Development at West Kowloon Cultural District

Monthly Environmental Monitoring and Audit (EM&A) Report for January 2021

08 February 2021

In accordance with the Environmental Permit, Condition 3.4, this Monthly EM&A Report has been certified by the Environmental Team Leader (ETL) and verified by the Independent Environmental Checker (IEC) as complying with the requirements as set out in Sections 1, 10, 11, 12 and 13 of the EM&A Manual.

Certified by:

 \sim

CK Wu Environmental Team Leader (ETL) West Kowloon Cultural District Authority

Date

Verified by:

Claudine Lee Independent Environmental Checker (IEC) Meinhardt Infrastructure & Environment Ltd

10 Feb 2021

Date

This Report Consists of :

Part-1: EM&A at M+ Museum and Lyric Theatre Complex

and

Part-2: EM&A for Foundation, Excavation and Lateral Works for Integrated Basement and Underground Road in Zone 2A

Part-1: EM&A at M+ Museum and Lyric Theatre Complex

M+ Museum and Lyric Theatre Complex

Mott MacDonald 3/F International Trade Tower 348 Kwun Tong Road Kwun Tong Kowloon Hong Kong

T +852 2828 5757 mottmac.hk

Contents

Exe	ecutive	summar	ry	1
1	Intro	duction		4
	1.1	Backgro	bund	4
	1.2	-	Organisation	4
	1.3	-	of Construction Works in the Reporting Period	5
	1.4	Summa	ry of EM&A Requirements and Alternative Monitoring Locations	6
		1.4.1	Summary of EM&A Requirements	6
		1.4.2	Alternative Monitoring Locations	6
2	Impa	act Monit	oring Methodology	8
	2.1	Introduc	tion	8
	2.2	Air Qual	ity	8
		2.2.1	Monitoring Parameters, Frequency and Duration	8
2		2.2.2	Monitoring Locations	8
		2.2.3	Monitoring Equipment	8
		2.2.4	Monitoring Methodology	9
	2.3	Noise		11
		2.3.1	Monitoring Parameters, Frequency and Duration	11
		2.3.2	Monitoring Location	11
		2.3.3	Monitoring Equipment	11
		2.3.4	Monitoring Methodology	12
	2.4	Landsca	ape and Visual	12
		2.4.1	Monitoring Program	12
3	Mon	itoring R	esults	13
	3.1	Impact N	Monitoring	13
	3.2	Air Qual	ity Monitoring	13
		3.2.1	1-hour TSP	13
		3.2.2	24-hour TSP	13
	3.3	Noise M	lonitoring	14
	3.4	Landsca	ape and Visual Impact	14
4	Site	Environr	nental Management	15
	4.1	Site Insp	pection	15
		4.1.1	M+ Museum	15
		4.1.2	Lyric Theatre Complex	15
	4.2	Advice of	on the Solid and Liquid Waste Management Status	16
		4.2.1	M+ Museum	16
		4.2.2	Lyric Theatre Complex	17

	4.3	Status c	of Environmental Licenses and Permits	17
		4.3.1	M+ Museum	17
		4.3.2	Lyric Theatre Complex	18
	4.4	Recomr	nended Mitigation Measures	18
		4.4.1	M+ Museum	18
		4.4.2	Lyric Theatre Complex	19
5	Com	pliance	with Environmental Permit	20
6			n-compliance, Complaints, Notification of Summons and Prosecutions	21
	6.1	Record	on Non-compliance of Action and Limit Levels	21
	6.2		on Environmental Complaints Received	21
	6.3		on Notifications of Summons and Successful Prosecution	21
7	Futu	re Key Is	SSUES	22
	7.1	Constru	ction Works for the Coming Month(s)	22
		7.1.1	M+ Museum	22
		7.1.2	Lyric Theatre Complex	22
	7.2	Key Issu	ues for the Coming Month	23
		7.2.1	M+ Museum	23
		7.2.2	Lyric Theatre Complex	23
	7.3	Monitori	ng Schedule for the Coming Month	23
8	Conc	lusions	and Recommendations	24
	8.1	Conclus	ions	24
	8.2	Recomr	nendations	24
Figu	ire 1	Site La	ayout Plan and Monitoring Stations	25
Арр	endice	es		26
A.	Proje	ect Orga	nisation	27
B.	Tenta	ative Co	nstruction Programme	28
C.	Actio	n and L	imit Levels for Construction Phase	29
D.	 7.3 Monitoring Schedule for the Coming Month 3 Conclusions and Recommendations 8.1 Conclusions 8.2 Recommendations Figure 1 Site Layout Plan and Monitoring Stations Appendices A. Project Organisation B. Tentative Construction Programme C. Action and Limit Levels for Construction Phase 			
E.	Moni	toring S	chedule	31

F.	Calibration Certifications	32
G.	Graphical Plots of the Monitoring Results	33
H.	Meteorological Data Extracted from Hong Kong Observatory	34
I.	Waste Flow table	35
J.	Environmental Mitigation Measures – Implementation Status	36
K.	Cumulative Statistics on Complaints, Notifications of Summons and Successful Prosecutions	37

Executive summary

Mott MacDonald Hong Kong Limited (MMHK) was commissioned to undertake the Environmental Team (ET) services (including environmental monitoring and audit (EM&A)) for the construction of M+ Museum Main Works (Contract No.: CC/2015/3A/022) and Lyric Theatre Complex including the Foundation Works (Contract No.: CC/2015/3A/014), L1 Contract (Contract No. CC/2017/3A/030) and L2 Contract (Contract No. CC/2017/3A/031) at West Kowloon Cultural District (WKCD) (The Project) as part of the WKCD development. The Project Proponent is the West Kowloon Cultural District Authority (WKCDA). The construction works and EM&A programme for M+ Museum and Lyric Theatre Complex commenced on 31 October 2015 and 1 March 2016 respectively.

The overall works for the WKCD fall under two separate categories of Designated Project (DP) of the Environmental Impact Assessment Ordinance (EIAO), namely an "engineering feasibility study of urban development projects with a study area covering more than 20 ha or involving a total population of more than 100 000" (Item 1 of Schedule 3) and "an underpass more than 100m in length under the built areas" (Item A.9, Part I, Schedule 2). An Environmental Permit No. EP-453/2013/B (EP) was issued with respect to the "Underpass Road and Austin Road Flyover Serving the West Kowloon Cultural District" which specifically includes the abovementioned category of DP under Item A.9, Part I, Schedule 2 of the EIAO.

