

RECALIBRATION DUE DATE:

October 20, 2022

Certificate of Calibration

Calibration Certification Information

Cal. Date: October 20, 2021

Rootsmeter S/N: 438320

Ta: 295

Pa: 753.9

°K

Operator: Jim Tisch
Calibration Model #:

TE-5025A

Calibrator S/N: 3543

mm Hg

Run	Vol. Init (m3)	Vol. Final (m3)	ΔVol. (m3)	ΔTime (min)	ΔP (mm Hg)	ΔH (in H2O)
1	1	2	1	1.4300	3.2	2.00
2	3	4	1	1.0060	6.4	4.00
3	5	6	1	0.8990	7.9	5.00
4	7	8	1	0.8550	8.8	5.50
5	9	10	1	0.7050	12.8	8.00

	Data Tabulation					
Vstd	Qstd	$\sqrt{\Delta H \left(\frac{Pa}{Pstd}\right) \left(\frac{Tstd}{Ta}\right)}$		Qa	$\sqrt{\Delta H (Ta/Pa)}$	
(m3)	(x-axis)	(y-axis)	Va	(x-axis)	(y-axis)	
0.9978	0.6977	1.4156	0.9958	0.6963	0.8847	
0.9935	0.9876	2.0020	0.9915	0.9856	1,2511	
0.9915	1.1029	2.2383	0.9895	1.1007	1.3988	
0.9903	1.1583	2.3476	0.9883	1.1559	1.4670	
0.9850	1.3972	2.8313	0.9830	1.3944	1.7693	
	m=	2.02434		m=	1.26761	
QSTD[b≃	0.00347	QA	b=	0.00217	
	r=	1.00000		r=	1.00000	

	Calculation	S	
Vstd= ∆∨	ol((Pa-ΔP)/Pstd)(Tstd/Ta)	Va = ΔVol((Pa-ΔP)/Pa)	
Qstd= Vstd/ΔTime		Qa= Va/ΔTime	
	For subsequent flow rate	e calculations:	
Qstd= 1/	$m\left(\left(\sqrt{\Delta H\left(\frac{Pa}{Pstd}\right)\left(\frac{Tstd}{Ta}\right)}\right) \cdot b\right)$	$\mathbf{Qa=} 1/m \left(\left(\sqrt{\Delta H \left(Ta/Pa \right)} \right) - b \right)$	

Standard Conditions					
Tstd:	298.15 °K				
Pstd:	760 mm Hg				
Кеу					
ΔH: calibrator manometer reading (in H2O)					
ΔP: rootsmeter manometer reading (mm Hg)					
Ta: actual absolute temperature (°K)					
Pa: actual barometric pressure (mm Hg)					
b: intercept					
m: slope					

RECALIBRATION

US EPA recommends annual recalibration per 1998 40 Code of Federal Regulations Part 50 to 51, Appendix B to Part 50, Reference Method for the Determination of Suspended Particulate Matter in the Atmosphere, 9.2.17, page 30

Zones 2A at West

Location: AM3A Site ID: Kowloon Cultural Date: 23-Dec-21

Sampler: TE-5170 Serial No: 4340 Tech: CS Tang

Site Conditions

Barometric Pressure (in Hg):	30.02 Corrected Pressure (mm Hg):	763
Temperature (deg F):	Temperature (deg K):	293
Average Press. (in Hg):	Corrected Average (mm Hg):	763
Average Temp. (deg F):	Average Temp. (deg K):	293

Calibration Orifice

Make: Tisch	Qstd Slope: 2.02434
Model: TE-5025A	Qstd Intercept: 0.00347
Serial#: 3543	Date Certified: 20-Oct-21

Calibration Information

Plate or	H2O	Qstd	I	IC	
Test #	(in)	(m3/min)	(chart)	(corrected)	Linear Regression
1	12.80	1.784	53.0	53.54	Slope: 31.2016
2	10.60	1.623	48.0	48.49	Intercept: -1.7843
3	7.50	1.365	41.0	41.42	Corr. Coeff: 0.9977
4	4.80	1.092	33.0	33.34	
5	2.80	0.833	23.0	23.23	# of Observations: 5

Calculations

Qstd = 1/m[Sqrt(H2O(Pa/Pstd)(Tstd/Ta))-b] IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Qstd = standard flow rate

IC = corrected chart response

I = actual chart response

m = calibrator Qstd slope

b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K)

Pa = actual pressure during calibration (mm Hg)

Tstd = 298 deg K

Pstd = 760 mm Hg

For subsequent calculation of sampler flow:

1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)

m = sampler slope

b = sampler intercept

I = chart response

Tav = daily average temperature

Pav = daily average pressure

Average I (chart): 40

Average Flow Calculation m3/min

1.339245876

Average Flow Calculation in CFM

47.28877189

Sample Time (Hrs): 1.0

Total Flow in m3/min

80.35475258

Total Flow in CFM

2837.326314

Zones 2A at West

Location: AM3A Site ID: Kowloon Cultural Date: 19-Feb-22

Sampler: TE-5170 Serial No: 4340 Tech: CS Tang

Site Conditions

Barometric Pressure (in Hg): 3	0.03 Corrected Pressure (mm Hg):	763
Temperature (deg F): 5	Temperature (deg K):	288
Average Press. (in Hg): 3	0.03 Corrected Average (mm Hg):	763
Average Temp. (deg F): 55	Average Temp. (deg K):	288

Calibration Orifice

Make: Tisch	Qstd Slope: 2.02434
Model: TE-5025A	Qstd Intercept: 0.00347
Serial#: 3543	Date Certified: 20-Oct-21

Calibration Information

Plate or	H2O	Qstd	I	IC	
Test #	(in)	(m3/min)	(chart)	(corrected)	Linear Regression
1	12.60	1.785	53.0	54.01	Slope: 31.3098
2	10.90	1.660	48.0	48.91	Intercept: -2.0741
3	7.50	1.377	41.0	41.78	Corr. Coeff: 0.9975
4	4.90	1.113	33.0	33.63	
5	2.80	0.841	23.0	23.44	# of Observations: 5

Calculations

Qstd = 1/m[Sqrt(H2O(Pa/Pstd)(Tstd/Ta))-b] IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Qstd = standard flow rate

IC = corrected chart response

I = actual chart response

m = calibrator Qstd slope

b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K)

Pa = actual pressure during calibration (mm Hg)

Tstd = 298 deg K

Pstd = 760 mm Hg

For subsequent calculation of sampler flow:

1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)

m = sampler slope

b = sampler intercept

I = chart response

Tav = daily average temperature

Pav = daily average pressure

Average I (chart): 40

Average Flow Calculation m3/min

1.35512821

Average Flow Calculation in CFM

47.84957709

Sample Time (Hrs): 1.0

Total Flow in m3/min

81.30769259

Total Flow in CFM

2870.974625

Zones 2A at West

Location: AM4A Site ID: Kowloon Cultural Date: 23-Dec-21

Sampler: TE-5170 Serial No: 3998 Tech: CS Tang

Site Conditions

Barometric Pressure (in Hg): 30.02	Corrected Pressure (mm Hg): 763
Temperature (deg F): 68	Temperature (deg K): 293
Average Press. (in Hg): 30.02	Corrected Average (mm Hg): 763
Average Temp. (deg F): 68	Average Temp. (deg K): 293

Calibration Orifice

Make: Tisch	Qstd Slope: 2.02434
Model: TE-5025A	Qstd Intercept: 0.00347
Serial#: 3543	Date Certified: 20-Oct-21

Calibration Information

Plate or	H2O	Qstd	I	IC	
Test #	(in)	(m3/min)	(chart)	(corrected)	Linear Regression
1	12.40	1.755	53.0	53.54	Slope: 31.2295
2	10.50	1.615	48.0	48.49	Intercept: -1.4171
3	7.60	1.374	41.0	41.42	Corr. Coeff: 0.9974
4	4.60	1.069	33.0	33.34	
5	2.70	0.818	23.0	23.23	# of Observations: 5

Calculations

Qstd = 1/m[Sqrt(H2O(Pa/Pstd)(Tstd/Ta))-b] IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Qstd = standard flow rate

IC = corrected chart response

I = actual chart response

m = calibrator Qstd slope

b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K)

Pa = actual pressure during calibration (mm Hg)

Tstd = 298 deg K

Pstd = 760 mm Hg

For subsequent calculation of sampler flow:

