High-Volume TSP Sampler 5-Point Calibration Record Location : AM1(ICC) Calibrated by : K.T.Ho Date : 16/07/2021 Sampler Model TE-5170 : Serial Number S/N 0767 :

Calibration Orifice and Stan	dard Calibratio	n Relationship
Serial Number	:	2454
Service Date	:	28 Jan 2021
Slope (m)	:	2.06072
Intercept (b)	:	-0.01465
Correlation Coefficient(r)	:	0.99993

Standard Condition		
Pstd (hpa)	:	1013
Tstd (K)	:	298.18
Calibration Condition		
Calibration Condition Pa (hpa)	:	1008

Resi	stance Plate	dH [green liquid]	Ζ	X=Qstd	IC	Y
		(inch water)		(cubic meter/min)	(chart)	(corrected)
1	18 holes	11.4	3.340	1.628	60	59.36
2	13 holes	8.8	2.935	1.431	50	49.46
3	10 holes	6.6	2.541	1.240	42	41.55
4	7 holes	4.6	2.122	1.037	30	29.68
5	5 holes	2.8	1.655	0.810	20	19.79

Notes:Z=SQRT{dH(Pa/Pstd)(Tstd/Ta)}, X=Z/m-b, Y(Corrected Flow)=IC*{SQRT(Pa/Pstd)(Tstd/Ta)}

Sampler Calibration Relationship

Slope(m):<u>48.741</u>

Intercept(b):-19.953

Correlation Coefficient(r): 0.9990

0 Checked by: Magnum Fan

Date: 19/07/2021

15 nviro				J)		D	ALIBRATION UE DATE: ary 28, 2022
(be	rtifu	cate				tion	
			Calibration					
	anuary 28,	2021	Rootsr	meter S/N:	438320	Ta:	294	°К
Operator: Ji	m Tisch					Pa:	763.5	mm Hg
Calibration M	odel #:	TE-5025A	Calik	brator S/N:	2454			
Г	T							
		Vol. Init	Vol. Final	ΔVol.	ΔTime	ΔΡ	ΔΗ	
	Run	(m3)	(m3)	(m3)	(min)	(mm Hg)	(in H2O)	
-	1	1	2	1	1.4540 1.0210	3.2 6.4	2.00	
-	3	5	4	1	0.9110	8.0	4.00	
-	4	7	8	1	0.8730	8.8	5.50	
-	5	9	10	1	0.7200	12.9	8.00	
		-1	······				0.00	
F			C	Data Tabulat	tion			
	Vstd	Qstd	$\sqrt{\Delta H \left(\frac{Pa}{Pstd}\right)}$)(<u>Tstd</u>)		Qa	$\sqrt{\Delta H(Ta/Pa)}$	
	(m3)	(x-axis)	(y-axi	is)	Va	(x-axis)	(y-axis)	
	1.0140	0.6974	1.427	71	0.9958	0.6849	0.8776	
L	1.0098	0.9890	2.018	L	0.9916	0.9712	1.2411	
L	1.0076	1.1061	2.256		0.9895	1.0862	1.3875	
L	1.0066	1.1530	2.366		0.9885	1.1323	1.4553	
-	1.0011	1.3904	2.854		0.9831	1.3654	1.7551	
1	QSTD		2.060		04	m= b=	1.29039 -0.00901	
		r=	0.999		QA	r=	0.99993	
							0.00000	
L			(Calculation				
-	and the second se	td= ΔVol((Pa-ΔP)/Pstd)(Tstd/Ta) Va= ΔVol((Pa-ΔP)/Pa)					')/Pa)	
-	Usta=	Vstd/∆Time	Found	and flag		Va/∆Time		
-		//	For subsequ	ent flow rat	te calculation	1s: //	· · ·	
	Qstd=	1/m ((\\ \ \ \ \ \ \ H (-	Pa Pstd Tstd))-b)	Qa=	1/m ((√ΔH	(Та/Ра))-b)	
		Conditions						
Tstd:	298.15			ļ.		RECAL	IBRATION	
Pstd:		mm Hg			US FPA reco	mmends ar	nual recalibratio	n ner 1998
ΔH: calibrator		er reading (ii	n H2O)				legulations Part 5	
ΔP : rootsmete							Reference Meth	
Ta: actual abso							ended Particulate	
Pa: actual bard	ometric pr	essure (mm	Hg)				re, 9.2.17, page 3	
b: intercept							, p, p	
m: slope				L				

Tisch Environmental, Inc.