This Monthly EM&A Report presents the monitoring works at M+ Museum and Lyric Theatre Complex (L1 and L2 Contract) from 1 January to 31 January 2021.

Exceedance of Action and Limit Levels

One Action Level exceedance (due to noise related environmental complaint) with no Limit Level exceedance of construction noise, was recorded in the reporting month. There was no breach of Action or Limit levels for Air Quality (1-hour TSP and 24-hour TSP) and in this reporting month.

Implementation of Mitigation Measures

Construction phase weekly site inspections were carried out on 4, 14, 18 and 25 January 2021 for M+ Museum and 6, 15, 20 and 25 January 2021 for Lyric Theatre Complex (L1 and L2 Contract) to confirm the implementation measures undertaken by the Contractors in the reporting month. The outcomes are presented in Section 4 and the status of implementation of mitigation measures in the site is shown in **Appendix J**.

Landscape and visual impact inspections were conducted as part of the abovementioned weekly site inspections during the reporting month. No adverse comment on landscape and visual aspects was made during these inspections.

Record of Complaints

One environmental complaint was recorded in the reporting month.

Record of Notifications of Summons and Successful Prosecutions

No notifications of summons and successful prosecutions were recorded in the reporting month.

Future Key Issues

M+

The major site works for M+ Museum scheduled to be commissioned in the coming month include:

- 2/F and B2 fit out
- 2/F MEP modification works for PPEL
- Tower UF Solar Panels installation
- Overall area MEP flushing out/ rectifications
- 3F landscaping works rectification
- CSF
 - Defect rectifications
- WKCDA Tower
 - MEP Post-OP installation
 - GF paving
 - Post-OP weather-tight works (indoor)

The major site works for L1 scheduled to be commissioned in the coming month include:

- Excavation and Lateral Support works
- Extended basement structure construction
- Box culvert outfall to Victoria Harbour (PIW & Cofferdam B works)
- Austin Road West Lay-by (PIW Works)
- Cofferdam at the M+ Museum to LTC interface on the waterfront

The major site works for L2 scheduled to be commissioned in the coming month include:

LTC construction

Structure

- Falsework and Formwork Erection
- Reinforcement work
- Concrete work

ABWF & MEP Work

- DSC Cofferdam (Cofferdam A)
 - Remedial work to Existing Puddle Flange in pump cell
 - Construction of valve chamber
 - Lay Pipe bedding
 - Install DCS pipes/valve/fitting
 - Construct RC thrust blocks
- Modification to Existing Pump Cell
 - ABWF works
- Extended Basement
 - ABWF & MEP Work
- Vibration Isolation Spring System Installation
 - Install Spring

Potential environmental impacts due to the construction activities, including air, noise, water quality, waste, landscape and visual, will be monitored or reviewed. The recommended environmental mitigation measures shall be implemented on site and regular inspections as required will be carried out to ensure that the environmental conditions are acceptable.

1 Introduction

1.1 Background

Mott MacDonald Hong Kong Limited (MMHK) was commissioned to undertake the Environmental Team (ET) services (including environmental monitoring and audit (EM&A)) for the construction of M+ Museum Main Works (Contract No.: CC/2015/3A/022) and Lyric Theatre Complex including the Foundation Works (Contract No.: CC/2015/3A/014), L1 Contract (Contract No. CC/2017/3A/030) and L2 Contract (Contract No. CC/2017/3A/031) at West Kowloon Cultural District (WKCD) (The Project) as part of the WKCD development. The Project Proponent is the West Kowloon Cultural District Authority (WKCDA). The construction works and EM&A programme for M+ Museum and Lyric Theatre Complex commenced on 31 October 2015 and 1 March 2016 respectively.

The overall works for the WKCD fall under two separate categories of Designated Project (DP) of the Environmental Impact Assessment Ordinance (EIAO), namely an "engineering feasibility study of urban development projects with a study area covering more than 20 ha or involving a total population of more than 100 000" (Item 1 of Schedule 3) and "an underpass more than 100m in length under the built areas" (Item A.9, Part I, Schedule 2). An Environmental Permit No. EP-453/2013/B (EP) was issued with respect to the "Underpass Road and Austin Road Flyover Serving the West Kowloon Cultural District" which specifically includes the abovementioned category of DP under Item A.9, Part I, Schedule 2 of the EIAO. The captioned projects include part of the abovementioned underpass road located within the site boundary also falls under this same category.

The M+ Museum development aims to provide an iconic presence for the M+ Museum, semitransparent vertical plane, housing education facilities, a public restaurant and museum offices. At ground and lower levels, generous access will be provided to the park and other West Kowloon Cultural District facilities, alongside a public resource centre, theatres, retail and dining, and backof-house functions.

The 1,200-seat Lyric Theatre Complex will be Hong Kong's first world-class facility for dance performances, including ballet, contemporary and Chinese dance forms. In the run up to the opening of further major performing arts venues in the WKCD, it will also be used for a wide variety of performing arts events including drama, opera and musical performances. The Lyric Theatre Complex will act as a platform for Hong Kong's leading arts organisations and be a new major venue to show programmes from Asia and worldwide.

The Monthly EM&A Report is prepared in accordance with the Condition 3.4 of the Environmental Permit No. EP-453/2013/B. This Monthly EM&A Report presents the monitoring works at M+ Museum and Lyric Theatre Complex (L1 and L2 Contract) from 1 January to 31 January 2021. The purpose of this report is to summarise the findings in the EM&A of the project over the reporting period.

1.2 **Project Organisation**

The organisation chart and lines of communication with respect to the on-site environmental management structure together with the contact information of the key personnel are shown in **Appendix A**.

