g	Standard weight of E2/F1 Grade by direct measurement (OIML-R-111)
Volumetric Glassware	1 mL to 100 mL 100 mL to 1000 mL	0.004 mL 0.09 mL	Standard weight E2 Class, Weighing Balances & Distilled water by gravimetric method
	Ther	mal	
Digital/Liquid in Glass Thermometers & RTD/ Thermocouples with or without Indicators	15 °C to 55 °C 55 °C to 95 °C	0.4 °C 0.9 °C	Water Baths, Reference Sensor and Indictor by Comparison Method (OIML R133)
Curing Tank ³	(Calibration at 20 °C & 27 °C @ 30 min) 20 °C Temperature distribution 27 °C Temperature distribution Efficiency of circulation	0.4 °C 0.8 °C 5 s	Reference Temperature datalogger by Mapping Method & Reference Stop Watch (Verification in accordance with in-house method for the Temp & Time requirements as specified in BS1881-111:1983 CS1:1990 Vol 1 App A24 CS1:2010 Vol 1 App A28 BE EN 12390-2:2000
Oven ³	40.0 °C to 180.0 °C	1.5 °C	Reference Temperature datalogger by Mapping Method (AS 2853:1986)
Furnace ³	200 °C to 1300 °C	6 °C	Reference Thermocouple with Indicator By single point Calibration (AS 2853:1986)
Water bath ³	15 °C to 95 °C	0.2 °C	Reference Temperature datalogger by Mapping Method (AS 2853:1986)

International Accreditation Service, Inc.

3060 Saturn Street, Suite 100, Brea, California 92821, U.S.A. | www.iasonline.org

MEASURED QUANTITY or DEVICE TYPE CALIBRATED	RANGE	UNCERTAINTY ^{1,2} (±)	CALIBRATION PROCEDURE AND/OR STANDARD EQUIPMENT USED			
Time and Frequency						
Stop Watch / Timer ³	0 s to 3600 s 0 s to 21600 s (6 hours) 0 s to 86400 s (24 hours)	0.2 s 0.6 s 0.61 s	Reference stop watch			
Grout Flow Cone ³	7 s to 9 s	0.2 s	Reference stop watch by direct method (ASTM C939-10 Cl.9)			

¹The uncertainty covered by the Calibration and Measurement Capability (CMC) is expressed as the expanded uncertainty having a coverage probability of approximately 95 %. It is the smallest measurement uncertainty that a laboratory can achieve within its scope of accreditation when performing calibrations of a best existing device. The measurement uncertainty reported on a calibration certificate may be greater than that provided in the CMC due to the behavior of the calibration item and other factors that may contribute to the uncertainty of a specific calibration.

²When uncertainty is stated in relative terms (such as percent, a multiplier expressed as a decimal fraction or in scientific notation), it is in relation to instrument reading or instrument output, as appropriate, unless otherwise indicated.

³Also available as site calibration. Note that actual measurement uncertainties achievable at a customer's site can normally be expected to be larger than the uncertainties listed on this Scope of Accreditation

FAQ / Information

Mutual Recognition Arrangements (MRA) / Multilateral Recognition Arrangements (MLA)

Mutual Recognition Arrangement (MRA) Partners for HOKLAS 🔨

Every effort is made to promote acceptance of test data from accredited laboratories, both internationally and locally. HKAS has concluded mutual recognition arrangements with accreditation bodies listed below by being one of the signatories of the <u>International Laboratory Accreditation</u> <u>Cooperation Mutual Recognition Arrangement (ILAC MRA)</u> and the <u>Asia Pacific Accreditation Cooperation</u> <u>Mutual Recognition Arrangement (APAC MRA)</u> for testing, calibration, medical testing, Proficiency Testing Providers (PTP) and Reference Material Producers (RMP). Click <u>here</u> to view the up-to-date signatories of ILAC and <u>here</u> to access the up-to-date signatories of APAC.

Visitors checking the names, logos and accreditation symbols shown on an endorsed certificate or report should note that some of our MRA partners may have their names, logos or accreditation symbols changed recently and test reports or certificates endorsed by displaying their old accreditation symbols may still be valid during the change-over period. For details, please visit their websites or contact them directly.

» Mutual Recognition Arrangement (MRA) Partners for HOKLAS

HKAS MRA partners will recognise HOKLAS endorsed test certificates as having the same technical validity as certificates endorsed by their respective schemes.

Multilateral Recognition Arrangements (MLA) for HKCAS 🔨

HKAS has been a signatory of <u>Asia Pacific Accreditation Cooperation Mutual Recognition Arrangement</u> (<u>APAC MRA</u>) for Quality Management System (QMS), Environmental Management System (EMS), Food Safety Management System (FSMS), Energy Management System (EnMS), Occupational Health and Safety Management System (OHSMS) certifications, product certifications, and Greenhouse Gas (GHG) validation and verification.

HKAS has also been a signatory of the <u>International Accreditation Forum Multilateral Recognition</u> <u>Arrangement (IAF MLA)</u> for Quality Management System (QMS), Environmental Management System (EMS), Food Safety Management System (FSMS), Energy Management System (EnMS), Occupational Health and Safety Management System (OHSMS) certifications, product certifications, and Greenhouse Gas (GHG) validation and verification.

Click <u>here</u> to view the up-to-date signatories of IAF and <u>here</u> to access the up-to-date signatories of APAC.

» Mutual / Multilateral Recognition Arrangements (MRA / MLA) Partners for HKCAS

Mutual Recognition Arrangement (MRA) Partners for HKIAS <

HKAS has concluded mutual recognition arrangements with accreditation bodies listed below by being one of the signatories of the International Laboratory Accreditation Cooperation Mutual Recognition Arrangement (ILAC MRA) and Asia Pacific Accreditation Cooperation Mutual Recognition Arrangement (APAC MRA) for inspection. Click here to view the up-to-date signatories of ILAC and here to access the up-to-date signatories of APAC.

HKAS MRA partners will recognise HKIAS endorsed inspection reports or certificates having the same technical validity as reports or certificates endorsed by their respective schemes.

» Mutual Recognition Arrangement (MRA) Partners for HKIAS

🕤 back

Economy	Logo	Name of Partner	URL	Test Area
United States of America	IAS INTERNATIONAL ACCREDITATION SERVICE*	International Accreditation Service Inc. (IAS)	www.iasonline.org	Calibration, Non-medical Testing
United States of America	qalvn	National Voluntary Laboratory Accreditation Program (NVLAP)	www.nist.gov/nvlap	Calibration, Non-medical Testing
United States of America	PILA	Perry Johnson Laboratory Accreditation, Inc. (PJLA)	www.pjlabs.com	Calibration, Medical Testing, Non-medical Testing, Proficiency Testing Provider, Reference Material Producer
Uruguay	ORGANISMO URUGUAVO DE ACREDITACION	Organismo Uruguayo de Acreditación (OUA)	www.organismourugua yodeacreditacion.org	Calibration, Non-medical Testing
Viet Nam		Accreditation Office for Standards Conformity Assessment Capacity (AOSC)	aosc.vn/	Calibration, Medical Testing, Non-medical Testing
Viet Nam		Bureau of Accreditation (BoA)	www.boa.gov.vn	Calibration, Medical Testing, Non-medical Testing

Hong Kong Laboratory Accreditation Scheme (HOKLAS) - Mutual Recognition Arrangement (MRA) Partners

AQuality

東恒測試顧問有限公司

AQUALITY TESTCONSULT LIMITED

香港新界粉嶺坪輋路啟芳園11A&11B號

No. 11A&B, KAI FONG GARDEN, PING CHE ROAD, FANLING, NEW TERRITORIES, HONG KONG TEL : 852-3582-9589 FAX : 852-2674-1177 EMAIL : cal.aqtl@gmail.com WEBSITE: www.aqtlgroup.com

CERTIFICATE OF CALIBRATIONReport Number: 220908MCA-166FDate of Report: 10-Sep-22Page Number: 1 of 2Customer *: Apex Testing & Certification Ltd.Customer Address*: Unit D6A, 10/F, TML Tower, 3 Hoi Shing Road, Tsuen Wan, N.T., HKCustomers Ref. *: A005