145 South Miami Avenue

Village of Cleves, OH 45002

<u>www.tisch-env.com</u> TOLL FREE: (877)263-7610 FAX: (513)467-9009

ALS Technichem (HK) Pty Ltd

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

	SUB-CONTRACTING REPORT				
CONTACT	: MR K.W. FAN : ENVIROTECH SERVICES CO.	WORK ORDER : HK2035838			
ADDRESS	RM113, 1/F, MY LOFT, 9 HOI WING ROAD, TUEN MUN, N.T. HONG KONG	SUB-BATCH : 1 DATE RECEIVED : 18-SEP-2020 DATE OF ISSUE : 28-SEP-2020			
PROJECT	:	NO. OF SAMPLES : 1 CLIENT ORDER :			
Education of the second se					

General Comments

- Sample(s) was/ were submitted by client. Sample(s) arrived laboratory in ambient condition. The result(s) related only to the item(s) tested.
- Sample information (Project name, Sample ID, Sampling date/time, etc., if any) is provided by client.
- Calibration was subcontracted to and analysed by Action United Enviro Services.

Position

Signatories

This document has been signed by those names that appear on this report and are the authorised signatories

Signatories

Kilard Jung **Richard Fung**

Managing Director

This is the Final Report and supersedes any preliminary report with this batch number.

All pages of this report have been checked and approved for release.

ALS Technichem (HK) Pty Ltd Part of the ALS Laboratory Group

11/F. Chung Shun Knitting Centre 1 - 3 Wing Yip Street Kwai Chung N.T. Hong Kong Tel. +852 2610 1044 Fax. +852 2610 2021 www.alsglobal.com WORK ORDER SUB-BATCH

-

: HK2035838

CLIENT PROJECT

:

¹ ENVIROTECH SERVICES CO.

0

-

ALS Lab ID	Client's Sample ID	Sample Type	Sample Date	External Lab Report No.	
HK2035838-001	S/N: 620401	Equipments	18-Sep-2020	S/N: 620401	

5

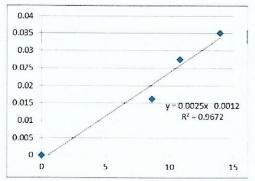
Equipment Verification Report (TSP)

Equipment Calibrated:

Туре:	Laser Dust monitor		
Manufacturer:	Sibata LD-5R		
Serial No.	620401		
Equipment Ref:	Nil		
Job Order	HK2035838		

Standard Equipment:

Standard Equipment:	Higher Volume Sampler (TSP)
Location & Location ID:	AUES office (calibration room)
Equipment Ref:	HVS 018
Last Calibration Date:	30 June 2020


Equipment Verification Results:

Verification Date:

22 September 2020

Hour	Time	Mean Temp °C	Mean Pressure (hPa)	Concentration in mg/m ³ (Standard Equipment)	Total Count (Calibrạted Equipment)	Count/Minute (Total Count/min)
2hr01min	09:15 ~ 11:16	28.6	1010.4	0.035	1690	14.0
2hr01min	11:20 ~ 13:21	28.6	1010.4	0.027	1306	10.8
2hr01min	13:25 ~ 15:26	28.6	1010.4	0.016	1043	8.6

Linear Regression of Y or)	K
Slope (K-factor):	0.0025
Correlation Coefficient	0.9835
Date of Issue	25 September 2020

Remarks:

4

1. Strong Correlation (R>0.8)

2. Factor 0.0025 should be applied for TSP monitoring

*If R<0.5, repair or re-verification is required for the equipment

Operator :	Fai So	Signature :	Ja	Date :	25 September 2020
QC Reviewer :	Ben Tam	Signature :	36	Date : _	25 September 2020