1.3 Status of Construction Works in the Reporting Period

During the reporting period, construction works at M+ Museum undertaken include:

- M+
- Defects Works (Timber finishes/ furniture installation, make good, landscaping works at G/F & 3/F (planting), cleaning works, hand-over)
- CSF
 - Defects Works (make good, furniture installation, cleaning works, hand-over)
- RDE
 - MEP installation works
 - T&C, ABWF works & make good
 - G/F paving works
 - FSD & BD inspection

During the reporting period, construction works at L1 undertaken include:

- Excavation and Lateral Support works
- Extended basement structure construction
- Box culvert outfall to Victoria Harbour (PIW & Cofferdam B works)
- Austin Road West Lay-by (PIW Works)
- Cofferdam at the M+ Museum to LTC interface on the waterfront

During the reporting period, construction works at L2 undertaken include:

LTC construction

Structure

- Falsework and Formwork Erection
- Reinforcement work
- Concrete work

BS Installation

- DSC Cofferdam (Cofferdam A)
 - Remedial work to Existing Puddle Flange in pump cell
 - Construction of valve chamber
 - Lay Pipe bedding
 - Install DCS pipes/valve/fitting
- Modification to Existing Pump Cell
 - ABWF works
- Vibration Isolation Spring System Installation
 - Install Spring

The Construction Works Programme of M+ Museum and Lyric Theatre Complex (L1 and L2 Contract) is provided in **Appendix B**. A layout plan of the Project is provided in **Figure 1**. Please refer to **Table 4.4**, **Table 4.5** and **Table 4.6** on the status of the environmental licenses.

1.4 Summary of EM&A Requirements and Alternative Monitoring Locations

The EM&A programme requires environmental monitoring of air quality, noise, landscape and visual as specified in the approved EM&A Manual.

1.4.1 Summary of EM&A Requirements

A summary of impact EM&A requirements is presented in Table 1.1.

Parameters	Descriptions	Locations	Frequencies
Air Quality	24-Hour TSP	AM1 - International Commerce Centre	At least once every 6 days
	1-Hour TSP	AM1 - International Commerce Centre	At least 3 times every 6 days
	24-Hour TSP	AM2 - The Harbourside Tower 1	At least once every 6 days
	1-Hour TSP	AM2 - The Harbourside Tower 1	At least 3 times every 6 days
Noise	Leq, 30 minutes	NM1- The Harbourside Tower 1	Weekly
Landscape & Visual	Monitor implementation of proposed mitigation measures during the construction stage	As described in Table 9.1 and 9.2 of the EM&A Manual	Bi-weekly

Table 1.1: Summary of Impact EM&A Requirements

1.4.2 Alternative Monitoring Locations

In the context of the monitoring activities at M+ Museum and the Lyric Complex, three monitoring stations had been considered, including AM1 (International Commerce Centre), AM2 (The Harbourside Tower 1) for air monitoring, and NM1 (The Harbourside Tower 1) for noise monitoring. Other monitoring locations (i.e. AM3 to AM5 and NM2 to NM5) were so far away from M+ Museum and the Lyric Complex and could not be representative for impact monitoring.

The Harbourside management office formally rejected our proposal of setting up air quality and noise monitoring equipment on its premises at the podium level of Tower 1 (AM2/NM1) on 10 November 2015. Nevertheless, suitable air quality monitoring location at AM2 was identified on the ground floor in front of The Harbourside Tower 1, which is at the same location as that of baseline monitoring for consistency. No management approval is required at the ground floor for conducting the air monitoring. However, the electricity supply at AM2 was suspended from 31 August 2016 and was no longer available. In order to have a more secure electricity supply, an alternative air monitoring location (AM2A) was identified at Austin Road West opposite to The Harbourside Tower 1, which is close to Lyric Theatre Complex site entrance. This alternative air monitoring location AM2A has been relocated to the alternative monitoring location AM2B at the 1st floor of Gammon's site office, which was approved by EPD on 21 February 2019.

Alternative noise monitoring location was identified at The Arch (NM2); however, The Arch management office formally rejected our proposal of setting up noise monitoring equipment on its premises on 23 November 2015. On the other hand, noise monitoring at G/F of Harbourside could not be representative. However, approval from the management office of the International Commerce Centre has been granted on 29 February 2016 for conducting noise monitoring at the

alternative noise monitoring location identified at the podium floor (NM1A) which is free from screening to the construction activities.

In short, 2 air quality monitoring stations and 1 noise impact monitoring station were confirmed for the impact monitoring.

The Environmental Quality Performance Limits for air quality and noise are shown in **Appendix C**.

The Event and Action Plan for air quality, construction noise, and landscape and visual are shown in **Appendix D**.

The EM&A programme followed the recommended mitigation measures in the EM&A Manual. The EM&A requirements as well as the summary of implementation status of the environmental mitigation measures are provided in **Appendix J**.

2 Impact Monitoring Methodology

2.1 Introduction

For air quality and noise, the monitoring methodology, including the monitoring locations, monitoring equipment used, monitoring parameters, and frequency and duration etc., for air quality and noise are detailed in this Section. The environmental monitoring schedules for the reporting period and the tentative monitoring Schedule for the coming month are provided in **Appendix E**.

For landscape and audit impact, the relevant EM&A monitoring requirements and details are also presented in this Section.

2.2 Air Quality

2.2.1 Monitoring Parameters, Frequency and Duration

Table 2.1 summarizes the monitoring parameters, frequency and duration of the TSP monitoring.

Table 2.1:	Air Quality Monitoring Parameters, Freque	ency and Duration
Parameter	Frequency	Duration
24-hour TSP	At least once in every six-days	24 hours
1-hour TSP	At least 3 times every six-days	60 minutes

2.2.2 Monitoring Locations

Currently, the works under the captioned project are confined in the western part of the WKCD site. Therefore, only the monitoring stations AM1 and AM2B were set up at the proposed locations in accordance with updated EM&A Manual. Location of the monitoring station is given in **Table 2.2** and shown in **Figure 1**.

Table 2.2: Air Quality Monitoring Station

Monitoring Station	Location
AM1	International Commerce Centre (ICC)
AM2B	1st Floor of Gammon's Site Office

2.2.3 Monitoring Equipment

Continuous 24-hour TSP air quality monitoring was conducted using High Volume Sampler (HVS) (Model: TE-5170) located at the designated monitoring station. The HVS meets all the requirements stated in of the EM&A Manual. Portable direct reading dust meter was used to carry out the 1-hour TSP monitoring. **Table 2.3** summarizes the equipment used in the impact air quality monitoring. Copies of the calibration certificates for the HVS, calibration kit and portable dust meters are attached in **Appendix F**.

Table 2.3: TSP Monitoring Equipment

Equipment	Model
24-hour TSP monitoring	
High Volume Sampler	TE-5170 (Serial No.: 0767 and 8919)
Calibrator	TE-5025A (Orifice I.D.: 2454)
1-hour TSP monitoring	
Portable direct reading dust meter	Sibata LD-3B (Serial No.: 245833 and 276015)

Calibration of the HVS (five point calibration) using Calibration Kit was carried out every two months. The HVS calibration orifice will be calibrated annually. Calibration certificate of the TE-5025A Calibration Kit and the HVS are provided in **Appendix F**.