1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)

m = sampler slope

b = sampler intercept

I = chart response

Tav = daily average temperature

Pav = daily average pressure

Average I (chart): 40

Average Flow Calculation m3/min

1.326289295

Average Flow Calculation in CFM

46.83127501

Sample Time (Hrs): 1.0

Total Flow in m3/min

79.57735771

Total Flow in CFM

2809.876501

Zones 2A at West

Location: AM4A Site ID: Kowloon Cultural Date: 19-Feb-22

Sampler: TE-5170 Serial No: 3998 Tech: CS Tang

Site Conditions

Barometric Pressure (in Hg): 30.03

Corrected Pressure (mm Hg): 763

Temperature (deg F): 59

Average Press. (in Hg): 30.03

Average Temp. (deg F): 59

Corrected Average (mm Hg): 763

Average Temp. (deg K): 288

Calibration Orifice

 Make: Tisch
 Qstd Slope: 2.02434

 Model: TE-5025A
 Qstd Intercept: 0.00347

 Serial#: 3543
 Date Certified: 20-0ct-21

Calibration Information

Plate or	H2O	Qstd	I	IC	
Test #	(in)	(m3/min)	(chart)	(corrected)	Linear Regression
1	12.60	1.785	53.0	54.01	Slope: 31.7800
2	10.70	1.645	48.0	48.91	Intercept: -2.5774
3	7.40	1.368	41.0	41.78	Corr. Coeff: 0.9964
4	4.80	1.101	33.0	33.63	
5	2.90	0.856	23.0	23.44	# of Observations: 5

Calculations

Qstd = 1/m[Sqrt(H2O(Pa/Pstd)(Tstd/Ta))-b] IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Qstd = standard flow rate

IC = corrected chart response

I = actual chart response

m = calibrator Qstd slope

b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K)

Pa = actual pressure during calibration (mm Hg)

Tstd = 298 deg K

Pstd = 760 mm Hg

For subsequent calculation of sampler flow:

1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)

m = sampler slope

b = sampler intercept

I = chart response

Tav = daily average temperature

Pav = daily average pressure

Average I (chart): 40

Average Flow Calculation m3/min

1.350916375

Average Flow Calculation in CFM

47.70085721

Sample Time (Hrs): 1.0

Total Flow in m3/min

81.05498252

Total Flow in CFM

2862.051433

Zones 2A at West

Location: AM5A
Site ID: Kowloon Cultural
Date: 23-Dec-21

Sampler: TE-5170
Serial No: 4344
Tech: CS Tang

Site Conditions

Barometric Pressure (in Hg): 30	0.02 Corrected Pressure (mm Hg):	763
Temperature (deg F): 68	8 Temperature (deg K):	293
Average Press. (in Hg): 30	0.02 Corrected Average (mm Hg):	763
Average Temp. (deg F): 68	8 Average Temp. (deg K):	293

Calibration Orifice

Make: Tisch	Qstd Slope: 2.02434
Model: TE-5025A	Qstd Intercept: 0.00347
Serial#: 3543	Date Certified: 20-Oct-21

Calibration Information

Plate or	H2O	Qstd	I	IC	
Test #	(in)	(m3/min)	(chart)	(corrected)	Linear Regression
1	12.50	1.763	53.0	53.54	Slope: 29.1985
2	10.70	1.631	48.0	48.49	Intercept: 1.6894
3	7.40	1.356	41.0	41.42	Corr. Coeff: 0.9985
4	4.50	1.057	33.0	33.34	
5	2.30	0.755	23.0	23.23	# of Observations: 5

Calculations

Qstd = 1/m[Sqrt(H2O(Pa/Pstd)(Tstd/Ta))-b] IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Qstd = standard flow rate

IC = corrected chart response

I = actual chart response

m = calibrator Qstd slope

b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K)

Pa = actual pressure during calibration (mm Hg)

Tstd = 298 deg K

Pstd = 760 mm Hg

For subsequent calculation of sampler flow:

1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)

m = sampler slope

b = sampler intercept

I = chart response

Tav = daily average temperature

Pav = daily average pressure

Average I (chart): 40

Average Flow Calculation m3/min

1.31215111

Average Flow Calculation in CFM

46.33205569

Sample Time (Hrs): 1.0

Total Flow in m3/min

78.72906659

Total Flow in CFM

2779.923341

Zones 2A at West

Location: AM5A Site ID: Kowloon Cultural Date: 19-Feb-22

Sampler: TE-5170 Serial No: 4344 Tech: CS Tang

Site Conditions

Barometric Pressure (in Hg): 30.03

Corrected Pressure (mm Hg): 763

Temperature (deg F): 59

Average Press. (in Hg): 30.03

Average Temp. (deg F): 59

Corrected Average (mm Hg): 763

Average Temp. (deg K): 288

Calibration Orifice

 Make: Tisch
 Qstd Slope: 2.02434

 Model: TE-5025A
 Qstd Intercept: 0.00347

 Serial#: 3543
 Date Certified: 20-0ct-21

Calibration Information

Plate or	H2O	Qstd	I	IC	
Test #	(in)	(m3/min)	(chart)	(corrected)	Linear Regression
1	12.60	1.785	53.0	54.01	Slope: 29.6997
2	10.90	1.660	48.0	48.91	Intercept: 0.5350
3	7.60	1.386	41.0	41.78	Corr. Coeff: 0.9977
4	4.60	1.078	33.0	33.63	
5	2.50	0.794	23.0	23.44	# of Observations: 5

Calculations

Qstd = 1/m[Sqrt(H2O(Pa/Pstd)(Tstd/Ta))-b] IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Qstd = standard flow rate

IC = corrected chart response

I = actual chart response

m = calibrator Qstd slope

b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K)

Pa = actual pressure during calibration (mm Hg)

Tstd = 298 deg K

Pstd = 760 mm Hg

For subsequent calculation of sampler flow:

1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)

m = sampler slope

b = sampler intercept

I = chart response

Tav = daily average temperature

Pav = daily average pressure

Average I (chart): 40

Average Flow Calculation m3/min

1.34074924

Average Flow Calculation in CFM

47.34185566

Sample Time (Hrs): 1.0

Total Flow in m3/min

80.4449544

Total Flow in CFM

2840.51134

CERTIFICATE OF ACCREDITATION

This is to attest that

AQUALITY TESTCONSULT LIMITED

11A&B, KAI FONG GARDEN, PING CHE ROAD FANLING, HONG KONG

Calibration Laboratory CL-207

has met the requirements of AC204, *IAS Accreditation Criteria for Calibration Laboratories*, and has demonstrated compliance with ISO/IEC Standard 17025:2017, *General requirements for the competence of testing and calibration laboratories*. This organization is accredited to provide the services specified in the scope of accreditation.

Effective Date December 17, 2021

Expiration Date December 1, 2022

President

International Accreditation Service, Inc. 3060 Saturn Street, Suite 100, Brea, California 92821, U.S.A. | www.iasonline.org

AQUALITY TESTCONSULT LIMITED

Contact Name Lee Mei Yee

Contact Phone + 852-6309-2280

Accredited to ISO/IEC 17025:2017

Effective Date December 17, 2021

CALIBRATION AND MEASUREMENT CAPABILITY (CMC)*

MEASURED QUANTITY or DEVICE TYPE CALIBRATED	RANGE	UNCERTAINTY ^{1,2} (±)	CALIBRATION PROCEDURE AND/OR STANDARD EQUIPMENT USED
	Dimensio	onal	
Caliper -Vernier, Dial & Electronic ³	0 mm to 300 mm	30 μm	Checker by comparison method (BS 887:1982)
Steel Ruler ³	1 mm to 1000 mm	280 μm	Reference Steel Rule by comparison method (BS 4372:1968)
Dial Indicator/Gauge (Plunger) ³	0 mm to 50 mm	8 µm	Reference micrometer head by comparison method (BS 907:2008)
Feeler Gauge ³	0.01 mm to 1 mm	8 μm	Reference Dial Gauge by comparison method (BS 957: 2008)
Measuring tape ³	0 m to 5 m	1200 µm	Reference steel ruler by comparison method (BS 4035:1966)
Engineering Square ³	Length: 0 mm to 160 mm	20 μm	Reference engineering square and Feeler Gauge (BS 939:2007)
Slump cone ³	Diameter: 0 mm to 200 mm	560 µm	Reference Caliper & Reference Steel ruler by direct measurement
	Thickness: 1.5 mm	100 μm	(Verification in accordance with in-house method for the
	Height: 0 mm to 300 mm	560 μm	dimensional requirements as specified CS1:1990 Vol.1 A4; CS1: 2010 Vol. 1, A5)

^{*} If information in this CMC is presented in non-SI units, the conversion factors stated in NIST Special Publication 811 "Guide for the Use of the International System of Units (SI)" apply.

International Accreditation Service, Inc.