Item Under Calibration (IUC)*

Equipment No.	: N/A
Manufacturer	: Sibata Scientific Technology Ltd
Model No.	: LD-3B
Serial No.	: 235811
Scale Division	: 0.001 mg/m3
Range	: 0.001 to 1 mg/m3
Condition of Item	: Normal
Received	· 8-Sen-22

Date Item Received	: 8-	Sep-22		
Date Calibrated	: 8-	Sep-22		
Calibration Location	: A	Quality Ca	alibration Lab.	
Date of Next Calibration	: 7-	Sep-23		
Calibrated By	: Je	ssica Liu		
Test Environment				
Ambient Temperature	:	25.7	°C to	33.8
Relative Humidity	:	46	% to	83

Calibration Results

Reference True Reading (mg/m3)	Average IUC Reading (mg/m ³)	Correction (mg/m ³)	Error of IUC Reading (%)	Expanded Uncertainty (mg/m ³)	Coverage Factor K
0.158	0.167	-0.008	5.1%	0.020	2.0
5.164	5.647	-0.484	8.5%	0.463	2.0
10.100	11.141	-1.041	9.3%	0.904	2.0

<u>Remarks</u>

- 1. * Denotes information supplied by customer.
- 2. The results relate only to the items calibrated.
- 3. The results apply to the items as received.
- 4. Correction = Average of (Ref reading IUC reading)
- 5. The technical requirement of laser dust meter. +/- 20% error for the particles concentration.

°C %

LEE Mei Yee, Julia Managing Director

The results shown in this certificate are metrologically traceable to the International System of Units (SI) or recognised measurement standards. The certificate shall not be reproduced except in full without approval of the laboratory.

Approved by:

AQuality

東恒測試顧問有限公司

AQUALITY TESTCONSULT LIMITED

香港新界粉嶺坪輩路啟芳園11A&11B號

No. 11A&11B, KAI FONG GARDEN, PING CHE ROAD, FANLING, NEW TERRITORIES, HONG KONG TEL : 852-3582-9589 FAX : 852-2674-1177 EMAIL : cal.aqtl@gmail.com WEBSITE: www.aqtlgroup.com

	CERTIFICATE OF CALIBRATION
Report Number	: 220908MCA-166F
Date of Report	: 10-Sep-22
Page Number	: 2 of 2
Customer *	: Apex Testing & Certification Ltd.
Customers Ref. *	: A005

Details of Calibration

- 1. The calibration was performed in accordance with AQuality Testconsult Procedure Number ENV-L-003 (in-house method), by comparison with the laboratory's reference equipment which have traceable international standards of measurement.
- 2. The item under calibration (IUC) was allowed to stabilize in the laboratory for 0.25 hour before commencement of calibration.
- 3. A set of readings were made at each calibration concentration. The values quoted in the results are the average of each set of readings.
- 4. The values given in this calibration certificate only relate to the values measured at the time of calibration. Any uncertainties quoted do not include allowance for the capability of any other laboratory to repeat the measurement. The uncertainty quoted relate only to item at time of calibration. AQuality Testconsult Limited is not liable for any loss or damage resulting from the use of this equipment.
- 5. The identification, calibration certificate numbers for the reference equipment used were as follows :

Equipment Number	Certificate Number	Description
CH-LDM-1	HBW202101714	粉尘测试仪

6. Copies of the Calibration certificates of the reference equipment used in this calibration may be obtained from AQuality Testconsult Limited, if necessary.

- End of Report -

東恒測試顧問有限公司 AQUALITY TESTCONSULT LIMITED 香港新界粉嶺坪輋路啟芳園11A&11B號

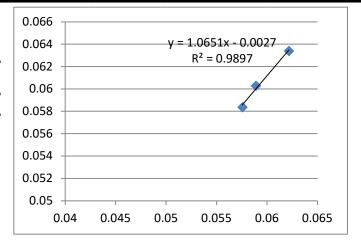
TEL : 852-3582-9589 FAX : 852-2674-1177 EMAIL : cal.aqtl@gmail.com WEBSITE: www.aqtlgroup.com

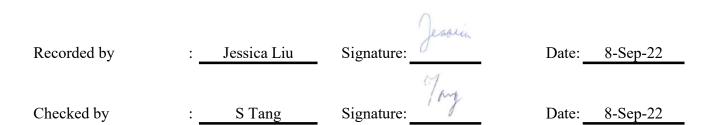
No. 11A&11B, KAI FONG GARDEN, PING CHE ROAD, FANLING, N.T., HONG KONG

CERTIFICATE OF CALIBRATION

Apex Testing & Certification Ltd.	Test Report No.	220908MCA-166F
Unit D6A 10/E TMI Town 2 Hoi Shina	Date of Issue	10-Sep-22
Unit D6A, 10/F, TML Tower, 3 Hoi Shing Road, Tsuen Wan, N.T., HK	Date of Testing	8-Sep-22
	Page	1 of 1

Item for Calibration


Description	: Laser Dust Monitor
Manufacturer	: Sibata Scientific Technology Ltd
Model No.	: LD-3B
Serial No.	: 235811


Standard Equipment

Description	:	High Volume Sampler / Calibration Orifice
Manufacturer	:	Tisch Environmental, Inc.
Model No.	:	TE-5170 / TE-5025A
Serial No.		3476 / 3543
Last Calibration	:	6-SEP-22 / 20-OCT-21

		Mean Temp	Mean Pressure	Concentration	Concentration
Date	Time			Standard	Calibrated
				Equipment	Equipment
		(°C)	(hPa)	(mg/m3)	(mg/m3)
8-Sep-22	19:00	29.8	1013.8	0.0622	0.0634
8-Sep-22	20:05	29.8	1013.8	0.0576	0.0584
8-Sep-22	21:10	29.8	1013.8	0.0589	0.0603

By Linear Regression of	fΥ	or X
Slope (K-factor)	:	1.0651
Correlation Coefficient	:	0.9897
Validity of Calibration	:	7-Sep-23

AQuality

東恒測試顧問有限公司

AQUALITY TESTCONSULT LIMITED

香港新界粉嶺坪輋路啟芳園11A&11B號

No. 11A&B, KAI FONG GARDEN, PING CHE ROAD, FANLING, NEW TERRITORIES, HONG KONG TEL : 852-3582-9589 FAX : 852-2674-1177 EMAIL : cal.aqtl@gmail.com WEBSITE: www.aqtlgroup.com

	CERTIFICATE OF CALIBRATION
Report Number	: 220908MCA-163F
Date of Report	: 10-Sep-22
Page Number	: 1 of 2
Customer *	: Apex Testing & Certification Ltd.
Customer Address*	: Unit D6A, 10/F, TML Tower, 3 Hoi Shing Road, Tsuen Wan, N.T., HK
Customers Ref. *	: A005

Item Under Calibration (IUC)*

Equipment No.	: N/A
Manufacturer	: Sibata Scientific Technology Ltd
Model No.	: LD-3B
Serial No.	: 336338
Scale Division	: 0.001 mg/m3
Range	: 0.001 to 1 mg/m3
Condition of Item	: Normal
n Received	: 8-Sep-22

Date Item Received	: 8-S	ep-22		
Date Calibrated	: 8-S	ep-22		
Calibration Location	: AQ	uality Ca	libration Lab.	
Date of Next Calibration	: 7 - S	ep-23		
Calibrated By	: Jess	sica Liu		
Test Environment				
Ambient Temperature	:	25.7	°C to	33.8
Relative Humidity	:	46	% to	83

Calibration Results

Reference True Reading (mg/m3)	Average IUC Reading (mg/m ³)	Correction (mg/m ³)	Error of IUC Reading (%)	Expanded Uncertainty (mg/m ³)	Coverage Factor K
0.158	0.168	-0.010	5.7%	0.026	2.0
5.164	5.562	-0.398	7.1%	0.462	2.0
10.100	10.936	-0.837	7.6%	0.905	2.0

<u>Remarks</u>

- 1. * Denotes information supplied by customer.
- 2. The results relate only to the items calibrated.
- 3. The results apply to the items as received.
- 4. Correction = Average of (Ref reading IUC reading)
- 5. The technical requirement of laser dust meter. +/- 20% error for the particles concentration.

°C %

LEE Mei Yee, Julia Managing Director

The results shown in this certificate are metrologically traceable to the International System of Units (SI) or recognised measurement standards. The certificate shall not be reproduced except in full without approval of the laboratory.