The 1-hour TSP monitoring should be determined periodically (e.g. annually) by the HVS to check the validity and accuracy of the results measured by direct reading method.

2.2.4 Monitoring Methodology

24-hour TSP Monitoring

Installation

The HVS was installed at the site boundary. The following criteria were considered in the installation of the HVS.

- A horizontal platform with appropriate support to secure the sampler against gusty wind was provided.
- The distance between the HVS and any obstacles, such as buildings, was at least twice the height that the obstacle protrudes above the HVS.
- A minimum of 2 metres separation from walls, parapets and penthouse was required for rooftop sampler.
- A minimum of 2 metres separation from any supporting structure, measured horizontally was required.
- No furnace or incinerator flues or building vent were nearby.
- Airflow around the sampler was unrestricted.
- The sampler has been more than 20 metres from any drip line.
- Permission was obtained to set up the sampler and to obtain access to the monitoring station.
- A secured supply of electricity is needed to operate the sampler.

Preparation of Filter Papers

- Glass fibre filters were labelled and sufficient filters that were clean and without pinholes were selected.
- The filters used are specified to have a minimum collection efficiency of 99 percent for 0.3 μm (DOP) particles.
- All filters were equilibrated in the conditioning environment for 24 hours before weighing. The conditioning environment temperature was around 25 °C and not variable by more than ±3 °C with relative humidity (RH) < 50% and was not variable by more than ±5 %. A convenient working RH was 40%. All preparation of filters was done by Hong Kong Laboratory Accreditation Scheme (HOKLAS) accredited laboratory.

Field Monitoring Procedures

- The power supply was checked to ensure the HVS works properly.
- The filter holder and the area surrounding the filter were cleaned.
- The filter holder was removed by loosening the four bolts and a new filter, with stamped number upward, on a supporting screen was aligned carefully.
- The filter was properly aligned on the screen so that the gasket formed an airtight seal on the outer edges of the filter.
- The swing bolts were fastened to hold the filter holder down to the frame. The pressure applied should be sufficient to avoid air leakage at the edges.
- The shelter lid was closed and was secured with the aluminium strip.
- The HVS was warmed-up for about 5 minutes to establish run-temperature conditions.
- A new flow rate record sheet was set into the flow recorder.
- The flow rate of the HVS was checked and adjusted at around 1.3 m³/min. The range specified in the EM&A Manual was between 0.6-1.7 m³/min.
- The programmable timer was set for a sampling period of 24 hours, and the starting time, weather condition and the filter number were recorded.
- The initial elapsed time was recorded.
- At the end of sampling, the sampled filter was removed carefully and folded in half length so that only surfaces with collected particulate matter were in contact.
- It was then placed in a clean plastic envelope and sealed.
- All monitoring information was recorded on a standard data sheet.
- Filters were sent to a Hong Kong Laboratory Accreditation Scheme (HOKLAS) accredited laboratory for analysis.

Maintenance and Calibration

- The HVS and its accessories are maintained in good working condition, such as replacing motor brushes routinely and checking electrical wiring to ensure a continuous power supply.
- HVSs were calibrated upon installation and thereafter at bi-monthly intervals. The calibration kits were calibrated annually.
- Calibration records for HVS and calibration kit are shown in Appendix F.

1-hour TSP Monitoring

Field Monitoring

The measuring procedures of the 1-hour dust meter are in accordance with the Manufacturer's Instruction Manual as follows:

Turn the power on.

Development at West Kowloon Cultural District

- Close the air collecting opening cover.
- Push the "TIME SETTING" switch to [BG].
- Push "START/STOP" switch to perform background measurement for 6 seconds.
- Turn the knob at SENSI ADJ position to insert the light scattering plate.
- Leave the equipment for 1 minute upon "SPAN CHECK" is indicated in the display.
- Push "START/STOP" switch to perform automatic sensitivity adjustment. This measurement takes 1 minute.
- Pull out the knob and return it to MEASURE position.
- Setting time period of 1 hour for the 1-hour TSP measurement.
- Push "START/STOP" to start the 1-hour TSP measurement.

- Regular checking of the time period setting to ensure monitoring time of 1 hour.

Maintenance and Calibration

- The 1-hour dust meter would be checked at 3-month intervals and calibrated at 1-year intervals throughout all stages of the air quality monitoring.
- Calibration records for direct dust meters are shown in Appendix F.

Weather Condition

 Meteorological data extracted from Hong Kong Observatory for the reporting month is provided in Appendix H.

2.3 Noise

2.3.1 Monitoring Parameters, Frequency and Duration

Table 2.4 summarizes the monitoring parameters, frequency and duration of noise monitoring. The noise in A-weighted levels L_{eq} , L_{10} and L_{90} are recorded in a 30-minute interval between 0700 and 1900 hours.

Table 2.4: Noise Monitoring Parameters, Period and Frequency

Time Period	Parameters	Frequency
Daytime on normal weekdays (0700-1900 hours)	$L_{eq}(30 \text{ min}), L_{90}(30 \text{ min}) \& L_{10} (30 \text{ min})$	Once every week

2.3.2 Monitoring Location

Currently, the works under the captioned project are confined in the western part of the WKCD site. Therefore, only the monitoring station NM1A was set up at the proposed location in accordance with updated EM&A Manual. Location of the monitoring station is given in **Table 2.5** and shown in **Figure 1**.

Table 2.5: Noise Monitoring Station

NM1A International Commerce Centre (ICC)	Monitoring Station	Location
	NM1A	International Commerce Centre (ICC)

2.3.3 Monitoring Equipment

Integrating Sound Level Meter was used for noise monitoring. It was a Type 1 sound level meter capable of giving a continuous readout of the noise level readings including equivalent continuous sound pressure level (L_{Aeq}) and percentile sound pressure level (L_x). They comply with International Electrotechnical Commission Publications 651:1979 (Type 1) and 804:1985 (Type 1). **Table 2.6** summarizes the noise monitoring equipment model being used.