TSP SAMPLER CALIBRATION CALCULATION SPREADSHEET

				Location :Gold King Industrial Building, Kwai ChungLocation ID :Calibration Room						
				С	ONDIT	IONS				
	Sea Level Pressure (hPa)1004.6Temperature (°C)30.7						Corrected Pressure (mm Hg) 753.45 Temperature (K) 304			
				CALIB	RATIO		E			
		Calibra	Make-> Model-> tion Date->	TISC 5025 7-Feb	5A		Qstd Slope ->2.03014Qstd Intercept ->-0.04616Expiry Date->7-Feb-21			
				C	ALIBRA					
	0 (L)H2O (I in) (in)	R) H20 (in)	Qstd (m3/min)	I (cha		IC orrected	LINEAR REGRESSION			
18 6 13 4 10 3 8 2	(11) (11) 5.4 6.4 4.9 4.9 3.7 3.7 2.4 2.4 1.5 1.5	12.8 9.8 7.4 4.8 3.0	1.761 1.544 1.344 1.087 0.864	56 49 43 32 21		55.23 48.33 42.41 31.56 20.71	Slope = 38.2549 Intercept = -10.8486 Corr. coeff. = 0.9947			
alculations : alculations : alculations : alculations : alculations : alculated = standa $alculated = standa alculated = actual cha (I)[Sqrttheorem chancelocation chan$	qrt(H20(Pa/ a/Pstd)(Tstd) rd flow rate d chart response r Qstd slope Qstd interce pressure dur ent calculati (298/Tav)(P slope intercept	(Ta)] ones ept uring cal ing calib: on of san	ibration (de ration (mm	-	00.06 50.00 (C) 50.00 (C)		FLOW RATE CHART			

RECALIBRATION DUE DATE: February 7, 2021

P. t. R. t	P	Calibration
Oerlificale	Of-	Oalibration

			Calibration	Certificatio	on Informat	ion		
Cal. Date:	February 7	, 2020	Roots	meter S/N:	438320	Ta:	295	°K
Operator:	Jim Tisch					Pa: 745.5		mm Hg
Calibration Model #: TE-5025A Calibration			brator S/N: 1612					
			ΔVol.	ΔTime	ΔΡ	ΔH	1	
	Run	(m3)	(m3)	(m3)	(min)	(mm Hg)	(in H2O)	
	1	1	2	1	1.3730	3.2	2.00	
	2	3	4	1	0.9820	6.4	4.00	1
	3	5	6	1	0.8780	8.0	5.00]
	4	7	8	1	0.8340	8.8	5.50	
	5	9	10	1	0.6900	12.8	8.00]
			Į	ata Tabulat	tion]
	Vstd	Qstd	$\sqrt{\Delta H \left(\frac{Pa}{Pstd} \right)}$)(Tstd) Ta)		Qa	$\sqrt{\Delta H(Ta/Pa)}$	
	(m3)	(x-axis)	(y-axis)		Va	(x-axis)	(y-axis)	
	0.9866	0.7186	1.40	78	0.9957	0.7252	0.8896	1
	0.9824	1.0004	1.99		0.9914	1.0096	1.2581]
	0.9802	1.1165	2.22		0.9893	1.1267	1.4066	
	0.9792	1.1741	2.33		0.9882	1.1849	1.4753	-
	0.9739	1.4114	2.81	the second se	0.9828	1.4244	1.7792	
	OCTO	m=	2.030		~		1.27124	1
	QSTD	b= r=	-0.040		QA	b= r=	-0.02917 0.99995	1
				Calculation	ns		an a]
	Vstd=	ΔVol((Pa-ΔP	/Pstd)(Tstd/T			ΔVol((Pa-ΔI	P)/Pa)	
	Qstd=	Vstd/∆Time				Va/ATime	<u></u>	1
			For subsequ	ent flow rat	te calculatio	ns:		
	Qstd=	1/m ((√ΔH	Pa Tstd	-))-b)	Qa=	1/m ((√∆H	I(Ta/Pa))-b)	
	Standard	Conditions			R			
Tstd		and the second se		[RECA	LIBRATION	
Pstd		mm Hg				mmandaa		
AH: calibrat		Key ter reading (i	n H2O)				nnual recalibrati Regulations Part	351
		eter reading (i					, Reference Met	
		perature (°K)					ended Particulat	
		ressure (mm	and the state of t					
b: intercept	and the second se	·			tn	e Atmosphe	ere, 9.2.17, page	30
m: slope				L	and the second			

Tisch Environmental, Inc.