Approved by:

AQuality ^東

東恒測試顧問有限公司

AQUALITY TESTCONSULT LIMITED

香港新界粉嶺坪輩路啟芳園11A&11B號

No. 11A&11B, KAI FONG GARDEN, PING CHE ROAD, FANLING, NEW TERRITORIES, HONG KONG TEL : 852-3582-9589 FAX : 852-2674-1177 EMAIL : cal.aqtl@gmail.com WEBSITE: www.aqtlgroup.com

	CERTIFICATE OF CALIBRATION
Report Number	: 220908MCA-163F
Date of Report	: 10-Sep-22
Page Number	: 2 of 2
Customer *	: Apex Testing & Certification Ltd.
Customers Ref. *	: A005

Details of Calibration

- 1. The calibration was performed in accordance with AQuality Testconsult Procedure Number ENV-L-003 (in-house method), by comparison with the laboratory's reference equipment which have traceable international standards of measurement.
- 2. The item under calibration (IUC) was allowed to stabilize in the laboratory for 0.25 hour before commencement of calibration.
- 3. A set of readings were made at each calibration concentration. The values quoted in the results are the average of each set of readings.
- 4. The values given in this calibration certificate only relate to the values measured at the time of calibration. Any uncertainties quoted do not include allowance for the capability of any other laboratory to repeat the measurement. The uncertainty quoted relate only to item at time of calibration. AQuality Testconsult Limited is not liable for any loss or damage resulting from the use of this equipment.
- 5. The identification, calibration certificate numbers for the reference equipment used were as follows :

Equipment Number	Certificate Number	Description
CH-LDM-1	HBW202101714	粉尘测试仪

6. Copies of the Calibration certificates of the reference equipment used in this calibration may be obtained from AQuality Testconsult Limited, if necessary.

- End of Report -

東恒測試顧問有限公司 AQUALITY TESTCONSULT LIMITED 香港新界粉嶺坪輋路啟芳園11A&11B號

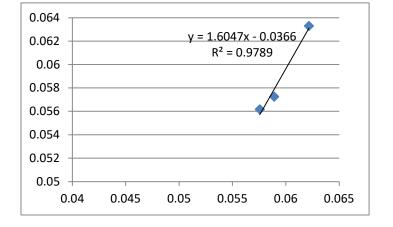
No. 11A&11B, KAI FONG GARDEN, PING CHE ROAD, FANLING, N.T., HONG KONG

CERTIFICATE OF CALIBRATION

Apex Testing & Certification Ltd.	Test Report No.	220908MCA-163F
IUnit D6A 10/F TMI Tower 3 Hoi Shing	Date of Issue	10-Sep-22
	Date of Testing	8-Sep-22
	Page	1 of 1

Item for Calibration

Description	: Laser Dust Monitor
Manufacturer	: Sibata Scientific Technology Ltd
Model No.	: LD-3B
Serial No.	: 336338


Standard Equipment

Description	: High Volume Sampler / Calibration Orifice
Manufacturer	: Tisch Environmental, Inc.
Model No.	: TE-5170 / TE-5025A
Serial No.	3476 / 3543
Last Calibration	: 6-SEP-22 / 20-OCT-21

Date	Time	Mean Temp	Mean Pressure	Concentration Standard Equipment	Concentration Calibrated Equipment
		(°C)	(hPa)	(mg/m3)	(mg/m3)
8-Sep-22	19:00	29.8	1013.8	0.0622	0.0633
8-Sep-22	20:05	29.8	1013.8	0.0576	0.0562
8-Sep-22	21:10	29.8	1013.8	0.0589	0.0573

By Linear Regression of Y or X			
Slope (K-factor) :	1.6047		
Correlation Coefficient :	0.9789		
Validity of Calibration :	7-Sep-23		

:

easin Recorded by Jessica Liu Signature: Date: 8-Sep-22 :

Checked by

S Tang

Signature:

Date: 8-Sep-22

AQuality

東恒測試顧問有限公司

AQUALITY TESTCONSULT LIMITED

香港新界粉嶺坪輋路啟芳園11A&11B號

No. 11A&B, KAI FONG GARDEN, PING CHE ROAD, FANLING, NEW TERRITORIES, HONG KONG TEL : 852-3582-9589 FAX : 852-2674-1177 EMAIL : cal.aqtl@gmail.com WEBSITE: www.aqtlgroup.com

	CERTIFICATE OF CALIBRATION
Report Number	: 220908MCA-165F
Date of Report	: 10-Sep-22
Page Number	: 1 of 2
Customer *	: Apex Testing & Certification Ltd.
Customer Address*	: Unit D6A, 10/F, TML Tower, 3 Hoi Shing Road, Tsuen Wan, N.T., HK
Customers Ref. *	: A005

Item Under Calibration (IUC)*

: N/A
: Sibata Scientific Technology Ltd
: LD-3B
: 567188
: 0.001 mg/m3
: 0.001 to 1 mg/m3
: Normal
: 8-Sep-22
. 0-5cp-22

Date Item Received	: 8-	Sep-22			
Date Calibrated	: 8-Sep-22				
Calibration Location	: AQuality Calibration Lab.				
Date of Next Calibration	: 7-Sep-23				
Calibrated By	: Jessica Liu				
Test Environment					
Ambient Temperature	:	25.7	°C to	33.8	°C
Relative Humidity	:	46	% to	83	%

Calibration Results

Reference True Reading (mg/m3)	Average IUC Reading (mg/m ³)	Correction (mg/m ³)	Error of IUC Reading (%)	Expanded Uncertainty (mg/m ³)	Coverage Factor K
0.158	0.167	-0.008	4.9%	0.023	2.0
5.164	5.693	-0.530	9.3%	0.463	2.0
10.100	11.045	-0.945	8.6%	0.905	2.0

<u>Remarks</u>

- 1. * Denotes information supplied by customer.
- 2. The results relate only to the items calibrated.
- 3. The results apply to the items as received.
- 4. Correction = Average of (Ref reading IUC reading)
- 5. The technical requirement of laser dust meter. +/- 20% error for the particles concentration.

LEE Mei Yee, Julia Managing Director

The results shown in this certificate are metrologically traceable to the International System of Units (SI) or recognised measurement standards. The certificate shall not be reproduced except in full without approval of the laboratory.

Approved by:

AQuality ^東

東恒測試顧問有限公司

AQUALITY TESTCONSULT LIMITED

香港新界粉嶺坪輋路啟芳園11A&11B號

No. 11A&11B, KAI FONG GARDEN, PING CHE ROAD, FANLING, NEW TERRITORIES, HONG KONG TEL : 852-3582-9589 FAX : 852-2674-1177 EMAIL : cal.aqtl@gmail.com WEBSITE: www.aqtlgroup.com

	CERTIFICATE OF CALIBRATION
Report Number	: 220908MCA-165F
Date of Report	: 10-Sep-22
Page Number	: 2 of 2
Customer *	: Apex Testing & Certification Ltd.
Customers Ref. *	: A005

Details of Calibration

- 1. The calibration was performed in accordance with AQuality Testconsult Procedure Number ENV-L-003 (in-house method), by comparison with the laboratory's reference equipment which have traceable international standards of measurement.
- 2. The item under calibration (IUC) was allowed to stabilize in the laboratory for 0.25 hour before commencement of calibration.
- 3. A set of readings were made at each calibration concentration. The values quoted in the results are the average of each set of readings.
- 4. The values given in this calibration certificate only relate to the values measured at the time of calibration. Any uncertainties quoted do not include allowance for the capability of any other laboratory to repeat the measurement. The uncertainty quoted relate only to item at time of calibration. AQuality Testconsult Limited is not liable for any loss or damage resulting from the use of this equipment.
- 5. The identification, calibration certificate numbers for the reference equipment used were as follows :

Equipment Number	Certificate Number	Description
CH-LDM-1	HBW202101714	粉尘测试仪

6. Copies of the Calibration certificates of the reference equipment used in this calibration may be obtained from AQuality Testconsult Limited, if necessary.