Table 2.6: Noise Monitoring Equipment

Monitoring Station	Equipment Model				
	Integrating Sound Level Meter	Calibrator			
NM1A	Rion NL-52 (Serial No. 01010406)	LARSON DAVIS CAL200 (Serial No. 11333)			

2.3.4 Monitoring Methodology

Field Monitoring

- The microphone of the Sound Level Meter was set at least 1.2 m above the ground.
- Free Field measurement was made at the monitoring locations.
- The battery condition was checked to ensure the correct functioning of the meter.
- Parameters such as frequency weighting, the time weighting and the measurement time were set as follows:
 - frequency weighting: A
 - time weighting: Fast
 - time measurement: 30 minutes intervals (between 0700-1900 on normal weekdays)
- Prior to and after each noise measurement, the meter was calibrated using a Calibrator for 94 dB at 1 kHz. If the difference in the calibration level before and after measurement was more than 1 dB, the measurement would be considered invalid and has to be repeated after re-calibration or repair of the equipment.
- During the monitoring period, the L_{eq}, L₁₀ and L₉₀ were recorded. In addition, any site observations and noise sources were recorded on a standard record sheet.
- A correction of +3dB(A) was made to the free field measurements.

Maintenance and Calibration

- The microphone head of the sound level meter and calibrator is cleaned with soft cloth at quarterly intervals.
- The sound level meter and calibrator are sent to the supplier or HOKLAS laboratory to check and calibrate at yearly intervals.
- Calibration records are shown in **Appendix F**.

Weather Condition

 Meteorological data extracted from Hong Kong Observatory for the reporting month is provided in Appendix H.

2.4 Landscape and Visual

2.4.1 Monitoring Program

Table 2.7 details the monitoring program (as proposed in the WKCD EIA report) for landscape and visual impact during the construction phase.

Table 2.7: Monitoring Program for Landscape and Visual Impact during Construction Phase Phase

Stage	Monitoring Task	Frequency	Report	Approval
Construction	Monitor implementation of proposed mitigation measures during the construction stage.	Bi-weekly	ET to report on Contractor's compliance	Counter- signed by IEC

During the landscape and visual impact monitoring, any changes in relation to the landscape and visual amenity should be monitored with reference to the baseline conditions of the site. In addition, mitigation measures were proposed in the WKCD EIA report to minimise the landscape and visual impacts during the construction phase. The proposed mitigation measures as shown in Table 9.1 and Table 9.2 of the EM&A Manual should be checked for proper implementation.

3 Monitoring Results

3.1 Impact Monitoring

Construction impact monitoring for air quality, noise and landscape and visual impact was undertaken in compliance with the EM&A Manual during the reporting month.

3.2 Air Quality Monitoring

3.2.1 1-hour TSP

Results of 1-hour TSP at the monitoring location AM1 and AM2B are summarised in **Table 3.1**. Graphical plots of the monitoring results are shown in **Appendix G**.

				-									
Monitoring	Monitoring	Start	1-hour TSP (µg/m3)			Range	Action	Limit					
Station	Date	Time	1st Result	2nd Result	3rd Result	(µg/m3)	Level (µg/m3)	Level (µg/m3)					
	05-Jan-21	8:22	68	75	82								
	11-Jan-21	8:22	69	77	85	50-88	273.7	500					
AM1	16-Jan-21	8:32	62	58	50								
	22-Jan-21	8:27	71	78	85								
	28-Jan-21	8:33	72	80	88								
	05-Jan-21	8:38	70	77	84	70-90 274.2	274.2	500					
	11-Jan-21	8:36	71	78	86								
AM2B	16-Jan-21	8:48	79	86	80								
	22-Jan-21	8:43	73	80	88								
	28-Jan-21	8:47	74	82	90								

Table 3.1: Summary of 1-hour TSP monitoring results

3.2.2 24-hour TSP

Results of 24-hour TSP at the monitoring location AM1 and AM2B are summarised in **Table 3.2**. Graphical plots of the monitoring results are shown in **Appendix G**.

Table 3.2: Summary of 24-hour TSP monitoring results Monitoring Monitoring Start Monitoring Range Action Limit Station Date Time Results (µg/m³) $(\mu g/m^3)$ Level Level $(\mu g/m^3)$ $(\mu g/m^3)$ 05-Jan-21 08:20 29 11-Jan-21 10:20 62 AM1 16-Jan-21 08:30 40 29-62 143.6 260 22-Jan-21 08:25 48 28-Jan-21 08:30 60 05-Jan-21 08:36 60 11-Jan-21 08:34 86 AM2B 60-143 151.1 260 16-Jan-21 08:46 64 22-Jan-21 08:40 87

|--|

No exceedance of 1-hour and 24-hour TSP (Action or Limit Level) was recorded in the reporting period.

3.3 Noise Monitoring

The construction noise monitoring results at the monitoring location NM1A are summarized in **Table 3.3**. Graphical plots of the monitoring data and the station set-up of a free-field measurement are shown in **Appendix G**.

Monitoring Date	Start Time	End Time	L _{eq} (30 mins)*, dB(A)	Limit Level for L _{eq} (dB(A))
05-Jan-21	09:24	09:54	68	
11-Jan-21	09:05	09:35	68	76
22-Jan-21	09:30	10:00	68	75
28-Jan-21	09:36	10:06	68	-

 Table 3.3:
 Summary of noise monitoring results during normal weekdays

Remarks:

* +3dB (A) correction was applied to free-field measurement.

One Action Level exceedance (due to noise related environmental complaint) with no Limit Level exceedance of construction noise, was recorded in the reporting month.

3.4 Landscape and Visual Impact

Landscape and visual impact inspections were conducted as part of the weekly site inspections on 4 and 18 January 2021 for M+ Museum, and 15 and 25 January 2021 for Lyric Theatre Complex (L1 and L2 Contract) during the reporting month. As reviewed by the registered Landscape Architect, no adverse comment on landscape and visual aspects was made during these inspections.

The landscape and visual mitigation measures were implemented during the reporting period. The summary of implementation status of the environmental mitigation measures is provided in **Appendix J**.

4 Site Environmental Management

4.1 Site Inspection

4.1.1 M+ Museum

Construction phase weekly site inspections were carried out on 4, 14, 18 and 25 January 2021. The joint site inspection with IEC, ET, ER and Contractor was held on 25 January 2021. All observations have been recorded in the site inspection checklist and passed to the Contractor together with the appropriate recommended mitigation measures where necessary.

The key observations from the site inspections and associated recommendations are summarized in **Table 4.1**.