3060 Saturn Street, Suite 100, Brea, California 92821, U.S.A. | www.iasonline.org

MEASURED QUANTITY or DEVICE TYPE CALIBRATED	RANGE	UNCERTAINTY ^{1,2} (±)	CALIBRATION PROCEDURE AND/OR STANDARD EQUIPMENT USED			
Tamping rod ³	Diameter: 0 mm to 16 mm	600 µm	Reference steel ruler & Reference Caliper by direct			
	Length: 600 mm	950 μm	measurement (Verification in accordance with in-house method for the dimensional requirements as specified CS1:1990 Vol.1 A5; CS1: 2010 Vol. 1, A6)			
Cube mould ³	(Max dimensions 150 mm per side)		Reference Caliper, straight edge & feeler gauge by			
	Dimension	50 μm	direct measurement. (Verification in accordance with in-house method for the			
	Flatness	10 μm	dimensional requirements as specified in BS1881: Part			
	Perpendicularity	10 μm	108:1983; CS1:1990 Vol1, A21; CS1:2010 Vol 1, A25;			
	Parallelism	50 μm	BS EN 12390-2:2000)			
Compacting Bar ³	Ramming Face: 25 mm	100 μm	Reference Caliper & Steel ruler by direct measurement.			
	Length: 380 mm	560 μm	(Verification in accordance with in-house method for the			
	Weight: 1.8 kg	1 g	dimensional & mass requirements as specified in BS 1881: Part 105:1984 CI 3.3; CS1:1990 Vol 2, E3 CS1:2010 Vol 1, A15.3; BS EN 12350 -5:2000 CI 4.3.)			
Covermeter	20 mm to 103 mm	2.9 mm	Reference concrete block (Verification in accordance with in-house method for the dimensional requirements as specified in BS 1881- 204:1988 Cl.6.4- Method C)			
Flow table ³	15 kg to 17 kg 1 mm up to 71 mm	12 g 600 μm	Weighing Balance, Reference caliper & Reference steel ruler by direct measurement			
Test Sieve ³	4 mm to 50 mm	50 μm	Reference Caliper by direct measurement			
Mechanical						
Force Measuring Machine ³ (Compression Mode)	1 kN to 3000 kN	0.4 %	Reference Load cell by direct measurement BS 1610: Part 1:1985; BS 1610: Part 1:1992; BS EN ISO 12390-4:2000 Annex B; BS EN ISO 7500-1:2004			

International Accreditation Service, Inc.

3060 Saturn Street, Suite 100, Brea, California 92821, U.S.A. | www.iasonline.org

MEASURED QUANTITY or DEVICE TYPE CALIBRATED	RANGE	UNCERTAINTY ^{1,2} (±)	CALIBRATION PROCEDURE AND/OR STANDARD EQUIPMENT USED
Laser Dust Meter ³	Dust particles 0.001 mg/m³ to 10.00 mg/m³	0.9 mg/m ³	By comparison method by using reference laser dust meter
Rebound Hammer ³	80 unit (hardness)	1.6 rebound count	Reference Rebound count by comparison method. BS1881: Part 202:1986; BS EN 12504-2:2001; BS EN 12504-2:2012
Mass (F2 class and coarser)	0 g to 200 g 200 g to 5 kg 5 kg to 10 kg 10 kg to 50 kg	1.3 mg 0.5 g 0.88 g 3 g	Standard Weight E2/ F1 Class & Weighing Balances by comparison method (OIML-R-111)
Weighing Scale & Balance ³	0 g to 200 g 0 kg to 5 kg 0 kg to 50 kg	0.8 mg 0.13 g 7.7 g	Standard weight of E2/F1 Grade by direct measurement (OIML-R-111)
Volumetric Glassware	1 mL to 100 mL 100 mL to 1000 mL	0.004 mL 0.09 mL	Standard weight E2 Class, Weighing Balances & Distilled water by gravimetric method
	Ther	mal	
Digital/Liquid in Glass Thermometers & RTD/ Thermocouples with or without Indicators	15 °C to 55 °C 55 °C to 95 °C	0.4 °C 0.9 °C	Water Baths, Reference Sensor and Indictor by Comparison Method (OIML R133)
Curing Tank ³	(Calibration at 20 °C & 27 °C @ 30 min) 20 °C Temperature distribution	0.4 °C	Reference Temperature datalogger by Mapping Method & Reference Stop Watch (Verification in accordance with in-house method for the Temp & Time
	27 °C Temperature distribution Efficiency of circulation	0.8 °C 5 s	requirements as specified in BS1881-111:1983 CS1:1990 Vol 1 App A24 CS1:2010 Vol 1 App A28 BE EN 12390-2:2000
Oven ³	40.0 °C to 180.0 °C	1.5 °C	Reference Temperature datalogger by Mapping Method (AS 2853:1986)
Furnace ³	200 °C to 1300 °C	6 °C	Reference Thermocouple with Indicator By single point Calibration (AS 2853:1986)
Water bath ³	15 °C to 95 °C	0.2 °C	Reference Temperature datalogger by Mapping Method (AS 2853:1986)

International Accreditation Service, Inc.

3060 Saturn Street, Suite 100, Brea, California 92821, U.S.A. | www.iasonline.org

MEASURED QUANTITY or DEVICE TYPE CALIBRATED	RANGE	UNCERTAINTY ^{1,2} (±)	CALIBRATION PROCEDURE AND/OR STANDARD EQUIPMENT USED
	Time and Fre	quency	
Stop Watch / Timer ³	0 s to 3600 s 0 s to 21600 s (6 hours) 0 s to 86400 s (24 hours)	0.2 s 0.6 s 0.61 s	Reference stop watch
Grout Flow Cone ³	7 s to 9 s	0.2 s	Reference stop watch by direct method (ASTM C939-10 Cl.9)

¹The uncertainty covered by the Calibration and Measurement Capability (CMC) is expressed as the expanded uncertainty having a coverage probability of approximately 95 %. It is the smallest measurement uncertainty that a laboratory can achieve within its scope of accreditation when performing calibrations of a best existing device. The measurement uncertainty reported on a calibration certificate may be greater than that provided in the CMC due to the behavior of the calibration item and other factors that may contribute to the uncertainty of a specific calibration.

²When uncertainty is stated in relative terms (such as percent, a multiplier expressed as a decimal fraction or in scientific notation), it is in relation to instrument reading or instrument output, as appropriate, unless otherwise indicated.

³Also available as site calibration. Note that actual measurement uncertainties achievable at a customer's site can normally be expected to be larger than the uncertainties listed on this Scope of Accreditation

FAQ / Information

Mutual Recognition Arrangements (MRA) / Multilateral Recognition Arrangements (MLA)

Mutual Recognition Arrangement (MRA) Partners for HOKLAS ^

Every effort is made to promote acceptance of test data from accredited laboratories, both internationally and locally. HKAS has concluded mutual recognition arrangements with accreditation bodies listed below by being one of the signatories of the <u>International Laboratory Accreditation Cooperation Mutual Recognition Arrangement (ILAC MRA)</u> and the <u>Asia Pacific Accreditation Cooperation Mutual Recognition Arrangement (APAC MRA)</u> for testing, calibration, medical testing, Proficiency Testing Providers (PTP) and Reference Material Producers (RMP). Click <u>here</u> to view the up-to-date signatories of ILAC and <u>here</u> to access the up-to-date signatories of APAC.

Visitors checking the names, logos and accreditation symbols shown on an endorsed certificate or report should note that some of our MRA partners may have their names, logos or accreditation symbols changed recently and test reports or certificates endorsed by displaying their old accreditation symbols may still be valid during the change-over period. For details, please visit their websites or contact them directly.

» Mutual Recognition Arrangement (MRA) Partners for HOKLAS

HKAS MRA partners will recognise HOKLAS endorsed test certificates as having the same technical validity as certificates endorsed by their respective schemes.

Multilateral Recognition Arrangements (MLA) for HKCAS ^

HKAS has been a signatory of <u>Asia Pacific Accreditation Cooperation Mutual Recognition Arrangement (APAC MRA)</u> for Quality Management System (QMS), Environmental Management System (EMS), Food Safety Management System (FSMS), Energy Management System (EnMS), Occupational Health and Safety Management System (OHSMS) certifications, product certifications, and Greenhouse Gas (GHG) validation and verification.

HKAS has also been a signatory of the <u>International Accreditation Forum Multilateral Recognition Arrangement (IAF MLA)</u> for Quality Management System (QMS), Environmental Management System (EMS), Food Safety Management System (FSMS), Energy Management System (EnMS), Occupational Health and Safety Management System (OHSMS) certifications, product certifications, and Greenhouse Gas (GHG) validation and verification.

Click <u>here</u> to view the up-to-date signatories of IAF and <u>here</u> to access the up-to-date signatories of APAC.

» Mutual / Multilateral Recognition Arrangements (MRA / MLA) Partners for HKCAS

HKAS has concluded mutual recognition arrangements with accreditation bodies listed below by being one of the signatories of the <u>International Laboratory Accreditation Cooperation Mutual Recognition Arrangement (ILAC MRA)</u> and <u>Asia Pacific Accreditation Cooperation Mutual Recognition Arrangement (APAC MRA)</u> for inspection. Click <u>here</u> to view the up-to-date signatories of ILAC and <u>here</u> to access the up-to-date signatories of APAC.

HKAS MRA partners will recognise HKIAS endorsed inspection reports or certificates having the same technical validity as reports or certificates endorsed by their respective schemes.