- End of Report -

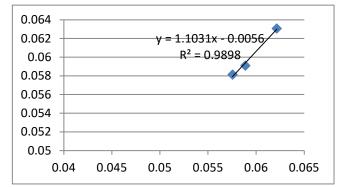
東恒測試顧問有限公司 AQUALITY TESTCONSULT LIMITED 香港新界粉嶺坪輋路啟芳園11A&11B號

No. 11A&11B, KAI FONG GARDEN, PING CHE ROAD, FANLING, N.T., HONG KONG

CERTIFICATE OF CALIBRATION

Apex Testing & Certification Ltd.	Test Report No.	220908MCA-165F
Unit D6A, 10/F, TML Tower, 3 Hoi Shing Road, Tsuen Wan, N.T., HK	Date of Issue	10-Sep-22
	Date of Testing	8-Sep-22
	Page	1 of 1

Item for Calibration


Description	: Laser Dust Monitor
Manufacturer	: Sibata Scientific Technology Ltd
Model No.	: LD-3B
Serial No.	: 567188

Standard Equipment

Description	:	High Volume Sampler / Calibration Orifice
Manufacturer	:	Tisch Environmental, Inc.
Model No.	:	TE-5170 / TE-5025A
Serial No.		3476 / 3543
Last Calibration	:	6-SEP-22 / 20-OCT-21

		Mean Temp	Mean	Concentration	Concentration
Data	Time		Mean Temp		Standard
Date	1 mile		Pressure	Equipment	Equipment
		(°C)	(hPa)	(mg/m3)	(mg/m3)
8-Sep-22	19:00	29.8	1013.8	0.0622	0.0631
8-Sep-22	20:05	29.8	1013.8	0.0576	0.0581
8-Sep-22	21:10	29.8	1013.8	0.0589	0.0591

By Linear Regression of Y or X				
:	1.1031			
t:	0.9898			
:	7-Sep-23			
	of Y : t : :			

Recorded by	:_	Jessica Liu	Signature:	Date:	8-Sep-22
Checked by	:	S Tang	Signature:	Date:	8-Sep-22

10日 校

浙江省计量科学研究院

校准证书

证书编号: JT-20220900080 号

委托方	上峰检测认证有限公	公司		Jin
地 址	il ZJIM ZJIM ZJ	M M	M SUM SUM SIM	
器具名称	声级计		ZUTIN COLIM ZUTIN ZUTIN	
型号规格	AWA5661	MIN	ZUM ZIM ZUM ZUM	
出厂编号	377204		MISHIN SHIM SHIM	
制造单位	杭州爱华仪器有限公	公司	M ZJIM ZJIM ZJIM	
受理日期	2022年09月05日	M ZIM	KUIM KUIM KUIM	
校准日期	2022年09月05日			
批准日期	2022年09月07日		Saint Saint Saint	
JIM ZJIM ZJIM ZJ ZJIM ZJIM ZJIM ZJ ZJIM ZJIM	E-3142		这证整空(专用章) 资源 校准专用章	(
批 准:	5.0 ac	职务:	高级工程师	
校 准:	张志凯	核验:	原州军	
• 地址:	浙江省杭州市江干区下沙路	300 号	电话: 0571-85027145	
回。 微信公众号 传真:	0571-85020687		网址: www.zjim.cn	

证书编号: JT-20220900080

第1页共2页

一、本机构经中国合格评定国家认可委员会评审,符合 CNAS-CL01:2018(ISO/IEC 17025:2017) 《检测和校准实验室能力的通用要求》的要求,认可证书号: No. CNAS L2865。

二、校准所依据的技术文件(代号、名称):

参照 JJG 188-2017《声级计检定规程》

三、校准环境条件及地点:

地 点: 本院交通与声学计量研究所声学振动实验室

温度: ____23__℃ 相对湿度: ___50_ %

大气压: _______ kPa

四、本次校准所用主要测量设备:

名称	测量范围	不确定度/准确度等级/最 大允许误差	溯源机构名称	证书编号	有效期至
低频声耦合 腔	10Hz~2kHz	失真<3.0%	浙江省计量科 学研究院	JT-202112 01216	2022-12-27
信号发生器	(0~100)s 31.5Hz~ 16kHz	持续时间 MPE: ± 1.0%	浙江省计量科 学研究院	DC-202112 00220	2022-12-09
声校准器	94.0dB、114.0dB	1级	浙江省计量科 学研究院	JT-202112 01220	2022-12-27
低失真信号 发生器	10 Hz~100 kHz	幅频特性 MPE: ±0.2dB	浙江省计量科 学研究院	DC-202205 00126	2023-05-25

五、校准结果/说明:

1. 指示声级调整:

■ 声校准器的型号____4231___: 声压级____94.0 dB。传声器编号: <u>AWA14425 39158</u> 声级计在参考环境条件下指示的等效自由场声级____93.8 dB。

2. 级线性

1)参考级量程(45~140)dB(8kHz)

起始点指示声级______dB, 1kHz 的线性工作范围_95_dB。

起始点以上间隔 10 dB 点的最大误差 <u>-0.2</u> dB; 上限以下 5 dB 内的 1 dB 点的最大误差 <u>-0.1</u> dB; 起始点以下间隔 10 dB 点的最大误差 <u>+0.2</u> dB; 下限以上 5 dB 内的 1 dB 点的最大误差 <u>+0.1</u> dB; 2)其它级量程(20~140) dB(1kHz)

起始点以上间隔 10 dB 点的最大误差 <u>-0.2</u> dB; 上限以下 5 dB 内的 1 dB 点的最大误差 <u>-0.1</u> dB; 起始点以下间隔 10 dB 点的最大误差 <u>-0.2</u> dB; 下限以上 5 dB 内的 1 dB 点的最大误差 <u>-0.1</u> dB。

dB.

3. 自生噪声:

电信号自生噪声(dB)	A: 8.8	C: 11.1
声信号自生噪声(dB)	A: 18.0	y ZJIM ZJIM

4.F和S时间计权:

衰减速率: F_35.1_dB/s, S_4.4_dB/s, F和S差值_0.0_

5. 1kHz 处的频率计权

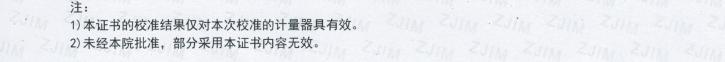
C频率计权相对 A频率计权的偏差_____dB;

本页以下空白

证书编号: JT-20220900080

6. 频率计权: (A 计权为声信号、C 计权为电信号)

标称	频率计权/dB				
频率/Hz	А	С	扩展不确定度 U (k=2)		
10	-70.1	-14.1	KUM KIM KI		
16	-56.1	-8.2	The Zine Zine		
31.5	-39.3	-2.9	0.5		
63	-26.2	-0.8	- AW - ANW - A		
125	-16.2	-0.2	JIM ZJIM ZJIM		
250	-8.7	-0.1	0.4		
500	-3.3	-0.1	0.4		
1000	-0.1	0.0(Ref)	0.4		
2000	+1.2	-0.2			
4000	+1.0	-0.8	0.6		
8000	-1.3	-3.2			
16000	-7.4	-14.1	1.0		
20000	-12.3	-26.4	1.0		


7. 猝发音响应(A 计权):

单个猝发音持	猝发音响应/dB	
续时间/ms	L _{AFmax} - L _A	L _{ASmax} - L _A
200	-1.0	-7.4
2	-18.2	-27.0
0.25	-27.2	

8. 重复猝发音响应(A计权):

单个猝发音持 续时间/ms	相邻单个猝发音之间 间隔时间/ms	猝发音响应/ dB L _{Aeq} - L _A
200	800	-7.0
1 SUM 2 UM SU	8	-7.0
0.25	7,1	-7.1

以下空白

Certificate of Calibration Certificate No.: A220075

Description: Make: Model: Serial No.: Type:	Sound level meter Hangzhou Aihua AWA5661 301135 1	Microphone Hangzhou Aihua AWA14421 102497	Preamplifier Hangzhou Aihua - -
Customer: Department: Address:	Apex Testing & Cert - Unit D6A, 10/F, TM Kong	tification Ltd L Tower, 3 Hoi Shing Road, T	'suen Wan, N.T. Hong
Date of receipt the calibration item:	2022-09-26		
Environmental conditions: Pressure: Temperature: Humidity:	(24.7 ±	=0.50) kPa = 1.0) °C = 2.0)%RH	
Date of calibration: Date of issue:	2022-10-11 2022-10-11		

Prepared by:

Wong Hau Chun

Checked by:

Choi Pui Sum

Approved Signatory:

Choi Pul Sum

Hong Kong Accreditation Service (HKAS) has accredited this laboratory (Reg. No. HOKLAS 302) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific calibration activities as listed in the HOKLAS directory of accredited laboratories. The results shown in this certificate are traceable to the International System of Unit (SI) or recognised measurement standards. This certificate shall not be reproduced except in full.