Inspection Date	Parameter	Observation / Recommendation	Contactor's Responses / Action(s) Undertaken	Close-out (Date)
04-Jan-21	Air Quality	The contractor was reminded to maintain in high standard of housekeeping to prevent emission of fugitive dust.	The stockpile has been treated and flattened.	07-Jan-21
18-Jan-21	Water Quality	The contractor was reminded to provide mitigation measures to prevent the discharge of wastewater.	The contractor has cleaned up the surrounding area.	25-Jan-21

4.1.2 Lyric Theatre Complex

Construction phase weekly site inspections were carried out on 6, 15, 20 and 25 January 2021 (L1 and L2 Contract). The joint site inspection with IEC, ET, ER and Contractor was held on 20 January 2021. All observations have been recorded in the site inspection checklist and passed to the Contractor together with the appropriate recommended mitigation measures where necessary.

The key observations from the site inspections and associated recommendations are summarized in **Table 4.2 and Table 4.3**.

Inspection Date	Parameter	Observation / Recommendation	Contactor's Responses / Action(s) Undertaken	Close- out (Date)
30-Dec-20	Water Quality	Chemicals were observed on ground without drip tray, the contractor was reminded to provide a drip tray.	The contractor has ensured that the wastewater treatment facilities could function properly.	12-Jan-21
06-Jan-21	Water Quality	Oil leakage was observed on the ground. The contractor was reminded to clear the oil stain.	The contractor has cleaned up the oil stain.	07-Jan-21
06-Jan-21	Water Quality	The contractor was reminded to ensure the wastewater treatment facilities could function properly.	The contractor has ensured that the wastewater treatment facilities could function properly.	12-Jan-21
25-Jan-21	Water Quality	The contractor was reminded to remove the algae in the wastewater treatment facility before its operation.	The contractor has cleared the algae.	26-Jan-21

Table 4.2: Summary of Site Inspections and Recommendations for L1

Table 4.3: Summary of Site Inspections and Recommendations for L2

Inspection Date	Parameter	Observation / Recommendation	Contactor's Responses / Action(s) Undertaken	Close- out (Date)
20-Jan-21	Air Quality	Stockpiles were observed at the steel deck.	The contractor has removed the stockpiles.	24-Jan-21
25-Jan-21	Air Quality	Stockpiles were observed, the contractor was reminded to clean them up regularly.	The contractor has cleaned up the stockpiles.	29-Jan-21
25-Jan-21	Water Quality	The contractor was reminded to reinforce concrete bunding to prevent effluent overflow.	-	Ongoing

4.2 Advice on the Solid and Liquid Waste Management Status

The Contractors have been registered as a chemical waste producer for the Project. Construction and demolition (C&D) material sorting will be carried out on site. A sufficient number of receptacles were available for general refuse collection.

4.2.1 **M+ Museum**

As advised by the Contractor, no inert C&D material was disposed of as public fill to Chai Wan Public Fill Barging Point, Tuen Mun Area 38, Tseung Kwan O Area 137 Public Fill and Tseung Kwan O Area 137 Sorting Facility respectively in the reporting month. 218.0 tonnes of general refuse were disposed of at SENT landfill. 0.0 tonne of metals, 0.0 tonne of paper/cardboard packaging, 0.0 tonne of plastic and 0.0 tonne of timber was collected by recycling contractors in the reporting month. 0.0 tonne of inert C&D material was reused on site. 0.0 tonne of inert C&D material was reused in other projects. 0.0 tonne of chemical waste was collected by licensed contractors in the reporting period.

The cumulative waste generation records for M+ Museum are shown in Appendix I.

4.2.2 Lyric Theatre Complex

As advised by the Contractors (L1 and L2 Contract), 705.84 tonnes and 175.55 tonnes of inert C&D materials were disposed of as public fill to Tseung Kwan O Area 137 Public Fill and Tuen Mun Area 38 Public Fill respectively in the reporting month, while 497.0 tonnes of general refuse were disposed of at SENT and WENT landfill. 835.1 tonnes of metals, 0.0 tonne of paper/cardboard packaging, 0.0 tonne of plastics and 0.0 tonne of timber were collected by recycling contractors in the reporting month. 0.0 tonne of inert C&D material was reused on site. 0.0 tonne of inert C&D materials was reused in other projects and 0.0 tonne of inert C&D material was disposed to sorting facility and 0.0 tonne of chemical waste was collected by licensed contractors in the reporting period.

The actual amounts of different types of waste generated by the activities of construction works at Lyric Theatre Complex in the reporting month are shown in **Appendix I**.

4.3 Status of Environmental Licenses and Permits

The environmental permits, licenses, and/or notifications on environmental protection for this Project which were valid during the period are summarised in **Table 4.4** and **Table 4.5** and **Table 4.6**.

4.3.1 **M+ Museum**

Table 4.4:Status of Environmental Submissions, Licenses and Permits for M+Museum

Permit / License No.	From To		Status	Remarks
/ Notification / Reference No.				
Chemical Waste Producer Regis	stration			
WPN5213-217-G2347-53	04-Oct-18		Valid	
Billing Account Construction W	aste Disposal			
7031993	03-Oct-18		Account Active	
Construction Noise Permit				
GW-RE0762-20	14-Sep-20	6-Mar-21	Valid	
Wastewater Discharge License				
WT-00033363-2019	21-Mar-19	31-Mar-24	Cancelled	Contractor notified EPD on 28 Dec 2020 that the license will be terminated after 31 Dec 2020
Notification under Air Pollution	Control (Constructio	n Dust) Regulation	า	
437339	12-Sep-18		Notified	

4.3.2 Lyric Theatre Complex

l able 4.5: Stat	us of Environme	ntal Submissions	s, Licenses and Peri	mits for L1
Permit / License	Valid	Period	Status	Remarks
No. / Notification / Reference No.	From	То	_	
Chemical Waste Produ	cer Registration			
WPN5213-217- G2347-39	17-Feb-16		Valid	
Billing Account Constr	uction Waste Dispos	al		
7029925	22-Jan-18		Account Active	
Construction Noise Pe	rmit			
GW-RE1056-20	7-Dec-20	27-May-21	Valid	
Wastewater Discharge	License			
WT-00030694-2018	11-Apr-18	30-Apr-23	Valid	
Notification under Air I	Pollution Control (Co	nstruction Dust) Regu	ulation	
429708	16-Jan-18		Notified	