» Mutual Recognition Arrangement (MRA) Partners for HKIAS

Hong Kong Laboratory Accreditation Scheme (HOKLAS) - Mutual Recognition Arrangement (MRA) Partners

Economy	Logo	Name of Partner	URL	Test Area
United States of America	IAS INTERNATIONAL ACCREDITATION SERVICE*	International Accreditation Service Inc. (IAS)	www.iasonline.org	Calibration, Non-medical Testing
United States of America	rvlap*	National Voluntary Laboratory Accreditation Program (NVLAP)	www.nist.gov/nvlap	Calibration, Non-medical Testing
United States of America	FJIA	Perry Johnson Laboratory Accreditation, Inc. (PJLA)	www.pjlabs.com	Calibration, Medical Testing, Reference Material Producer, Non-medical Testing
Uruguay	ORGANISMO URUGUAYO DE ACREDITACION	Organismo Uruguayo de Acreditación (OUA)	www.organismouruguayo deacreditacion.org	Calibration, Non-medical Testing
Viet Nam		Accreditation Office for Standards Conformity Assessment Capacity (AOSC)	aosc.vn/	Calibration, Medical Testing, Non-medical Testing
Viet Nam		Bureau of Accreditation (BoA)	www.boa.gov.vn	Calibration, Medical Testing, Non-medical Testing

15 Nov 2021 15 / 15

香港新界粉嶺坪黃路啟芳園11A&11B號

No. 11A&B, KAI FONG GARDEN, PING CHE ROAD, FANLING, NEW TERRITORIES, HONG KONG

TEL: 852-3582-9589 FAX: 852-2674-1177 EMAIL: cal.aqtl@gmail.com WEBSITE: www.aqtlgroup.com

CERTIFICATE OF CALIBRATION

Report Number : 210918MCA-126F

Date of Report : 21-Sep-21 Page Number : 1 of 2

Customer * : Apex Testing & Certification Ltd.

Customer Address* : Unit D6A, 10/F, TML Tower, 3 Hoi Shing Road, Tsuen Wan, N.T., HK

Customers Ref. * : A005

Item Under Calibration (IUC)*

Equipment No. : N/A

Manufacturer : Sibata Scientific Technology Ltd

Model No. : LD-3B Serial No. : 235811

Scale Division : 0.001 mg/m3 Range : 0.001 to 1 mg/m3

Condition of Item : Normal

Date Item Received : 18-Sep-21 Date Calibrated : 18-Sep-21

Calibration Location : AQuality Calibration Lab.

Date of Next Calibration : 17-Sep-22 Calibrated By : Jessica Liu

Test Environment

Ambient Temperature : 28.3 °C to 33.2 °C Relative Humidity : 55 % to 79 %

Calibration Results

Reference True Reading (mg/m3)	Average IUC Reading (mg/m³)	Correction (mg/m ³)	Error of IUC Reading (%)	Expanded Uncertainty (mg/m ³)	Coverage Factor K
0.158	0.167	-0.008	5.1%	0.020	2.0
5.164	5.647	-0.484	8.5%	0.463	2.0
10.100	11.141	-1.041	9.3%	0.904	2.0

Remarks

- 1. * Denotes information supplied by customer.
- 2. The results relate only to the items calibrated.
- 3. The results apply to the items as received.
- 4. Correction = Average of (Ref reading IUC reading)
- 5. The technical requirement of laser dust meter. +/- 20% error for the particles concentration.

Approved by:

LEE Mei Yee, Julia Managing Director 香港新界粉嶺坪黃路啟芳園11A&11B號

No. 11A&11B, KAI FONG GARDEN, PING CHE ROAD, FANLING, NEW TERRITORIES, HONG KONG

TEL: 852-3582-9589 FAX: 852-2674-1177 EMAIL: cal.aqtl@gmail.com WEBSITE: www.aqtlgroup.com

CERTIFICATE OF CALIBRATION

Report Number : 210918MCA-126F

Date of Report : 21-Sep-21 Page Number : 2 of 2

Customer * : Apex Testing & Certification Ltd.

Customers Ref. * : A005

Details of Calibration

- 1. The calibration was performed in accordance with AQuality Testconsult Procedure Number ENV-L-003 (in-house method), by comparison with the laboratory's reference equipment which have traceable international standards of measurement.
- 2. The item under calibration (IUC) was allowed to stabilize in the laboratory for 0.25 hour before commencement of calibration.
- 3. A set of readings were made at each calibration concentration. The values quoted in the results are the average of each set of readings.
- 4. The values given in this calibration certificate only relate to the values measured at the time of calibration. Any uncertainties quoted do not include allowance for the capability of any other laboratory to repeat the measurement. The uncertainty quoted relate only to item at time of calibration. AQuality Testconsult Limited is not liable for any loss or damage resulting from the use of this equipment.
- 5. The identification, calibration certificate numbers for the reference equipment used were as follows:

Equipment Number	Certificate Number	Description
CH-LDM-1	HBW202001563	粉尘测试仪

6. Copies of the Calibration certificates of the reference equipment used in this calibration may be obtained from AQuality Testconsult Limited, if necessary.

- End of Report -

東恒測試顧問有限公司

AQUALITY TESTCONSULT LIMITED

香港新界粉嶺坪輋路啟芳園11A&11B號

TEL: 852-3582-9589

FAX: 852-2674-1177

EMAIL: cal.aqtl@gmail.com

WEBSITE: www.aqtlgroup.com

210918MCA-126F 21-Sep-21 18-Sep-21 1 of 1

No. 11A&11B, KAI FONG GARDEN, PING CHE ROAD, FANLING, N.T., HONG KONG

CERTIFICATE OF CALIBRATION

Apex Testing & Certification Ltd.	Test Report No.
Unit D6A, 10/F, TML Tower, 3 Hoi Shing	Date of Issue
Road, Tsuen Wan, N.T., HK	Date of Testing
Road, Tsuell Wall, N.T., HK	Page

Item for Calibration

Description : Laser Dust Monitor

Manufacturer : Sibata Scientific Technology Ltd

Model No. : <u>LD-3B</u> Serial No. : <u>235811</u>

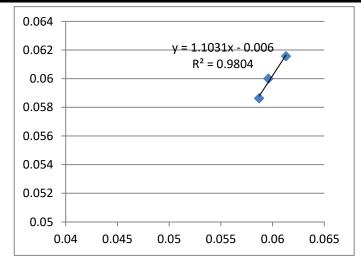
Standard Equipment

Description : High Volume Sampler / Calibration Orifice

Manufacturer : Tisch Environmental, Inc.
Model No. : TE-5170 / TE-5025A

Serial No. 3476 / 3543

Last Calibration : 17-SEP-21 / 2-Nov-20


Date Time		Mean Temp Me	Maan	Concentration	Concentration
	Timo			Standard	Calibrated
	Time		Piessuie	Equipment	Equipment
		(°C)	(hPa)	(mg/m3)	(mg/m3)
18-Sep-21	19:00	30.8	1011.1	0.0613	0.0616
18-Sep-21	20:05	30.8	1011.1	0.0587	0.0586
18-Sep-21	21:10	30.8	1011.1	0.0596	0.0600

By Linear Regression of Y or X

Slope (K-factor) : 1.1031

Correlation Coefficient: 0.9804

Validity of Calibration: 17-Sep-22

Recorded by : Jessica Liu Signature: Date: 18-Sep-21

Checked by : S Tang Signature: Date: 18-Sep-21

香港新界粉嶺坪黃路啟芳園11A&11B號

No. 11A&B, KAI FONG GARDEN, PING CHE ROAD, FANLING, NEW TERRITORIES, HONG KONG

TEL: 852-3582-9589 FAX: 852-2674-1177 EMAIL: cal.aqtl@gmail.com WEBSITE: www.aqtlgroup.com

CERTIFICATE OF CALIBRATION

Report Number : 210918MCA-123F

Date of Report : 21-Sep-21 Page Number : 1 of 2

Customer * : Apex Testing & Certification Ltd.

Customer Address* : Unit D6A, 10/F, TML Tower, 3 Hoi Shing Road, Tsuen Wan, N.T., HK

Customers Ref. * : A005

Item Under Calibration (IUC)*

Equipment No. : N/A

Manufacturer : Sibata Scientific Technology Ltd

Model No. : LD-3B Serial No. : 336338 Scale Division : 0.001 mg/m3

Range : 0.001 to 1 mg/m3

Condition of Item : Normal

Date Item Received : 18-Sep-21 Date Calibrated : 18-Sep-21

Calibration Location : AQuality Calibration Lab.

Date of Next Calibration : 17-Sep-22 Calibrated By : Jessica Liu

Test Environment

Ambient Temperature : 28.3 °C to 33.2 °C Relative Humidity : 55 % to 79 %

Calibration Results

Reference True Reading (mg/m3)	Average IUC Reading (mg/m³)	Correction (mg/m ³)	Error of IUC Reading (%)	Expanded Uncertainty (mg/m ³)	Coverage Factor K
0.158	0.168	-0.010	5.7%	0.026	2.0
5.164	5.562	-0.398	7.1%	0.462	2.0
10.100	10.936	-0.837	7.6%	0.905	2.0

Remarks

- 1. * Denotes information supplied by customer.
- 2. The results relate only to the items calibrated.
- 3. The results apply to the items as received.
- 4. Correction = Average of (Ref reading IUC reading)
- 5. The technical requirement of laser dust meter. +/- 20% error for the particles concentration.