₫ 🐠

ç

145 South Miami Avenue

Village of Cleves, OH 45002

www.tisch-env.co - TOLL FREE: (877)263-76: FAX: (513)467-90

ALS Technichem (HK) Pty Ltd

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

SUB-CONTRACTING REPORT

CONTACT	: MR K.W. FAN	WORK ORDER HK2045301
CLIENT	ENVIROTECH SERVICES CO.	
ADDRESS	: RM113, 1/F, MY LOFT, 9 HOI WING ROAD, TUEN MUN, N.T. HONG KONG	SUB-BATCH:1DATE RECEIVED:24-NOV-2020DATE OF ISSUE:30-NOV-2020
PROJECT	:	NO. OF SAMPLES : 1 CLIENT ORDER

General Comments

- Sample(s) was/ were submitted by client. Sample(s) arrived laboratory in ambient condition. The result(s) related only to the item(s) tested.
- Sample information (Project name, Sample ID, Sampling date/time, etc., if any) is provided by client.
- Calibration was subcontracted to and analysed by Action United Enviro Services.

Signatories

This document has been signed by those names that appear on this report and are the authorised signatories

Signatories	Position	
Ki hard Fromy		
Richard Fung	Managing Director	

This is the Final Report and supersedes any preliminary report with this batch number.

All pages of this report have been checked and approved for release.

ALS Technichem (HK) Pty Ltd Part of the ALS Laboratory Group

11/F. Chung Shun Knitting Centre 1 - 3 Wing Yip Street Kwai Chung N.T. Hong Kong Tel. +852 2610 1044 Fax. +852 2610 2021 www.alsglobal.com WORK ORDER SUB-BATCH CLIENT

PROJECT

: HK2045301

[:] 1 : ENVIROTECH SERVICES CO. : ----

ALS Lab ID	Client's Sample ID	Sample Type	Sample Date	External Lab Report No.
HK2045301-001	S/N: 245833	Equipments	24-Nov-2020	S/N: 245833

Equipment Verification Report (TSP)

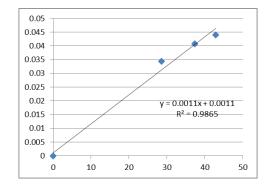
Equipment Calibrated:

Туре:	Laser Dust monitor
Manufacturer:	Sibata LD-3B
Serial No.	245833
Equipment Ref:	Nil
Job Order	HK2045301

Standard Equipment:

Standard Equipment:	Higher Volume Sampler (TSP)
Location & Location ID:	AUES office (calibration room)
Equipment Ref:	HVS 018
Last Calibration Date:	8 October 2020

Equipment Verification Results:


Verification Date:

26 November 2020

Hour	Time	Mean Temp °C	Mean Pressure (hPa)	Concentration in mg/m ³ (Standard Equipment)	Total Count (Calibrated Equipment)	Count/Minute (Total Count/min)
2hr01min	09:18 ~ 11:19	24.0	1019.3	0.041	4525	37.3
2hr	11:22 ~ 13:22	24.0	1019.3	0.034	3430	28.6
2hr01min	13:25 ~ 15:26	24.0	1019.3	0.044	5196	42.9

Linear Regression of Y or X

Slope (K-factor):	0.0011
Correlation Coefficient	0.9932
Date of Issue	30 November 2020

Remarks:

1. Strong Correlation (R>0.8)

2. Factor 0.0011 should be applied for TSP monitoring

*If R<0.5, repair or re-verification is required for the equipment

Operator :	Fai So	Signature :	Ja	Date :	30 November 2020
			N		
QC Reviewer :	Ben Tam	Signature :		Date :	30 November 2020
			A C		