Table 4.5: Status of Environmental Submissions Licenses and Permits for L1

Table 4.6: Status of Environmental Submissions, Licenses and Permits for L2

Permit / License	Valid	Valid Period		Remarks
No. / Notification / Reference No.	From	То	_	
Chemical Waste Produ	cer Registration			
WPN5213-217- G2347-39	17-Feb-16		Valid	This license/ permit is share with L1
Billing Account Constr	uction Waste Dispos	al		
7032787	02-Jan-19		Account Active	
Construction Noise Per	mit			
GW-RE1056-20	7-Dec-20	27-May-21	Valid	This license/ permit is share with L1
Wastewater Discharge	License			
WT-00030694-2018	11-Apr-18	30-Apr-23	Valid	This license/ permit is share with L1
Notification under Air F	Pollution Control (Co	nstruction Dust) Reg	ulation	
448474	27-Aug-19		Notified	

4.4 Recommended Mitigation Measures

The EM&A programme followed the recommended mitigation measures in the EM&A Manual. The EM&A requirements as well as the summary of implementation status of the environmental mitigation measures are provided in **Appendix J**. In particular, the following mitigation measures were brought to attention during the site inspections:

4.4.1 M+ Museum

Air Quality

- Maintain in high standard of housekeeping to prevent emission of fugitive dust.

Water Quality

 Sand/ silt traps and sandbags should be provided to prevent sand/ silt particles from runoff.

4.4.2 Lyric Theatre Complex

<u>L1</u>

Water Quality

- Chemicals should be stored in designated areas which have pollution prevention facilities.
- Drainage facilities should always ensure efficient operation.

<u>L2</u>

Air Quality

- Stockpiles should regularly be cleaned up.

Water Quality

- Earth bunds or barriers should be provided on site to prevent effluent overflow.

5 Compliance with Environmental Permit

The status of the required submission under the EP during the reporting period is summarized in **Table 5.1**.

EP Condition	Submission	Submission Date
Condition 3.4	Monthly EM&A Report for December 2020	14 January 2021

6 Report in Non-compliance, Complaints, Notification of Summons and Successful Prosecutions

6.1 Record on Non-compliance of Action and Limit Levels

One Action Level exceedance (due to noise related environmental complaint) with no Limit Level exceedance of construction noise was recorded in the reporting month. There was no breach of Action or Limit Levels for Air Quality monitoring in the reporting month.

6.2 Record on Environmental Complaints Received

One environmental complaint was received in the reporting month.

WKCD received a complaint from the office of Mr Derek Hung (Yau Tsim Mong District Council Member) on 27 Jan 2021. He mentioned that he received a complaint from the resident of The Harbourside regarding noise nuisance which started at around 7a.m on 27 Jan 2021 (with a video record included) from the construction sites of WKCD. The resident understood that the working hours permitted by the government is 7a.m. to 7p.m., except public holiday. However, the resident would like to seek to reduce the noise nuisance by undertaken the noisy works after 9a.m.

The investigation revealed that the construction noise could be attributable to the Lyric Theatre Complex (L2 Contract) which involved the use of breaker at around 7:10 a.m. on 27 January 2021. Subsequently, specific mitigation measures have been devised and implemented on top of the pre-existing regular noise mitigation measures.

Although the complaint may not be attributable to other Contracts (i.e. M+ Museum and Lyric Theatre Complex (L1 Contract)), noise mitigation measures will continue to be strictly implemented on site. Nevertheless, the contractors are reminded to strengthen the implementation of the recommendations for noise mitigation measures to reduce impacts to the nearby residents.

The cumulative statistics on complaints were provided in Appendix K.

6.3 Record on Notifications of Summons and Successful Prosecution

No notifications of summons or successful prosecutions were received this month. The cumulative statistics on notifications of summons and successful prosecutions were provided in **Appendix K**.

7 Future Key Issues

7.1 Construction Works for the Coming Month(s)

7.1.1 M+ Museum

The major site works for M+ Museum scheduled to be commissioned in the coming month include:

- M+
- 2/F and B2 fit out
- 2/F MEP modification works for PPEL
- Tower UF Solar Panels installation
- Overall area MEP flushing out/ rectifications
- 3F landscaping works rectification
- CSF
 - Defect rectifications
- WKCDA Tower
 - MEP Post-OP installation
 - GF paving
 - Post-OP weather-tight works (indoor)

7.1.2 Lyric Theatre Complex

The major site works for L1 scheduled to be commissioned in the coming month include:

- Excavation and Lateral Support works
- Extended basement structure construction
- Box culvert outfall to Victoria Harbour (PIW & Cofferdam B works)
- Austin Road West Lay-by (PIW Works)
- Cofferdam at the M+ Museum to LTC interface on the waterfront

The major site works for L2 scheduled to be commissioned in the coming month include:

LTC construction

Structure

- Falsework and Formwork Erection
- Reinforcement work
- Concrete work

ABWF & MEP Work

- DSC Cofferdam (Cofferdam A)
 - Remedial work to Existing Puddle Flange in pump cell
 - Construction of valve chamber
 - Lay Pipe bedding
 - Install DCS pipes/valve/fitting

- Construct RC thrust blocks
- Modification to Existing Pump Cell
 - ABWF works
- Extended Basement
 - ABWF & MEP Work
- Vibration Isolation Spring System Installation
 - Install Spring

7.2 Key Issues for the Coming Month

7.2.1 M+ Museum

Key issues to be considered in the coming month include:

- Generation of dust from construction works;
- Noise impact from operating equipment and machinery on-site;
- Generation of site surface runoffs and wastewater from activities on-site;
- Management of stockpiles and slopes, particularly on rainy days;
- Sorting, recycling, storage and disposal of general refuse and construction waste; and
- Management of chemicals and avoidance of oil spillage on-site.

7.2.2 Lyric Theatre Complex

Key issues to be considered in the coming month include:

- Generation of dust from construction works;
- Noise impact from operating equipment and machinery on-site;
- Generation of site surface runoffs and wastewater from activities on-site;
- Management of stockpiles and slopes, particularly on rainy days;
- Sorting, recycling, storage and disposal of general refuse and construction waste; and
- Management of chemicals and avoidance of oil spillage on-site.

7.3 Monitoring Schedule for the Coming Month

The environmental site inspection and environmental monitoring will be continued in the coming month. Impact monitoring for air quality and noise in accordance with the approved EM&A Manual has commenced since 31 October 2015 and 5 March 2016 respectively. The tentative monitoring schedule for the coming month is shown in the **Appendix E**.