Approved by:

LEE Mei Yee, Julia Managing Director 香港新界粉嶺坪黃路啟芳園11A&11B號

No. 11A&11B, KAI FONG GARDEN, PING CHE ROAD, FANLING, NEW TERRITORIES, HONG KONG

TEL: 852-3582-9589 FAX: 852-2674-1177 EMAIL: cal.aqtl@gmail.com WEBSITE: www.aqtlgroup.com

CERTIFICATE OF CALIBRATION

Report Number : 210918MCA-123F

Date of Report : 21-Sep-21 Page Number : 2 of 2

Customer * : Apex Testing & Certification Ltd.

Customers Ref. * : A005

Details of Calibration

- 1. The calibration was performed in accordance with AQuality Testconsult Procedure Number ENV-L-003 (in-house method), by comparison with the laboratory's reference equipment which have traceable international standards of measurement.
- 2. The item under calibration (IUC) was allowed to stabilize in the laboratory for 0.25 hour before commencement of calibration.
- 3. A set of readings were made at each calibration concentration. The values quoted in the results are the average of each set of readings.
- 4. The values given in this calibration certificate only relate to the values measured at the time of calibration. Any uncertainties quoted do not include allowance for the capability of any other laboratory to repeat the measurement. The uncertainty quoted relate only to item at time of calibration. AQuality Testconsult Limited is not liable for any loss or damage resulting from the use of this equipment.
- 5. The identification, calibration certificate numbers for the reference equipment used were as follows:

Equipment Number	Certificate Number	Description
CH-LDM-1	HBW202001563	粉尘测试仪

6. Copies of the Calibration certificates of the reference equipment used in this calibration may be obtained from AQuality Testconsult Limited, if necessary.

- End of Report -

東恒測試顧問有限公司

AQUALITY TESTCONSULT LIMITED

香港新界粉嶺坪輋路啟芳園11A&11B號

TEL: 852-3582-9589
FAX: 852-2674-1177
FMAIL: cal anti@gma

EMAIL : cal.aqtl@gmail.com WEBSITE: www.aqtlgroup.com

No. 11A&11B, KAI FONG GARDEN, PING CHE ROAD, FANLING, N.T., HONG KONG

CERTIFICATE OF CALIBRATION

Apex Testing & Certification Ltd.	Test Report No.	210918MCA-123F
Unit D6A 10/E TMI Toyyon 2 Hoi China	Date of Issue	21-Sep-21
Unit D6A, 10/F, TML Tower, 3 Hoi Shing	Date of Testing	18-Sep-21
Road, Tsuen Wan, N.T., HK	Page	1 of 1

Item for Calibration

Description : Laser Dust Monitor

Manufacturer : Sibata Scientific Technology Ltd

Model No. : LD-3B Serial No. : 336338

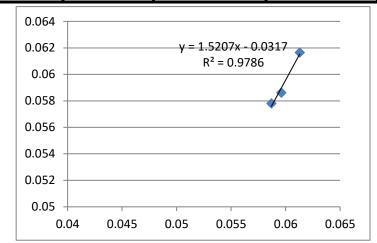
Standard Equipment

Description : High Volume Sampler / Calibration Orifice

Manufacturer : Tisch Environmental, Inc.
Model No. : TE-5170 / TE-5025A

Serial No. 3476 / 3543

Last Calibration : 17-SEP-21 / 2-Nov-20


Date Time			Mean	Concentration	Concentration
	Timo	Mean Temp	Pressure	Standard	Calibrated
		Fiessure	Equipment	Equipment	
		(°C)	(hPa)	(mg/m3)	(mg/m3)
18-Sep-21	19:00	30.8	1011.1	0.0613	0.0617
18-Sep-21	20:05	30.8	1011.1	0.0587	0.0578
18-Sep-21	21:10	30.8	1011.1	0.0596	0.0586

By Linear Regression of Y or X

Slope (K-factor) : 1.5207

Correlation Coefficient: 0.9786

Validity of Calibration: 17-Sep-22

Recorded by : Jessica Liu Signature: Date: 18-Sep-21

Checked by : S Tang Signature: Date: 18-Sep-21

香港新界粉嶺坪黃路啟芳園11A&11B號

No. 11A&B, KAI FONG GARDEN, PING CHE ROAD, FANLING, NEW TERRITORIES, HONG KONG

TEL: 852-3582-9589 FAX: 852-2674-1177 EMAIL: cal.aqtl@gmail.com WEBSITE: www.aqtlgroup.com

CERTIFICATE OF CALIBRATION

Report Number : 210918MCA-125F

Date of Report : 21-Sep-21 Page Number : 1 of 2

Customer * : Apex Testing & Certification Ltd.

Customer Address* : Unit D6A, 10/F, TML Tower, 3 Hoi Shing Road, Tsuen Wan, N.T., HK

Customers Ref. * : A005

Item Under Calibration (IUC)*

Equipment No. : N/A

Manufacturer : Sibata Scientific Technology Ltd

Model No. : LD-3B
Serial No. : 567188
Scale Division : 0.001 mg/m3
Range : 0.001 to 1 mg/m3

Condition of Item : Normal

Date Item Received : 18-Sep-21 Date Calibrated : 18-Sep-21

Calibration Location : AQuality Calibration Lab.

Date of Next Calibration : 17-Sep-22 Calibrated By : Jessica Liu

Test Environment

Ambient Temperature : 28.3 °C to 33.2 °C Relative Humidity : 55 % to 79 %

Calibration Results

Reference True Reading (mg/m3)	Average IUC Reading (mg/m³)	Correction (mg/m ³)	Error of IUC Reading (%)	Expanded Uncertainty (mg/m ³)	Coverage Factor K
0.158	0.167	-0.008	4.9%	0.023	2.0
5.164	5.693	-0.530	9.3%	0.463	2.0
10.100	11.045	-0.945	8.6%	0.905	2.0

Remarks

- 1. * Denotes information supplied by customer.
- 2. The results relate only to the items calibrated.
- 3. The results apply to the items as received.
- 4. Correction = Average of (Ref reading IUC reading)
- 5. The technical requirement of laser dust meter. +/- 20% error for the particles concentration.

Approved by:

LEE Mei Yee, Julia Managing Director

The results shown in this certificate are metrologically traceable to the International System of Units (SI) or recognised measurement standards.

香港新界粉嶺坪黃路啟芳園11A&11B號

No. 11A&11B, KAI FONG GARDEN, PING CHE ROAD, FANLING, NEW TERRITORIES, HONG KONG

TEL: 852-3582-9589 FAX: 852-2674-1177 EMAIL: cal.aqtl@gmail.com WEBSITE: www.aqtlgroup.com

CERTIFICATE OF CALIBRATION

Report Number : 210918MCA-125F

Date of Report : 21-Sep-21 Page Number : 2 of 2

Customer * : Apex Testing & Certification Ltd.

Customers Ref. * : A005

Details of Calibration

- 1. The calibration was performed in accordance with AQuality Testconsult Procedure Number ENV-L-003 (in-house method), by comparison with the laboratory's reference equipment which have traceable international standards of measurement.
- 2. The item under calibration (IUC) was allowed to stabilize in the laboratory for 0.25 hour before commencement of calibration.
- 3. A set of readings were made at each calibration concentration. The values quoted in the results are the average of each set of readings.
- 4. The values given in this calibration certificate only relate to the values measured at the time of calibration. Any uncertainties quoted do not include allowance for the capability of any other laboratory to repeat the measurement. The uncertainty quoted relate only to item at time of calibration. AQuality Testconsult Limited is not liable for any loss or damage resulting from the use of this equipment.
- 5. The identification, calibration certificate numbers for the reference equipment used were as follows:

Equipment Number	Certificate Number	Description
CH-LDM-1	HBW202001563	粉尘测试仪

6. Copies of the Calibration certificates of the reference equipment used in this calibration may be obtained from AQuality Testconsult Limited, if necessary.