Preconditioning:

The equipment was preconditioned for more than 12 hours at the measurement conditions of pressure, temperature and humidity.

Measurement method:

A description of the in-house test procedure (ESG-NOISE-001) is available separately from the calibration laboratory.

Test Specification:

The Sound Level Meter has been calibrated in accordance with the requirements as specified the electrical tests in IEC 61672-3:2013 (Clause 11.2, 13, 14, 15, 16, 17(If necessary) *, 18, 19, 20 and 21).

*The application of Clause 17 is based on the more than one level range of Sound Level Meter.

e calibration:			
Model:	Serial No.	Calibration	Traceable to:
		Date:	
DS 360	123901	29-Jul-2021	The Government of
			HKSAR Standards and
			Calibration Laboratory
HIM30	J120806	20-Aug-2021	Huber Instrumente
		-	Calibration Laboratory
	DS 360	Model:Serial No.DS 360123901	Model: Serial No. Calibration Date: DS 360 123901 29-Jul-2021

Uncertainty:

The measurement uncertainty evaluation has been carried out in accordance with principles in the Evaluation of Measurement Data – Guide to the Expression of Uncertainty in Measurement, JCGM 100:2008. The expanded measurement uncertainty U, with its coverage factor k, corresponds to an approximate 95% probability that the value of measurand Y lies within the interval y-U to y+U. The combined standard measurement uncertainty u_c can be calculated as $u_c = U/k$ and its degree of freedom V_{eff} is given by the t-distribution with the respective k value.

Hong Kong Accreditation Service (HKAS) has accredited this laboratory (Reg. No. HOKLAS 302) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific calibration activities as listed in the HOKLAS dirctory of accredited laboratories. The results shown in this certificate are traceable to the International System of Unit (SI) or recognised measurement standards. This certificate shall not be reproduced except in full.

Summary of Measurement Results

Self-generated noise - IEC 61672-3 Ed.2.0 Clause 11 Frequency weightings: A Network - IEC 61672-3 Ed.2.0 Clause 13.3 Frequency weightings: C Network - IEC 61672-3 Ed.2.0 Clause 13.3 Frequency weightings: Z Network - IEC 61672-3 Ed.2.0 Clause 13.3 Frequency and time weightings at 1 kHz IEC 61672-3 Ed.2.0 Clause 14 Long term stability test - IEC 61672-3 Ed.2.0 Clause 15 Level linearity on the reference level range - IEC 61672-3 Ed.2.0 Clause 16 Level linearity including the level range control - IEC 61672-3 Ed.2.0 Clause 17 Toneburst response - IEC 61672-3 Ed.2.0 Clause 18 Peak C sound level - IEC 61672-3 Ed.2.0 Clause 19 Overload indication - IEC 61672-3 Ed.2.0 Clause 20 High level stability test - IEC 61672-3 Ed.2.0 Clause 21

Verification:

The verification measurements have been performed using the calibration system Nor1504A with software SlmCal62Y8.exe.

Detailed measurement results are printed on the following pages.

Comment:

The values given in this Certificate of Calibration only relate to values measured at the time of the test and any measurement uncertainties quoted will not include allowances for the equipment long term drift, variations with environmental changes, vibration and shock during transportation, or the capability of any other laboratory to repeat the measurement. The results apply to the item as received.

The results in this Certificate of Calibration only apply to the sample / calibration item as received.

Hong Kong Accreditation Service (HKAS) has accredited this laboratory (Reg. No. HOKLAS 302) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific calibration activities as listed in the HOKLAS directory of accredited laboratories. The results shown in this certificate are traceable to the International System of Unit (SI) or recognised measurement standards. This certificate shall not be reproduced except in full.

Measurement results

Self-generated noise test - IEC 61672-3:2013 Clause 11	Contraction of the	_
Description:	the state of the second se	1. Sec. 1. Sec. 1.
Relevant tests were carried out in accordance with Section 11 of IEC 61672-3:2013. The n	oise test is perf	ormed in
the most sensitive of the SLM with the microphone replaced by an equivalent impedance.	and the second second	
Noise level in A weighting network	16.6	dB
Noise level in C weighting network	19.0	dB
Noise level in Z (Lin) weighting network	25.4	dB

Frequency weighting test - IEC 61672-3:2013 Clause 13.3

Description:

Relevant tests were carried out in accordance with Section 13.3 of IEC 61672-3:2013. The frequency response of the weighting networks are tested at octave intervals over the frequency ranges 63.1Hz to 15848.9 Hz.

On the reference level range and for each frequency weighting to be tested, the level of a 1 kHz input signal shall be adjusted to yield an indication that is 45 dB less than the upper boundary stated in the Instruction Manual for the linear operating range at 1 kHz on the reference level range.

Frequency	

Frequency	Reference	Measured	Expanded	Coverage	Deviation	Accer	otance	Maximum
1	level	level	Measurement	Factor		limit (dB)		permitted
			Uncertainty	k	1.000 C			uncertainty
			U					
Hz	dB	dB	dB		dB	+	-	dB
63.1	95.0	94.9	0.1		-0.1	1.0	1.0	· · · · · · · · · · · · · · · · · · ·
125.9	95.0	95.0	0.1		0.0	1.0	1.0	
251.2	95.0	94.9	0.1		-0.1	1.0	1.0	
501.2	95.0	95.0	0.1		0.0	1.0	1.0	0.6
1000.0	95.0	95.0	0.1	1.96	0.0	0.7	0.7	
1995.3	95.0	95.1	0.1		0.1	1.0	1.0	
3981.1	95.0	95.2	0.1		0.2	1.0	1.0	
7943.3	95.0	95.7	0.1		0.7	1.5	2.5	0.7
15848.9	95.0	92.0	0.1		-3.0	2.5	16	1.0

Frequency weighting C:

1 2												
Frequency	Reference	Measured	Expanded	Coverage	Deviation	Accep		Maximum				
	level	level	Measurement	Factor		limit	(dB)	permitted				
			Uncertainty	k		27 - 28		uncertainty				
			U					-				
Hz	dB	dB	dB		dB	+	-	dB				
63.1	95.0	94.9	0.1		-0.1	1.0	1.0					
125.9	95.0	95.0	0.1		0.0	1.0	1.0					
251.2	95.0	94.9	0.1		-0.1	1.0	1.0					
501.2	95.0	95.0	0.1		0.0	1.0	1.0	0.6				
1000.0	95.0	95.0	0.1	1.96	0.0	0.7	0.7					
1995.3	95.0	95.0	0.1		0.0	1.0	1.0					
3981.1	95.0	95.2	0.1		0.2	1.0	1.0					
7943.3	95.0	95.6	0.1		0.6	1.5	2.5	0.7				
15848.9	95.0	91.9	0.1		-3.1	2.5	16	1.0				

Hong Kong Accreditation Service (HKAS) has accredited this laboratory (Reg. No. HOKLAS 302) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific calibration activities as listed in the HOKLAS directory of accredited laboratories. The results shown in this certificate are traceable to the International System of Unit (SI) or recognised measurement standards. This certificate shall not be reproduced except in full.