ALS Technichem (HK) Pty Ltd

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

SUB-CONTRACTING REPORT

CONTACT	: MR K.W. FAN	WORK ORDER HK2045304
CLIENT	ENVIROTECH SERVICES CO.	
ADDRESS	: RM113, 1/F, MY LOFT, 9 HOI WING ROAD, TUEN MUN, N.T. HONG KONG	SUB-BATCH:1DATE RECEIVED:24-NOV-2020DATE OF ISSUE:30-NOV-2020
PROJECT	:	NO. OF SAMPLES : 1 CLIENT ORDER

General Comments

- Sample(s) was/ were submitted by client. Sample(s) arrived laboratory in ambient condition. The result(s) related only to the item(s) tested.
- Sample information (Project name, Sample ID, Sampling date/time, etc., if any) is provided by client.
- Calibration was subcontracted to and analysed by Action United Enviro Services.

Signatories

This document has been signed by those names that appear on this report and are the authorised signatories

Signatories	Position	
Ki dand Formy .		
Richard Fung	Managing Director	

This is the Final Report and supersedes any preliminary report with this batch number.

All pages of this report have been checked and approved for release.

ALS Technichem (HK) Pty Ltd Part of the ALS Laboratory Group

11/F. Chung Shun Knitting Centre 1 - 3 Wing Yip Street Kwai Chung N.T. Hong Kong Tel. +852 2610 1044 Fax. +852 2610 2021 www.alsglobal.com WORK ORDER SUB-BATCH

: HK2045304

SUB-BATCH: 1CLIENT: ENVIROTECH SERVICES CO.PROJECT: ----

ALS Lab ID	Client's Sample ID	Sample Type	Sample Date	External Lab Report No.
HK2045304-001	S/N: 276015	Equipments	24-Nov-2020	S/N: 276015

Equipment Verification Report (TSP)

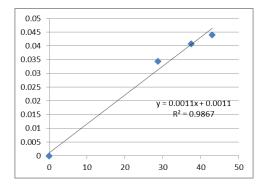
Equipment Calibrated:

Туре:	Laser Dust monitor
Manufacturer:	Sibata LD-3B
Serial No.	276015
Equipment Ref:	Nil
Job Order	HK2045304

Standard Equipment:

Standard Equipment:	Higher Volume Sampler (TSP)
Location & Location ID:	AUES office (calibration room)
Equipment Ref:	HVS 018
Last Calibration Date:	8 October 2020

Equipment Verification Results:


Verification Date:

26 November 2020

Hour	Time	Mean Temp °C	Mean Pressure (hPa)	Concentration in mg/m ³ (Standard Equipment)	Total Count (Calibrated Equipment)	Count/Minute (Total Count/min)
2hr01min	09:18 ~ 11:19	24.0	1019.3	0.041	4541	37.5
2hr	11:22 ~ 13:22	24.0	1019.3	0.034	3443	28.7
2hr01min	13:25 ~ 15:26	24.0	1019.3	0.044	5211	43.0

Linear Regression of Y or X	
Slope (K-factor):	0.0011
Correlation Coefficient	0.9933
Date of Issue	30 November 202

30 November 2020

Remarks:

1. Strong Correlation (R>0.8)

Factor 0.0011 should be applied for TSP monitoring 2.

*If R<0.5, repair or re-verification is required for the equipment

Operator :	Fai So	Signature :	Ja	Date :	30 November 2020
QC Reviewer :	Ben Tam	Signature :		Date :	30 November 2020
			×		

-

輝創工程有限公司

Sun Creation Engineering Limited

Calibration & Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. : C213255 證書編號

ITEM TESTED Description / 儀器 Manufacturer / 製 Model No. / 型號 Serial No. / 編號 Supplied By / 委託	器名稱 : Sound Level Meter 製造商 : Rion 乾 : NL-52 : 00131627	loi Wing Road, Tuen Mun,	/ 收件日期:24 May 2021
TEST CONDIT Temperature / 溫 Line Voltage / 電		Relative Humidity / 木	目對濕度 : (50±25)%
TEST SPECIFIC . Calibration check	CATIONS / 測試規範 k		
DATE OF TEST	r / 測試日期 : 4 June 2021		
The results do no The results are de The test equipmer - The Governmen - Agilent Techno	S / 測試結果 v to the particular unit-under-test only. ot exceed manufacturer's specification. etailed in the subsequent page(s). ent used for calibration are traceable to Nation of The Hong Kong Special Administration plogies / Keysight Technologies Service Center, USA		n Laboratory
· Tested By 測試	: <u>Chenk</u> K P Cheuk Project Engineer		· · }
Certified By 核證	: K¢Lee Engineer	Date of Issue : 簽發日期	9 June 2021
written approval of this laborat	alibration is traceable to the National Standards as specified in		roduced except in full, without the prior