- End of Report -

東恒測試顧問有限公司

AQUALITY TESTCONSULT LIMITED

香港新界粉嶺坪輋路啟芳園11A&11B號

TEL: 852-3582-9589
FAX: 852-2674-1177
EMAIL: cal.aqtl@gmail.com
WEBSITE: www.aqtlgroup.com

No. 11A&11B, KAI FONG GARDEN, PING CHE ROAD, FANLING, N.T., HONG KONG

CERTIFICATE OF CALIBRATION

Apex Testing & Certification Ltd.	Test Report No.	210918MCA-125F
Unit DCA 10/E TMI Towns 2 Hai	Date of Issue	21-Sep-21
Unit D6A, 10/F, TML Tower, 3 Hoi	Date of Testing	18-Sep-21
Shing Road, Tsuen Wan, N.T., HK	Page	1 of 1

Item for Calibration

Description : Laser Dust Monitor

Manufacturer : Sibata Scientific Technology Ltd

Model No. : <u>LD-3B</u> Serial No. : <u>567188</u>

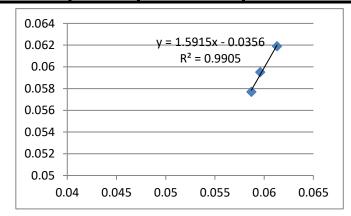
Standard Equipment

Description : High Volume Sampler / Calibration Orifice

Manufacturer : Tisch Environmental, Inc.
Model No. : TE-5170 / TE-5025A

Serial No. 3476 / 3543

Last Calibration : 17-SEP-21 / 2-Nov-20


Date	Time	Mean Temp	Mean Pressure	Concentration Standard Equipment	Concentration Calibrated Equipment
		(°C)	(hPa)	(mg/m3)	(mg/m3)
18-Sep-21	19:00	30.8	1011.1	0.0613	0.0619
18-Sep-21	20:05	30.8	1011.1	0.0587	0.0577
18-Sep-21	21:10	30.8	1011.1	0.0596	0.0595

By Linear Regression of Y or X

Slope (K-factor) : 1.5915

Correlation Coefficient: 0.9905

Validity of Calibration : 17-Sep-22

Recorded by : Jessica Liu Signature: Date: 18-Sep-21

Checked by : S Tang Signature: Date: 18-Sep-21

香港新界葵涌水基路22-24號好爸爸創科大廈 Good Ba Ba Hitech Building, Nos. 22-24 Wing Kei Road, Kwai Chung, New Territories, Hong Kong Tel: (852) 2873 6860 Fax: (852) 2555 7533 E-mail: smec@cigismec.com Website: www.cigismec.com

CERTIFICATE OF CALIBRATION

Certificate No.:

21CA0928 03-05

Page

of

2

Item tested

Description: Manufacturer: Sound Level Meter (Class 1) Hangzhou Aihua Instruments Co., Ltd Microphone

Type/Model No.: Serial/Equipment No.: AWA5661

AWA14425 15338

Adaptors used:

301135

153

Item submitted by

Customer Name:

Apex Testing & Certification Ltd.

Address of Customer:

Unit D6A, 10/F, TML Tower, 3 Hoi Shing Road, Tsuen Wan, N.T.

Request No.:

Date of receipt:

28-Sep-2021

Date of test:

04-Oct-2021

Reference equipment used in the calibration

Description:

Model:

Serial No.

Expiry Date:

Traceable to:

Multi function sound calibrator Signal generator B&K 4226 DS 360 2288444 61227 23-Aug-2022 31-Dec-2021 CIGISMEC CEPREI

Ambient conditions

Temperature:

22 ± 1 °C 55 ± 10 %

Relative humidity: Air pressure:

1005 ± 5 hPa

Test specifications

- The Sound Level Meter has been calibrated in accordance with the requirements as specified in BS 7580: Part 1: 1997 and the lab calibration procedure SMTP004-CA-152.
- The electrical tests were performed using an electrical signal substituted for the microphone which was removed and replaced by an equivalent capacitance within a tolerance of ±20%.
- The acoustic calibration was performed using an B&K 4226 sound calibrator and corrections was applied for the difference between the free-field and pressure responsess of the Sound Level Meter.

Test results

This is to certify that the Sound Level Meter conforms to BS 7580: Part 1: 1997 for the conditions under which the test was performed.

Details of the performed measurements are presented on page 2 of this certificate.

Actual Measurement data are documented on worksheets.

Feng Junqi

Approved Signatory:

Date:

06-Oct-2021

Company Chop:

ate of calibration and

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument. The results apply to the item as received.

© Soils & Materials Engineering Co., Ltd.

Form No.CARP152-1/Issue 1/Rev.C/01/02/2007

香港新界葵涌永基路22-24號好爸爸創科大廈 Good Ba Ba Hitech Building, Nos. 22-24 Wing Kei Road, Kwai Chung, New Territories, Hong Kong Tel: (852) 2873 6860 Fax: (852) 2555 7533 E-mail: smec@cigismec.com Website: www.cigismec.com

CERTIFICATE OF CALIBRATION

(Continuation Page)

Certificate No.:

21CA0928 03-05

Page

2

of

2

1. Electrical Tests

The electrical tests were performed using an equivalent capacitance substituted for the microphone. The results are given in below with test status and the estimated uncertainties. The "Pass" means the result of the test is inside the tolerances stated in the test specifications. The "-" means the result of test is outside these tolerances.

Test:	Subtest:	Status:	Expanded Uncertanity (dB)	Coverage Factor
Self-generated noise	A	Pass	0.3	
	С	Pass	0.8	2.1
	Lin	Pass	1.6	2.2
Linearity range for Leq	At reference range , Step 5 dB at 4 kHz	Pass	0.3	
	Reference SPL on all other ranges	Pass	0.3	
	2 dB below upper limit of each range	Pass	0.3	
	2 dB above lower limit of each range	Pass	0.3	
Linearity range for SPL	At reference range , Step 5 dB at 4 kHz	Pass	0.3	
Frequency weightings	A	Pass	0.3	
	С	Pass	0.3	
	Lin	Pass	0.3	
Time weightings	Single Burst Fast	Pass	0.3	
	Single Burst Slow	Pass	0.3	
Peak response	Single 100µs rectangular pulse	Pass	0.3	
R.M.S. accuracy	Crest factor of 3	Pass	0.3	
Time weighting I	Single burst 5 ms at 2000 Hz	Pass	0.3	
	Repeated at frequency of 100 Hz	Pass	0.3	
Time averaging	1 ms burst duty factor 1/10 ³ at 4kHz	Pass	0.3	
	1 ms burst duty factor 1/10 ⁴ at 4kHz	Pass	0.3	
Pulse range	Single burst 10 ms at 4 kHz	Pass	0.4	
Sound exposure level	Single burst 10 ms at 4 kHz	Pass	0.4	
Overload indication	SPL	Pass	0.3	
	Leq	Pass	0.4	

2, Acoustic tests

The complete sound level meter was calibrated on the reference range using a B&K 4226 acoustic calibrator with 1000Hz and SPL 94 dB. The sensitivity of the sound level meter was adjusted. The test result at 125 Hz and 8000 Hz are given in below with test status and the estimated uncertainties.

Test:	Subtest	Status	Expanded Uncertanity (dB)	Coverage Factor
Acoustic response	Weighting A at 125 Hz	Pass	0.3	
	Weighting A at 8000 Hz	Pass	0.5	

3, Response to associated sound calibrator

N/A

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated.

Calibrated by:

Fung Chi Yip
Date: 04-Oct-202

Chacked

Checked by:

Date:

Chan Yuk Yiu 06-Oct-2021

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

End

© Soils & Materials Engineering Co., Ltd.

Form No.CARP152-2/Issue 1/Rev.C/01/02/2007

AWA14425

港新界葵涌水基路22-24號好爸爸創科大廈 Good Ba Ba Hitech Building, Nos. 22-24 Wing Kei Road, Kwai Chung, New Territories, Hong Kong Tel: (852) 2873 6860 Fax: (852) 2555 7533 E-mail: smec@cigismec.com Website: www.cigismec.com

Page 1 of 5 Test Data for Sound Level Meter

04-Oct-2021 Sound level meter type: AWA5661 Serial No. 301135 Date

Microphone type: Report: 21CA0928 03-05

Serial No.

15338

SELF GENERATED NOISE TEST

The noise test is performed in the most sensitive range of the SLM with the microphone replaced by an equivalent impedance.

dΒ Noise level in A weighting 11.7 dB Noise level in C weighting 12.5 Noise level in Lin 16.7 dB

LINEARITY TEST

The linearity is tested relative to the reference sound pressure level using a continuous sinusoidal signal of frequency 4 kHz. The measurement is made on the reference range for indications at 5 dB intervals starting from the 94 dB reference sound pressure level. And until within 5 dB of the upper and lower limits of the reference range, the measurements shall be made at 1 dB intervals.(SLM set to LEQ/SPL)

Reference/Expected level	Actua	l level	Tolerance	Devia	ation
Neierence/Expected level	non-integrated	integrated		non-integrated	integrated
dB	dB	dB	+/- dB	dB	dB
94.0	94.0	94.0	0.7	0.0	0.0
99.0	99.0	99.0	0.7	0.0	0.0
104.0	104.0	104.0	0.7	0.0	0.0
109.0	109.0	109.0	0.7	0.0	0.0
114.0	114.0	114.0	0.7	0.0	0.0
115.0	115.0	115.0	0.7	0.0	0.0
116.0	116.0	116.0	0.7	0.0	0.0
117.0	117.0	117.0	0.7	0.0	0.0
118.0	118.0	118.0	0.7	0.0	0.0
119.0	119.0	119.0	0.7	0.0	0.0
120.0	120.0	120.0	0.7	0.0	0.0
89.0	89.1	89.1	0.7	0.1	0.1
84.0	84.1	84.1	0.7	0.1	0.1
79.0	79.1	79.1	0.7	0.1	0.1
74.0	74.1	74.1	0.7	0.1	0.1
69.0	69.1	69.1	0.7	0.1	0.1
64.0	64.1	64.1	0.7	0.1	0.1
59.0	59.1	59.1	0.7	0.1	0.1
54.0	54.1	54.1	0.7	0.1	0.1
49.0	49.1	49.1	0.7	0.1	0.1
44.0	44.0	44.0	0.7	0.0	0.0
39.0	39.0	39.0	0.7	0.0	0.0
34.0	34.0	34.0	0.7	0.0	0.0
29.0	29.1	29.1	0.7	0.1	0.1
28.0	28.1	28.1	0.7	0.1	0.1

Form No.: CAWS 152/Issue 1/Rev. B/01/02/2007 (c)Soils Materials Eng. Co., Ltd.