ESG Matters Limited – Acoustic Calibration Centre

Unit 1818-19, 18/F, Tower A, Regent Centre, 63 Wo Yi Hop Road, Kwai Chung, Hong Kong

Tel: 2525 8033 Website: www.esgmatters.asia Email: email@esgmatters.asia

E-G Matters

Certificate No.: A220075

Frequency v	weighting Z:								
Frequency	Reference	Measured	Expanded	Coverage	Deviation		otance	Maximum	
	level	level	Measurement	Factor		limit (dB)		permitted	
			Uncertainty	k				uncertainty	
			U	· · · · · · · · · · · · · · · · · · ·			11.11		
Hz	dB	dB	dB		dB	+	-	dB	
63.1	95.0	95.0	0.1	14 A	0.0	1.0	1.0		
125.9	95.0	95.0	0.1	<u>.</u>	0.0	1.0	1.0		
251.2	95.0	95.0	0.1	· · · · · · · · · · · · · · · · · · ·	0.0	1.0	1.0		
501.2	95.0	95.0	0.1		0.0	1.0	1.0	0.6	
1000.0	95.0	95.0	0.1	1.96	0.0	0.7	0.7		
1995.3	95.0	95.0	0.1		0.0	1.0	1.0		
3981.1	95.0	94.9	0.1		-0.1	1.0	1.0		
7943.3	95.0	95.0	0.1		0.0	1.5	2.5	0.7	
15848.9	95.0	94.8	0.1	· · · · · · · ·	-0.2	2.5	16	1.0	

Frequency and time weighting test at 1kHz-IEC 61672-3:2013 Clause 14

Description:

Relevant tests were carried out in accordance with Section 14 of IEC 61672-3:2013. For a steady sinusoidal electrical input signal at 1 kHz on the reference level range and with an input signal that yields an indication of the reference sound pressure level with frequency weighting A ,C and Z, with the sound level meter set to display F-time-weighted sound level, or time averaged sound level, as available. In addition, the indications with frequency weighting A shall be recorded with the sound level meter set to display F-time-weighted sound level, S-timeweighted sound level, and time-averaged sound level.

Parameter setting	Reference level	Measured Level	Expanded Measurement Uncertainty	Coverage Factor k	Deviation	Acceptance Limits (dB)		Maximum permitted uncertainty
	10	10	U		10		_	10
	dB	dB	dB		dB	+	-	dB
L _{AF} SPL	94.0	94.0	0.1		0.0			
Lc _F SPL	94.0	94.0	0.1		0.0	0.2	0.2	
Lz _F SPL	94.0	94.0	0.1	1.96	0.0			0.2
L _{As} SPL	94.0	94.0	0.1	1.90	0.0			0.2
LAeq	94.0	94.0	0.1		0.0	0.1	0.1	
LAE	114.0	114.1	0.1		0.1			an aire

Long term stability test - IEC 61672-3:2013 Clause 15

Description:

Relevant tests were carried out in accordance with Section 15 of IEC 61672-3:2013. The long-term stability of a sound level meter is evaluated from the difference between the A-weighted sound levels indicated in response to steady 1 kHz signals applied at the beginning and end of a period of operation. The period of continuous operation shall be between 25 min and 35 min are performed.

Test signal	: Sine wave a	t 1 kHz	Carlo Carlos and					
Time	Reading at	Reading at	Expanded	Coverage	Deviation	Acceptan	ce Limits	Maximum
interval	beginning	Ending	Measurement	Factor		(d	permitted	
			Uncertainty	k				uncertainty
			U					
mm:ss	dB	dB	dB		dB	+	-	dB
25:10	94.0	94.0	0.1	1.96	0.0	0.1	0.1	0.1

Hong Kong Accreditation Service (HKAS) has accredited this laboratory (Reg. No. HOKLAS 302) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific calibration activities as listed in the HOKLAS directory of accredited laboratories. The results shown in this certificate are traceable to the International System of Unit (SI) or recognised measurement standards. This certificate shall not be reproduced except in full.

ESG Matters Limited - Acoustic Calibration Centre

Unit 1818-19, 18/F, Tower A, Regent Centre, 63 Wo Yi Hop Road, Kwai Chung, Hong Kong

Tel: 2525 8033 Website: www.esgmatters.asia Email: email@esgmatters.asia

E-G Matters

Certificate No.: A220075

Level linearity on the reference level range test - IEC 61672-3:2013 Clause 16

Description:

Relevant tests were carried out in accordance with Section 16 of IEC 61672-3:2013. Level linearity shall be tested with steady sinusoidal electrical signals at a frequency of 8 kHz with the sound level meter set for frequency-weighting A. Level linearity shall be measured in 5 dB steps of increasing input signal level from the starting point up to within 5 dB of the upper boundary stated in the Instruction Manual for the linear operating range at 8 kHz, then at 1 dB steps of increasing input signal level up to, but not including, the first indication of overload. The test of level linearity shall then be continued at 5 dB steps of decreasing input signal level from the starting point down to within 5 dB of the specified lower boundary, then at 1 dB steps of decreasing input signal level down to, but not including, the first indication of an under-range condition.

Reference level	Measured level	Expanded Measurement Uncertainty U	Coverage Factor k	Deviation	Acceptance limit (dB)		Maximum permitted uncertainty
dB	dB	dB		dB	+	-	dB
94.0	93.9	0.1		-0.1			
99.0	98.9	0.1		-0.1			
104.0	103.9	0.1		-0.1			
109.0	108.9	0.1		-0.1			
114.0	113.9	0.1		-0.1			
119.0	118.8	0.1		-0.2		· · · · ·	0.3
124.0	123.8	0.1		-0.2			
129.0	128.8	0.1		-0.2		- · · ·	
134.0	133.8	0.1		-0.2		5 F 1	
136.0	135.8	0.1		-0.2			
137.0	136.8	0.1		-0.2			
138.0	137.8	0.1		-0.2			
139.0	138.8	0.1	1.96	-0.2	0.8	0.8	
140.0	139.8	0.1	1.90	-0.2	0.8	0.0	
94.0	93.9	0.1		-0.1		<u>н</u> к.,	
89.0	88.9	0.1		-0.1			
84.0	83.8	0.1		-0.2			
79.0	78.8	0.1		-0.2			
74.0	73.8	0.1		-0.2			0.3
69.0	68.8	0.1		-0.2			
64.0	63.8	0.1		-0.2		1 - 1114	
59.0	58.9	0.1		-0.1			
54.0	53.9	0.1		-0.1			
50.0	50.1	0.1		0.1			
49.0	49.1	0.1		0.1			
45.0	45.5	0.1		0.5			

Hong Kong Accreditation Service (HKAS) has accredited this laboratory (Reg. No. HOKLAS 302) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific calibration activities as listed in the HOKLAS directory of accredited laboratories. The results shown in this certificate are traceable to the International System of Unit (SI) or recognised measurement standards. This certificate shall not be reproduced except in full.

ESG Matters Limited – Acoustic Calibration Centre

Unit 1818-19, 18/F, Tower A, Regent Centre, 63 Wo Yi Hop Road, Kwai Chung, Hong Kong Tel : 2525 8033 Website : www.esgmatters.asia Email : email@esgmatters.asia

Level linearity including the level range control test - IEC 61672-3:2013 Clause 17

Description:

Relevant tests were carried out in accordance with Section 17 of IEC 61672-3:2013. For sound level meters that have more than one level range, tests of level linearity deviations including deviations introduced by the level range control shall be performed with steady sinusoidal electrical input signals at a frequency of 1 kHz and with the sound level meter set for frequency weighting A.

For each level range, the level of the input signal shall then be adjusted to yield a signal level that is expected to be 5 dB greater than the signal level that first causes an indication of under-range on a level range.

Full Scale	Reference level	Measured level	Expanded Measurement Uncertainty	Coverage Factor k	Deviation	Acceptance limit (dB)		Maximum permitted uncertainty	
dB	dB	dB	dB		dB	+	-	dB	
Measure	d at 1 kHz						LI		
The follo	owing measurer	ments are SPL r	neasurements						
Measurin	ng the reference	e level on the av	ailable ranges						
140.0	94.0	94.0	0.1	1.06	0.0	0.2	0.2	0.2	
120.0	94.0	94.1	0.1	1.96	0.1	0.3	0.3	0.3	
Measurin	ng 5 dB below f	full scale on all	available ranges						
140.0	135.0	135.0	0.1	1.06	0.0	0.0	0.0	0.2	
120.0	115.0	115.0	0.1	0.1 1.96		0.8	0.8	0.3	

Hong Kong Accreditation Service (HKAS) has accredited this laboratory (Reg. No. HOKLAS 302) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific calibration activities as listed in the HOKLAS directory of accredited laboratories. The results shown in this certificate are traceable to the International System of Unit (SI) or recognised measurement standards. This certificate shall not be reproduced except in full.