Sun Creation Engineering Limited

Calibration & Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. : C213255 證書編號

- 1. The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours, and switched on to warm up for over 10 minutes before the commencement of the test.
 - 2. Self-calibration was performed before the test.
 - 3. The results presented are the mean of 3 measurements at each calibration point.
 - 4. Test equipment :

Equipment ID	Description	Certificate No.
CL280	40 MHz Arbitrary Waveform Generator	C210084
CL281	Multifunction Acoustic Calibrator	AV210017

- 5. Test procedure : MA101N.
- 6. Results :
- 6.1 Sound Pressure Level
- 6.1.1 Reference Sound Pressure Level

UUT Setting				Applie	d Value	UUT	IEC 61672
Range	Function	Frequency	Time	Level	Freq.	Reading	Class 1 Spec.
(dB)		Weighting	Weighting	(dB)	(kHz)	(dB)	(dB)
30 - 130	L _A	A	Fast	94.00	- 1	94.2	± 1.1

6.1.2 Linearity

	UUT Setting				d Value	UUT	
Range (dB)	Function	Frequency Weighting	Time Weighting	Level (dB)	Freq. (kHz)	Reading (dB)	
30 - 130	L _A	A	Fast	94.00	1	94.2 (Ref.)	
				104.00		104.2	
				114.00		114.2	

IEC 61672 Class 1 Spec. : \pm 0.6 dB per 10 dB step and \pm 1.1 dB for overall different.

6.2 Time Weighting

	UUT Setting				d Value	UUT	IEC 61672
Range (dB)	Function	Frequency	Time	Level	Freq.	Reading	Class 1 Spec.
30 - 130	L _A	Weighting A	Weighting Fast	(dB) 94.00	(kHz) 1	(dB) • 94.2	(dB) Ref.
			Slow			94.2	± 0.3

مر ،

The test equipment used for calibration is traceable to the National Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited

Calibration & Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.: C213255 證書編號

6.3 Frequency Weighting

6.3.1 A-Weighting

	UUT	Setting		Applied Value		UUT	IEC 61672
Range (dB)	Function	Frequency Weighting	Time Weighting	Level (dB)	Freq.	Reading (dB)	Class 1 Spec. (dB)
30 - 130	L _A	A	Fast	94.00	63 Hz	68.0	-26.2 ± 1.5
				125 Hz	78.0	-16.1 ± 1.5	
		2			250 Hz	85.5	-8 .6 ± 1.4
					500 Hz	91.0	-3.2 ± 1.4
					1 kHz	94.2	Ref.
			*		2 kHz	95.4	$+1.2 \pm 1.6$
					4 kHz	95.2	$+1.0 \pm 1.6$
					8 kHz	93.2	-1.1 (+2.1 ; -3.1)
					16 kHz	86.2	-6.6 (+3.5 ; -17.0)

6.3.2 C-Weighting

UUT Setting			Applied Value		UUT	IEC 61672	
Range (dB)	Function	Frequency Weighting	Time Weighting	Level (dB)	Freq.	Reading (dB)	Class 1 Spec. (dB)
30 - 130	L _C	С	Fast	94.00	63 Hz	93.3	-0.8 ± 1.5
					125 Hz	94.0	-0.2 ± 1.5
					250 Hz	94.2	0.0 ± 1.4
					500 Hz	94.2	0.0 ± 1.4
					1 kHz	94.2	Ref.
					2 kHz	94.0	-0.2 ± 1.6
		8			4 kHz	93.4	-0.8 ± 1.6
					8 kHz	91.3	-3.0 (+2.1 ; -3.1)
					16 kHz	84.3	-8.5 (+3.5 ; -17.0)