香港新界葵涌永基路22-24號好爸爸創科大廈 Good Ba Ba Hitech Building, Nos. 22-24 Wing Kei Road, Kwai Chung, New Territories, Hong Kong Tel: (852) 2873 6860 Fax: (852) 2555 7533 E-mail: smec@cigismec.com Website: www.cigismec.com

SMECLab

Test Data for Sound Level Meter

Page 2 of 5

Sound level meter type: Microphone type:	AWA5661 AWA14425		ial No. ial No.	301135 15338	Date Rep	e 04-Oct-2	
27.0	27.1	27.1	0.7		0.1	0.1	
26.0	26.2	26.2	0.7		0.2	0.2	
25.0	25.3	25.3	0.7		0.3	0.3	

Measurements for an indication of the reference SPL on all other ranges which include it

Other ranges	Expected level	Actual level	Tolerance	Deviation
dB	dB	dB	+/- dB	dB
25-120	94.0	94.0	0.7	0.0
45-140	94.0	93.9	0.7	-0.1

Measurements on all level ranges for indications 2 dB below the upper limit and 2 dB above the lower limit

Ranges	Reference/Expected level	Actual level	Tolerance	Deviation
dB	dB	dB	+/- dB	dB
2F 120	27.0	27.1	0.7	0.1
25-120	118.0	118.0	0.7	0.0
45 140	47.0	47.0	0.7	0.0
45-140	138.0	137.7	0.7	-0.3

FREQUENCY WEIGHTING TEST

The frequency response of the weighting netwoks are tested at octave intervals over the frequency ranges 31.5 Hz to 12500 Hz. The signal level at 1000 Hz is set to give an indication of the reference SPL.

Frequency weighting A:

Frequency	Ref. level	Expected level	Actual level	Tolerar	nce(dB)	Deviation
Hz	dB	dB	dB	+	:=:	dB
1000.0	94.0	94.0	94.0	0.0	0.0	0.0
31.6	94.0	54.6	54.3	1.5	1.5	-0.3
63.1	94.0	67.8	67.7	1.5	1.5	-0.1
125.9	94.0	77.9	77.8	1.0	1.0	-0.1
251.2	94.0	85.4	85.3	1.0	1.0	-0.1
501.2	94.0	90.8	90.7	1.0	1.0	-0.1
1995.0	94.0	95.2	95.2	1.0	1.0	0.0
3981.0	94.0	95.0	95.2	1.0	1.0	0.2
7943.0	94.0	92.9	93.5	1.5	3.0	0.6
12590.0	94.0	89.7	89.4	3.0	6.0	-0.3

Frequency weighting C:

Frequency	Ref. level	Expected level	Actual level	Tolerar	nce(dB)	Deviation
Hz	dB	dB	dB	+	-	dB
1000.0	94.0	94.0	94.0	0.0	0.0	0.0
31.6	94.0	91.0	90.8	1.5	1.5	-0.2
63.1	94.0	93.2	93.1	1.5	1.5	-0.1
125.9	94.0	93.8	93.8	1.0	1.0	0.0

(c)Soils Materials Eng. Co., Ltd. Form No.: CAWS 152/Issue 1/Rev. B/01/02/2007

香港新界葵涌永基路22-24號好爸爸創科大廈 Good Ba Ba Hitech Building, Nos. 22-24 Wing Kei Road, Kwai Chung, New Territories, Hong Kong Tel: (852) 2873 6860 Fax: (852) 2555 7533 E-mail: smec@cigismec.com Website: www.cigismec.com **SMECLab**

Test Data for Sound Level Meter

Page 3 of 5

Sound level met Microphone		AWA5661 AWA14425	Serial No. Serial No.	301 153	135 38	Date 04-0 Report: 21C	Oct-2021 A0928 03-05
251.2	94.0	94.0	93.9	1.0	1.0	-0.1	
501.2	94.0	94.0	94.0	1.0	1.0	0.0	
1995.0	94.0	93.8	93.1	1.0	1.0	-0.7	
3981.0	94.0	93.2	93.4	1.0	1.0	0.2	
7943.0	94.0	91.0	91.6	1.5	3.0	0.6	
12590.0	94.0	87.8	87.5	3.0	6.0	-0.3	

Frequency weighting Lin:

Frequency weigi	iting Lin.					
Frequency	Ref. level	Expected level	Actual level	Tolerar	nce(dB)	Deviation
Hz	dB	dB	dB	+	-	dB
1000.0	94.0	94.0	94.0	0.0	0.0	0.0
31.6	94.0	94.0	93.9	1.5	1.5	-0.1
63.1	94.0	94.0	94.0	1.5	1.5	0.0
125.9	94.0	94.0	94.0	1.0	1.0	0.0
251.2	94.0	94.0	94.0	1.0	1.0	0.0
501.2	94.0	94.0	94.0	1.0	1.0	0.0
1995.0	94.0	94.0	94.0	1.0	1.0	0.0
3981.0	94.0	94.0	94.0	1.0	1.0	0.0
7943.0	94.0	94.0	94.0	1.5	3.0	0.0
12590.0	94.0	94.0	93.9	3.0	6.0	-0.1

TIME WEIGHTING FAST TEST

Time weighting F is tested on the reference range with a single sinusoidal burst of duration 200 ms at a frequency 2000 Hz and an amplitude which produces an indication 4 dB below the upper limit of the primary indicator range when the signal is continuous. (Weight A, Maximum hold)

Ref. level	Expected level	Actual level	Tolerance(dB)		Deviation
dB	dB	dB	+	-	dB
116.0	115.0	115.0	1.0	1.0	0.0

TIME WEIGHTING SLOW TEST

Time weighting S is tested on the reference range with a single sinusoidal burst of duration 500 ms at a frequency 2000 Hz and an amplitude which produces an indication 4 dB below the upper limit of the primary indicator range when the signal is continuous. (Weight A, Maximum hold)

Ref. level	Expected level	Actual level	Tolerance(dB)		Deviation
dB	dB	dB	+	-	dB
116.0	111.9	111.9	1.0	1.0	0.0

PEAK RESPONSE TEST

The onset time of the peak detector is tested on the reference range by comparing the response to a 100 us rectangular test pulse with the response to a 10 ms reference pulse of the same amplitude. The amplitude of the 10 ms reference pulse is such as to produce an indication 1 dB below the upper limit of the primary indicator range. Positive polarities: (Weighting Z, set the generator signal to single, Lzpeak)

Ref. level	Response to 10 ms	Response to 100 us	Tolerance	Deviation
------------	-------------------	--------------------	-----------	-----------

(c)Soils Materials Eng. Co., Ltd. Form No.: CAWS 152/Issue 1/Rev. B/01/02/2007

綜 合 試 驗 有 限 公 司 S & MATERIALS ENGINEERING CO., LTD.

香港新界葵涌水基路22-24號好爸爸創科大廈 Good Ba Ba Hitech Building, Nos. 22-24 Wing Kei Road, Kwai Chung, New Territories, Hong Kong Tel: (852) 2873 6860 Fax: (852) 2555 7533 E-mail: smec@cigismec.com Website: www.cigismec.com SMECLab

Test Data for Sound Level Meter

Page 4 of 5

Sound level meter type: Microphone

type:

AWA5661 AWA14425 Serial No. Serial No. 301135 15338

+/- dB

2.0

Date 04-Oct-2021

Report: 21CA0928 03-05

dB dB dB 119.0 119.0 119.3

dB 0.3

Negative polarities:

Ref. level	Response to 10 ms	Response to 100 us	Tolerance	Deviation
dB	dB	dB	+/- dB	dB
119.0	119.0	119.3	2.0	0.3

RMS ACCURACY TEST

The RMS detector accuracy is tested on the reference range for a crest factor of 3.

Test frequency:

2000 Hz

Amplitude:

2 dB below the upper limit of the primary indicator range.

(Set to INT)

Burst repetition frequency:

40 Hz

Tone burst signal:		11 cycles of a sine wave of frequency 2000 Hz. (Set to INT)			
Ref. Level		Expected level	Tone burst signal	Tolerance	Deviation
Time wighting	dB	dB	indication(dB)	+/- dB	dB
Slow	116.0+6.6	116.0	115.8	0.5	-0.2

TIME WEIGHTING IMPULSE TEST

Time weighting I is tested on the reference range (Set the SLM to LAImax)

Test frequency:

2000 Hz

Amplitude:

The upper limit of the primary indicator range.