Toneburst response test - IEC 61672-3:2013 Clause 18

Description:

Relevant tests were carried out in accordance with Section 18 of IEC 61672-3:2013. For the toneburst signals, indications of the sound level meter to be recorded are maximum F-time-weighted sound level, maximum S-time-weighted sound level, and sound exposure level. The level of the steady input signal shall be adjusted to display an F-time-weighted, S time-weighted, or time-averaged sound level, as appropriate, that is 3 dB less than the upper boundary stated in the Instruction Manual for the linear operating range at 4 kHz on the reference level range.

For tests with the F time weighting, the indication shall be recorded of the maximum F time-weighted sound level in response to tonebursts having durations of 200 ms, 2 ms, and 0.25 ms.

For tests with the S time weighting, the indication shall be recorded of the maximum S time-weighted sound level in response to tonebursts having durations of 200 ms and 2 ms.

For measurements of sound exposure level (or time-averaged sound level for an averaging time that includes the toneburst), the indications in response to tonebursts having durations of 200 ms, 2 ms, and 0.25 ms.

Parameter	Burst	Reference	Measured	Expanded	Coverage	Deviation	Accep	otance	Maximum
setting	duration	level	level	Measurement	Factor	1	limit (dB)		permitted
				Uncertainty	k				uncertaint
				U					у
	ms	dB	dB	dB		dB	+	-	dB
	200 136.0 136.0 0.1 0.0 0.				0.5	0.5	4.20		
LAFMAX	2	119.0	118.7	0.1		-0.3	1.0	1.5	
ZAFILLI	0.25	110.0	109.8	0.1		-0.2	1.0	3.0	
L _{AS} MAX	200	129.6	129.6	0.1	1.96	0.0	0.5	0.5	0.3
LASIVIAA	2	110.0	110.0	0.1	1.90	0.0	1.0	3.0	0.5
	200	130.0	130.1	0.1		0.1	0.5	0.5	
LAE	2	110.0	110.0	0.1		0.0	1.0	1.5	
LAL	0.25	101.0	100.9	0.1		-0.1	1.0	3.0	

Hong Kong Accreditation Service (HKAS) has accredited this laboratory (Reg. No. HOKLAS 302) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific calibration activities as listed in the HOKLAS directory of accredited laboratories. The results shown in this certificate are traceable to the International System of Unit (SI) or recognised measurement standards. This certificate shall not be reproduced except in full.

Unit 1818-19, 18/F, Tower A, Regent Centre, 63 Wo Yi Hop Road, Kwai Chung, Hong Kong

Tel: 2525 8033 Website: www.esgmatters.asia Email: email@esgmatters.asia

Peak C sound level test - IEC 61672-3:2013 Clause 19

Description:

Relevant tests were carried out in accordance with Section 19 of IEC 61672-3:2013. Indications of C-weighted peak sound level shall be tested on the least-sensitive level range. The test signals consist of (a) a single complete cycle of an 8 kHz sinusoid starting and stopping at zero crossings and (b) positive and negative half cycles of a 500 Hz sinusoid that also start and stop at zero crossings.

The level of the steady sinusoidal 8 kHz electrical input signal, from which a single complete cycle is extracted, shall be adjusted to yield an indication of C-weighted, F-timeweighted sound level, or C-weighted, time-averaged sound level, that is 8 dB less than the upper boundary stated in the Instruction Manual for the peak level range at 8 kHz on the least sensitive level range.

The level of the steady sinusoidal 500 Hz electrical input signal, from which positive and negative half cycles are extracted, shall be adjusted to yield an indication of C-weighted, F time-weighted sound level, or C-weighted, time-averaged sound level, that is 8 dB less than the upper boundary stated in the Instruction Manual for the peak level range on the least-sensitive level range.

Pulse	Pulse	Reference Measured Expanded Coverage Deviation Acceptance Maximum							
Fulse	Fulse			-	Coverage	Deviation			
type	frequency	Peak level	level	Measurement	Factor		limit	(dB)	permitted
				Uncertainty	k				uncertainty
				U					
	Hz	dB	dB	dB		dB	+	-	dB
1 cycle	8000	138.40	137.90	0.10		-0.50	2.00	2.00	
Positive cycle	500	140.40	139.60	0.10	1.96	-0.80	1.00	1.00	0.35
Negative cycle	500	140.40	139.50	0.10		-0.90	1.00	1.00	

Overload indication test - IEC 61672-3:2013 Clause 20

Description:

Relevant tests were carried out in accordance with Section 20 of IEC 61672-3:2013. The sound level meter set to display A-weighted, time-averaged sound level. Positive and negative one-half cycle sinusoidal electrical signals at a frequency of 4 kHz.

The test shall begin at an indicated time-averaged level for the steady input signal that corresponds to 1 dB less than the upper boundary specified for the linear operating range at 4 kHz. The level of the single positive one-half-cycle input signal shall be increased to the first indication of overload, to a resolution of 0,1 dB. The process shall be repeated for the single negative one-half-cycle signal.

Overload indication at 4 kHz		Expanded	Coverage	Deviation	Acceptance limit		Maximum
Positive one- Negative one-		Measurement	Factor		(0	lB)	permitted
half-cycle	half-cycle	Uncertainty	k		-		uncertainty
		U					
dB	dB	dB		dB	+	-	dB
146.70	147.10	0.10	1.96	0.40	1.50	1.50	0.25

Hong Kong Accreditation Service (HKAS) has accredited this laboratory (Reg. No. HOKLAS 302) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific calibration activities as listed in the HOKLAS directory of accredited laboratories. The results shown in this certificate are traceable to the International System of Unit (SI) or recognised measurement standards. This certificate shall not be reproduced except in full.

High level stability test - IEC 61672-3:2013 Clause 21

Description:

Relevant tests were carried out in accordance with Section 21 of IEC 61672-3:2013. The ability of a sound level meter to operate continuously in response to high signal levels without significant change in sensitivity is evaluated from the difference between the A weighted sound levels indicated in response to a steady 1 kHz electrical signal at the beginning and end of a 5 min period of continuous exposure to the signal.

The level of the steady electrical input signal shall be that which is required to display the sound level that is 1 dB less than the upper boundary of the 1 kHz linear operating range on the least-sensitive level range.

Reading at beginning	Reading at Ending	Expanded Measurement Uncertainty	Coverage Factor k	Deviation	Acceptance M Limits (dB)		Maximum permitted uncertainty
dB	dB	dB		dB	+	_	dB
139.0	139.0	1.0	1.96	0.0	0.1	0.1	0.1

Remark:

Acoustical levels are stated relative to 20µPa. Other dB levels are relative values.

- END -

Hong Kong Accreditation Service (HKAS) has accredited this laboratory (Reg. No. HOKLAS 302) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific calibration activities as listed in the HOKLAS directory of accredited laboratories. The results shown in this certificate are traceable to the International System of Unit (SI) or recognised measurement standards. This certificate shall not be reproduced except in full.

Certificate of Calibration Certificate No.: B220032

Description:	Sound calibrator
Make:	Quest
Model:	QC-10
Serial No.:	QI9010183
Class:	1
Customer:	Apex Testing & Certificate Ltd
Department:	-
Address:	Unit D6A, 10/F, TML Tower, 3 Hoi Shing Road, Tsuen Wan, N.T.
Date of receipt the calibration item:	2022-09-26
Environmental conditions: Pressure: Temperature: Humidity:	$\begin{array}{rl} (100.34 & \pm 0.50) \mathrm{kPa} \\ (21.6 & \pm 1.0) ^{\circ}\mathrm{C} \\ (57,0 & \pm 2.0) ^{\prime}\! \mathrm{RH} \end{array}$

Date of calibration: Date of issue:

Prepared by:

. ...

Checked by:

Approved Signatory:

Chol Pui Sum

Ho Tsz Chun

2022-10-05

2022-10-05

The

Choi Pui Sum

Hong Kong Accreditation Service (HKAS) has accredited this laboratory (Reg. No. HOKLAS 302) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific calibration activities as listed in the HOKLAS directory of accredited laboratories. The results shown in this certificate are traceable to the International System of Unit (SI) or recognised measurement standards. This certificate shall not be reproduced except in full.