The test equipment used for calibration is traceable to the National Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

Sun Creation Engineering Limited

Calibration & Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. : C213255 證書編號

Remarks : - UUT Microphone Model No. : UC-59 & S/N : 10446

- Mfr's Spec. : IEC 61672 Class 1

94 dB : 63 Hz - 125 Hz	: ± 0.35 dB
250 Hz - 500 Hz	: ± 0.30 dB
1 kHz	$\pm 0.20 \text{ dB}$
2 kHz - 4 kHz	: ± 0.35 dB
8 kHz	$\pm 0.45 \text{ dB}$
16 kHz	$\pm 0.70 \text{ dB}$
104 dB : 1 kHz	$\pm 0.10 \text{ dB}$ (Ref. 94 dB)
114 dB : 1 kHz	: \pm 0.10 dB (Ref. 94 dB)
	1 kHz 2 kHz - 4 kHz 8 kHz 16 kHz 104 dB : 1 kHz

- The uncertainties are for a confidence probability of not less than 95 %.

Note :

Only the original copy or the laboratory's certified true copy is valid.

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration is traceable to the National Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

Sun Creation Engineering Limited Calibration & Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.: C210001 證書編號

ι	ITEM TESTED / 送檢功	百日	(Job No. / 序引編號: IC20-2688)	Date of Receipt / 收件日期: 18 December 2020
	Description / 儀器名稱	:	Precision Acoustic Calibrator	
	Manufacturer / 製造商	:	LARSON DAVIS	
	Model No. / 型號	:	CAL200	
	Serial No. / 編號	:	11334	
	Supplied By / 委託者	:	Envirotech Services Co.	/
			Room 113, 1/F, My Loft, 9 Hoi Wing I	Road, Tuen Mun,
			New Territories, Hong Kong	
	TEST CONDITIONS /	거비구	her Itt.	

TEST CONDITIONS / 測試條件

Temperature / 溫度 : (23 ± 2)°C Line Voltage / 電壓 : ---

Relative Humidity / 相對濕度 : (50 ± 25)%

TEST SPECIFICATIONS / 測試規範

Calibration check

DATE OF TEST / 測試日期 : 2 January 2021

TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only. The results do not exceed manufacturer's specification & user's specified acceptance criteria. The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via :

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory

- The Bruel & Kjaer Calibration Laboratory, Denmark
- Agilent Technologies / Keysight Technologies
- Fluke Everett Service Center, USA

Tested By 測試	:	H T Wong Assistant Engineer			
Certified By 核證	:	K ¢ Lee Ergineer	Date of Issue 簽發日期	:	4 January 2021

The test equipment used for calibration is traceable to the National Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

Sun Creation Engineering Limited

Calibration & Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.: C210001 證書編號

- 1. The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours before the commencement of the test.
- 2. The results presented are the mean of 3 measurements at each calibration point.
- 3. Test equipment :

Equipment ID	Description	Certificate No.
CL130	Universal Counter	C203952
CL281	Multifunction Acoustic Calibrator	CDK1806821
TST150A	Measuring Amplifier	C201309

- 4. Test procedure : MA100N.
- 5. Results :
- 5.1 Sound Level Accuracy

UUT Nominal Value	Measured Value (dB)	User's Spec. (dB)	Uncertainty of Measured Value (dB)
94 dB, 1 kHz	93.7	± 0.5	± 0.2
114 dB, 1 kHz	113.7		

.5.2 Frequency Accuracy

UUT Nominal Value	Measured Value	Mfr's	Uncertainty of Measured Value
(kHz)	(kHz)	Spec.	(Hz)
1	1.000	$1 \text{ kHz} \pm 1 \%$	± 1

Remarks : - The user's specified acceptance criteria (user's spec.) is a customer pre-defined operating tolerance of the UUT, suitable for one's own intended use.

- The uncertainties are for a confidence probability of not less than 95 %.

Note:

Only the original copy or the laboratory's certified true copy is valid.

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration is traceable to the National Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.