Single sinusoidal burst of duration 5 ms:

Ref. Level	Single burs	Single burst indication		Deviation
dB	Expected (dB)	Actual (dB)	+/- dB	dB
120.0	111.2	111.1	2.0	-0.1

Repeated at 100 Hz

Ref. Level	Repeated burst indication		Tolerance	Deviation
dB	Expected (dB)	Actual (dB)	+/- dB	dB
120.0	117.3	117.1	1.0	-0.2

TIME AVERAGING TEST

This test compares the SLM reading for continuous sine signals with readings obtained from a sine tone burst sequence having the same RMS level. The test level is 30 dB below the upper limit of the linearity range and repeated for Type 1 SLM with 40 dB below the upper limit of the linearity.

Frequency of tone burst:

4000 Hz

Duration of tone burst:

1 ms

Repetition Time	Level of	Expected	Actual	Tolerance	Deviation	Remarks
	tone burst	Leq	Leq			
msec	dB	dB	dB	+/- dB	dB	
1000	90.0	90.0	89.8	1.0	-0.2	60s integ.
10000	80.0	80.0	79.8	1.0	-0.2	6min. integ

PULSE RANGE AND SOUND EXPOSURE LEVEL TEST

The test tone burst signal is superimposed on a baseline signal corresponding to the lower limit of reference range

Form No.: CAWS 152/Issue 1/Rev. B/01/02/2007

香港新界葵涌水基路22-24號好爸爸創科大廈 Good Ba Ba Hitech Building, Nos. 22-24 Wing Kei Road, Kwai Chung, New Territories, Hong Kong Tel: (852) 2873 6860 Fax: (852) 2555 7533 E-mail: smec@cigismec.com Website: www.cigismec.com

Test Data for Sound Level Meter

Page 5 of 5

Sound level meter type:

type: AWA5661

Serial No.

301135

Date 04-Oct-2021

Microphone

type:

AWA14425 S

Serial No. 15338

Report: 21CA0928 03-05

Test frequency:

4000 Hz

Integration time:

10 sec

The integrating sound level meter set to Leq:

Duration Rms level of		evel of Expected Actual		Tolerance	Deviation	
msec	tone burst (dB)	dB	dB	+/- dB	dB	
10	90.0	60.0	59.8	1.7	-0.2	

The integrating sound level meter set to SEL:

Duration	Rms level of	Expected	Actual	Tolerance	Deviation
msec	tone burst (dB)	dB	dB	+/- dB	dB
10.0	90.0	70.0	70.0	1.7	0.0

OVERLOAD INDICATION TEST

For SLM capable of operating in a non-integrating mode.

Test frequency:

2000 Hz

Amplitude:

2 dB below the upper limit of the primary indicator range.

Burst repetition frequency:

40 Hz

Tone burst signal:

11 cycles of a sine wave of frequency 2000 Hz.

Level	Level reduced by	Further reduced	Difference	Tolerance	Deviation
at overload (dB)	1 dB	3 dB	dB	dB	dB
115.6	114.6	111.6	3.0	1.0	0.0

For integrating SLM, with the instrument indicating Leq.

For integrating SLM, with the instrument indicating Leq and set to the reference range. The test signal as following: The test tone burst signal is superimposed on a baseline signal corresponding to the lower limit of reference range

Test frequency: 4000 Hz
Integration time: 10 sec
Single burst duration: 1 msec

Rms level	Level reduced by	Expected level	Actual level	Tolerance	Deviation
at overload (dB)	1 dB	dB	dB	dB	dB
121.9	120.9	80.9	80.7	2.2	-0.2

ACOUSTIC TEST

The acoustic test of the complete SLM is tested at the frequency 125 Hz and 8000 Hz using a B&K type 4226 Multifunction Acoustic Calibrator. The test is performed in A weighting.

Frequency	Expected level	Actual level	Tolerar	nce (dB)	Deviation
Hz	dB	Measured (dB)	+	-	dB
1000	94.0	94.0	0.0	0.0	0.0
125	77.9	78.2	1.0	1.0	0.3
8000	92.9	93.6	1.5	3.0	0.7

-----END-----

(c)Soils Materials Eng. Co., Ltd. Form No.: CAWS 152/Issue 1/Rev. B/01/02/2007

香港新界葵涌永基路22-24號好爸爸創科大廈 Good Ba Ba Hitech Building, Nos. 22-24 Wing Kei Road, Kwai Chung, New Territories, Hong Kong Tel: (852) 2873 6860 Fax: (852) 2555 7533 E-mail: smec@cigismec.com Website: www.cigismec.com

2

CERTIFICATE OF CALIBRATION

Certificate No.:

21CA0616 01-02

Page:

of

Item tested

Description:

Acoustical Calibrator (Class 1)

Manufacturer: Type/Model No.: Pulsar 100B

Serial/Equipment No.: Adaptors used: 039507 Yes

Item submitted by

Customer:

Apex Testing & Certification Ltd.

Address of Customer:

Unit D6A, 10/F, TML Tower, 3 Hoi Shing Road, Tsuen Wan, N.T.

Request No.: Date of receipt:

16-Jun-2021

Date of test:

18-Jun-2021

Reference equipment used in the calibration

Description: Lab standard microphone Preamplifier Measuring amplifier Signal generator Digital multi-meter Audio analyzer Universal counter	Model: B&K 4180 B&K 2673 B&K 2610 DS 360 34401A 8903B 53132A	Serial No. 2341427 2239857 2346941 33873 US36087050 GB41300350 MY40003662	Expiry Date: 04-May-2022 31-May-2022 01-Jun-2022 27-May-2022 27-May-2022 28-May-2022 02-Jun-2022	Traceable to: SCL CEPREI CEPREI CEPREI CEPREI CEPREI CEPREI CEPREI
---	--	--	---	--

Ambient conditions

Temperature:

22 ± 1 °C

Relative humidity: Air pressure:

55 ± 10 % 1010 ± 5 hPa

.

1010 ± 5 N

Test specifications

- The Sound Calibrator has been calibrated in accordance with the requirements as specified in IEC 60942 1997 Annex B
 and the lab calibration procedure SMTP004-CA-156.
- 2, The calibrator was tested with its axis vertical facing downwards at the specific frequency using insert voltage technique.
- 3, The results are rounded to the nearest 0.01 dB and 0.1 Hz and have not been corrected for variations from a reference pressure of 1013.25 hectoPascals as the maker's information indicates that the instrument is insensitive to pressure changes.

Test results

This is to certify that the sound calibrator conforms to the requirements of annex B of IEC 60942: 1997 for the conditions under which the test was performed. This does not imply that the sound calibrator meets IEC 60942 under any other conditions.

Details of the performed measurements are presented on page 2 of this certificate.

Feng Junqi

Approved Signatory:

Date:

19-Jun-2021

Company Chop:

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long term stability of the instrument. The results apply to the item as received.

© Soils & Materials Engineering Co., Ltd

Form No.CARP156-1/Issue 1/Rev.D/01/03/2007

香港新界葵涌水基路22-24號好爸爸創科大廈 Good Ba Ba Hitech Building, Nos. 22-24 Wing Kei Road, Kwai Chung, New Territories, Hong Kong Tel: (852) 2873 6860 Fax: (852) 2555 7533 E-mail: smec@cigismec.com Website: www.cigismec.com

CERTIFICATE OF CALIBRATION

(Continuation Page)

Certificate No.:

21CA0616 01-02

Page:

of

2

2

1, Measured Sound Pressure Level

The output Sound Pressure Level in the calibrator head was measured at the setting and frequency shown using a calibrated laboratory standard microphone and insert voltage technique. The results are given in below with the estimated uncertainties.

(Output level in dB re 20 µPa)

Frequency	Output Sound Pressure	Measured Output	Estimated Expanded
Shown	Level Setting	Sound Pressure Level	Uncertainty
Hz	dB	dB	dB
1000	94.00	94.15	0.10

2, Sound Pressure Level Stability - Short Term Fluctuations

The Short Term Fluctuations was determined by measuring the maximum and minimum of the fast weighted DC output of the B&K 2610 measuring amplifier over a 20 second time interval as required in the standard. The Short Term Fluctuation was found to be:

At 1000 Hz

STF = 0.019 dB

Estimated expanded uncertainty

0.005 dB

3, Actual Output Frequency

The determination of actual output frequency was made using a B&K 4180 microphone together with a B&K 2673 preamplifier connected to a B&K 2610 measuring amplifier. The AC output of the B&K 2610 was taken to an universal counter which was used to determine the frequency averaged over 20 second of operation as required by the standard. The actual output frequency at 1 KHz was:

At 1000 Hz

Actual Frequency = 999.86 Hz

Estimated expanded uncertainty

0.1 Hz

Coverage factor k = 2.2

4, Total Noise and Distortion

For the Total Noise and Distortion measurement, the unfiltered AC output of the B&K 2610 measuring amplifier was connected to an Agilent Type 8903 B distortion analyser. The TND result at 1 KHz was:

At 1000 Hz

TND = 0.9 %

Estimated expanded uncertainty

0.7 %

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated.

Calibrated by:

End

Checked by:

Fung Chi Yip 18-Jun-2021

Chan Yuk Yiu 19-Jun-2021

Date: 19-Jun-2021 Date: 19-Jun-202

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

© Soils & Materials Engineering Co., Ltd

Form No.CARP156-2/Issue 1/Rev.C/01/05/2005