ESG Matters Limited – Acoustic Calibration Centre Unit 1818-19, 18/F, Tower A, Regent Centre, 63 Wo Yi Hop Road, Kwai Chung, Hong Kong Tel : 2525 8033 Website : www.esgmatters.asia Email : email@esgmatters.asia

Preconditioning:

The equipment was preconditioned for more than 12 hours at the measurement conditions of pressure, temperature and humidity.

Measurement method:

A description of the in-house test procedure (ESG-NOISE-003) is available separately from the calibration laboratory.

Test Specification:

The Sound Calibrator has been calibrated in accordance with the requirements as specified the in-house test procedure ESG-NOISE-003.

The verification measurements were performed using the calibration system Nor1504A with software CalCal62NCL.exe. As acoustical reference was used WSM - Nor1225-215371 with sensitivity: 54.76 mV/Pa.

Reference equipment used in the calibration:

Description:	Model:	Serial No.	Calibration Date:	Traceable to:
Signal generator	DS 360	123901	2021-07-30	The Government of HKSAR
				Standards and Calibration
				Laboratory
Multimeter	Agilent	MY41030277	2021-08-03	The Government of HKSAR
	34401A			Standards and Calibration
				Laboratory
Meteo Station HM30	HM30	J120806	2021-08-20	Huber Instrumente Calibration
				Laboratory
Reference microphone	Nor 1225	215371	2021-06-28	The Government of HKSAR
				Standards and Calibration
				Laboratory
Reference Calibrator	B&K 4231	3014997	2021-08-03	The Government of HKSAR
				Standards and Calibration
				Laboratory
Audio Analyzer	8903B	3011A11797	2021-08-13	China Ceprei Laboratory
				Calibration & Testing Centre

Hong Kong Accreditation Service (HKAS) has accredited this laboratory (Reg. No. HOKLAS 302) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific calibration activities as listed in the HOKLAS directory of accredited laboratories. The results shown in this certificate are traceable to the International System of Unit (SI) or recognised measurement standards. This certificate shall not be reproduced except in full.

Uncertainty:

The reported expanded uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k, which with the reported effective degree of freedom corresponds to coverage probability of approximately 95%. The standard uncertainty of measurement has been determined in accordance with EA publication EA-4/02.

The measurement uncertainty evaluation has been carried out in accordance with principles in the Evaluation of Measurement Data – Guide to the Expression of Uncertainty in Measurement, JCGM 100:2008. The expanded measurement uncertainty U, with its coverage factor k, corresponds to an approximate 95% probability that the value of measurand Y lies within the interval y-U to y+U. The combined standard measurement uncertainty u_c can be calculated as $u_c = U/k$ and its degree of freedom V_{eff} is given by the t-distribution with the respective k value.

Comment:

The values given in this Certificate of Calibration only relate to values measured at the time of the test and any measurement uncertainties quoted will not include allowances for the equipment long term drift, variations with environmental changes, vibration and shock during transportation, or the capability of any other laboratory to repeat the measurement. The results apply to the item as received.

All tests are performed according to in-house test procedure ESG-Noise-003.

The results in this Certificate of Calibration only apply to the sample / calibration item as received.

Hong Kong Accreditation Service (HKAS) has accredited this laboratory (Reg. No. HOKLAS 302) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific calibration activities as listed in the HOKLAS directory of accredited laboratories. The results shown in this certificate are traceable to the International System of Unit (SI) or recognised measurement standards. This certificate shall not be reproduced except in full.

ESG Matters Limited – Acoustic Calibration Centre Unit 1818-19, 18/F, Tower A, Regent Centre, 63 Wo Yi Hop Road, Kwai Chung, Hong Kong Tel: 2525 8033 Website: www.esgmatters.asia Email: email@esgmatters.asia

Table 1

Sound Pressure Level Test Results

Description:

Performance tests were carried out in accordance with Annex B.3.4.3.2 of IEC 60942:2003. The sound pressure level generated by the equipment was compare to the reference sound pressure level by the reference equipment B&K 4231 (Equipment No.:3014997).

Quest QC-10			1	Measured Deviation	Acceptance	Maximum	
			(b) – (a)			Limits	Permitted
Frequency	Sound Pres	ssure Level	Value	Value Measurement Uncertainty			Uncertainty
Setting	Expected	Measured	У	Expanded	Coverage		
	Reading	Reading		Measurement	Factor		
	(a)	(b)		Uncertainty	k		
				U			
(Hz)	(dB)	(dB)	(dB)	(dB)	and the second second second	(dB)	(dB)
1000.00	114.00	113.85	-0.15	0.13	1.96	±0.40	0.15

The calibrator was placed on top of the reference microphone, only held in place by gravity. At least three repetitions have been performed. No adapter ring was needed to obtain half inch configuration.

The calibrator level was not adjusted.

Hong Kong Accreditation Service (HKAS) has accredited this laboratory (Reg. No. HOKLAS 302) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific calibration activities as listed in the HOKLAS directory of accredited laboratories. The results shown in this certificate are traceable to the International System of Unit (SI) or recognised measurement standards. This certificate shall not be reproduced except in full.

Table 2

Frequency Test Results

Description:

Relevant tests were carried out in accordance with Annex B.3.5 of IEC 60942:2003. The frequency of sound pressure level generated by the equipment was measured by the multimeter (Equipment No.: MY41030277).

Quest QC-10			Measured Deviation [=([b] – [a])/[a] x 100%]			Acceptance Limits	Maximum Permitted
Sound	Frequency		Value	Measurement Uncertainty			Uncertainty
Pressure	Expected	Measured	у	Expanded	Coverage		
Level	Reading	Reading		Measurement	Factor	and the property of	
Setting	(a)	(b)	20 C	Uncertainty	k		
				U			
(dB)	(Hz)	(Hz)	(%)	(%)		(%)	(%)
114.00	1000.00	998.68	-0.13	0.14	1.96	±1.00	0.30

The calibrator was placed on top of the reference microphone, only held in place by gravity. At least three repetitions have been performed. No adapter ring was needed to obtain half inch configuration.

The calibrator level was not adjusted.

Hong Kong Accreditation Service (HKAS) has accredited this laboratory (Reg. No. HOKLAS 302) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific calibration activities as listed in the HOKLAS directory of accredited laboratories. The results shown in this certificate are traceable to the International System of Unit (SI) or recognised measurement standards. This certificate shall not be reproduced except in full.

ESG Matters Limited - Acoustic Calibration Centre

Unit 1818-19, 18/F, Tower A, Regent Centre, 63 Wo Yi Hop Road, Kwai Chung, Hong Kong Tel: 2525 8033 Website: www.esgmatters.asia Email: email@esgmatters.asia

Table 3

Total Distortion Test Results

Description:

Relevant tests were carried out in accordance with Annex B.3.6 of IEC 60942:2003. The total distortion of the acoustic signal generated by the equipment was measured by the Laboratory's audio analyzer (Equipment No.: 3011A11797).

Quest QC-10			Measured Total Disto	ortion	Acceptance Limits	Maximum Permitted
Frequency	Sound	Value	Measurement	Uncertainty		Uncertainty
Setting	Pressure	У	Expanded	Coverage		2007
	Level		Measurement	Factor		
	Setting		Uncertainty	k		
1.12			U			
(Hz)	(dB)	(%)	(%)		(%)	(%)
1000.00	114.00	0.43	0.21	1.96	±3.00	0.50

The calibrator was placed on top of the reference microphone, only held in place by gravity. At least three repetitions have been performed. No adapter ring was needed to obtain half inch configuration.

The calibrator level was not adjusted.

The stated levels are relative to 20µPa. The distortion value (in %) is the signal to total noise ratio.

- END -

Hong Kong Accreditation Service (HKAS) has accredited this laboratory (Reg. No. HOKLAS 302) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific calibration activities as listed in the HOKLAS directory of accredited laboratories. The results shown in this certificate are traceable to the International System of Unit (SI) or recognised measurement standards. This certificate shall not be reproduced except in full.

ESG Matters Limited – Acoustic Calibration Centre Unit 1818-19, 18/F, Tower A, Regent Centre, 63 Wo Yi Hop Road, Kwai Chung, Hong Kong Tel: 2525 8033 Website: www.esgmatters.asia Email: email@esgmatters.asia