8 Conclusions and Recommendations

8.1 Conclusions

The EM&A programme as recommended in the EM&A Manual has been undertaken since the construction of M+ Museum main works commenced on 31 October 2015, and the construction of Lyric Theatre Complex commenced on 1 March 2016.

Monitoring of air quality and noise with respect to the Projects is underway. In particular, the 1-hour TSP, 24-hour TSP, noise level (as L_{eq} , 30 minutes) under monitoring have been checked against established Action and Limit levels. There was no breach of Action and Limit Levels for 1-hour TSP, 24-hour TSP in the reporting month.

One Action Level exceedance (due to noise related environmental complaint) with no Limit Levels exceedance was recorded in the reporting month. No notifications of summons or successful prosecutions were received during the reporting month.

Weekly construction phase site inspections and bi-weekly landscape and visual impact inspections were conducted during the reporting month as required. It was observed that the Contractors had implemented all possible and feasible mitigation measures to mitigate the potential environmental impacts during construction phase works.

8.2 Recommendations

Potential environmental impacts due to the construction activities, including air quality, noise, water quality, waste, landscape and visual, will be monitored or reviewed. The recommended environmental mitigation measures shall be implemented on site and regular inspections as required will be carried out to ensure that the environmental conditions are acceptable.

Figure 1 Site Layout Plan and Monitoring Stations

Appendices

- A. Project Organisation
- B. Tentative Construction Programme
- C. Action and Limit Levels for Construction Phase
- D. Event and Action Plan for Air Quality, Noise, Landscape and Visual Impact
- E. Monitoring Schedule
- F. Calibration Certifications
- G. Graphical Plots of the Monitoring Results
- H. Meteorological Data Extracted from Hong Kong Observatory
- I. Waste Flow table
- J. Environmental Mitigation Measures Implementation Status
- K. Cumulative Statistics on Complaints, Notifications of Summons and Successful Prosecutions

A. Project Organisation

Table A-1: Contact information

Company Name	Role	Name	Telephone	Email
Atkins China Ltd.	Resident Engineer	Ms. Gloria Lui	5506 6361	gloria.lui@atkinsglobal.com
Meinhardt Infrastructure & Environment Limited	Independent Environmental Checker	Ms. Claudine Lee	2859 5409	claudinelee@meinhardt.com.hk
Gammon Construction Limited (M+ Museum)	Environmental Manager	Mr. Andy Leung	9489 0035	andy.leung@gammonconstruction.com
Gammon Construction Limited (L1)	Environmental Manager	Ms. Sammie Chan	9864 4296	sammie.chan@gammonconstruction.com
Gammon Construction Limited (L2)	Environmental Manager	Mr. Ivan Chiu	9416 1664	ivan.chiu@gammonconstruction.com
Mott MacDonald Hong Kong Ltd.	Contractor's Environmental Team Leader	Mr. Thomas Chan	2828 5757	thomas.chan@mottmac.com
West Kowloon Cultural District Authority	Senior Project Manager (Safety, Health and Environment)	Mr. C.K. Wu	5506 9178	ck.wu@wkcda.hk

B. Tentative Construction Programme

M+ Museum

GENER/	Activity	RD	BL Start	BL Finish					0000		(2001		
GENER/					Fcast /	F'cast /	BL	TF	2020			2021		
GENER/					Actual Start	Actual Finish						<u>tr 1</u>		• 2
GENER/							Var		Dec	Jan	ŀ	eb	Mar	p
PROJE	1+ Project Remaining Works @ 10 Sep 2018 Approved Target CMWP	'(Rev_0_	_22 UPD_DD_	31 Dec 20)								 		
	AL & PRELIMINARIES (Remaining Works @ 10 SEP 2018	8)										1	1	
	CT KEY COMPLETION DATES						`					 		
	tion Obligations (*constrained dates for critical paths)											 1 1		
OP1	Podium, M+ Tower & CSF - Obtain OP for the Whole of M+	0		31-Mar-20		24-Dec-20 A	-267					ا لے ا		
OP2	RDE - Obtain OP for H'over to Employer	0		30-May-20		19-Jan-21*	-234	-233	·····	7	7			
PC2	RDE - Obtain PC for Hover to Employer	0		31-Mar-20		19-Feb-21*	-325	-234			• 			
PC1	Podium, M+ Tower - Obtain PC for H'over to Employer	0		30-Jun-20		24-Feb-21*	-239	-234						
	1 SUMMARY CONSTRUCTION PROGRAM	-]		1							· · · · · · · · · · · · · · · · · ·		
	ent & Podium	4.0	40.0 1.40	04 D 40			000	07						
1769	[LoE] POD - MEP Works to Completion of Final Terminations	10	12-Oct-18	04-Dec-19	11-Oct-18 A	12-Jan-21	-330	37				י ר ר י		
1766	[LoE] POD - ABWF Works (Excl. Timber Finishes & Post DP & OP works) [LoE] POD - ABWF (Timber Finishes and other Post DP and OP Works)	27 59	12-Oct-18	31-Mar-20	15-Apr-19 A 09-Mar-20 A	01-Feb-21	-255	-163				· · · · · · · · · · · · · · · · · · · ·		
1768 M+ Tow		58	18-Nov-19	30-Apr-20	03-1v1a1-20 A	09-Mar-21	-261	-248					 	
		0	04 Nov 10	20 0 - 10	15 Oct 10 A	00 lan 01	070	454				, 		
9793 9790	[LoE] TW - MEP Works to Completion of Final Terminations	2	24-Nov-18	30-Sep-19	15-Oct-18 A 30-Oct-18 A	02-Jan-21 07-Jan-21	-376 -317	-154 -154		, 				
9790	[LoE] TW - ABWF Works (Excl. Timber Finishes & Post DP & OP works) [LoE] TW - Shop Front Glazing Podium L3 to M+ Tower 4/F Slab	6 0	05-Nov-18 31-May-19	14-Dec-19 02-Sep-19	27-May-19 A	07-Jan-21 01-Dec-20 A	-372	-134		<u> </u>				
9792	[LoE] TW - ABWF (Timber Finishes and other Post DP and OP Works)	58	18-May-19	28-Oct-19	20-Apr-20 A	01-Dec-20 A 09-Mar-21	-410	18						
CSF Bu		50	10-May-15	20-001-13	20-Api-20 A	05-10141-21	-410	10						
9828		0	20 Oct 19	07 Nov 10	00 Apr 10 A		200							
111129	[LoE] CSF - MEP Works to Completion of Final Terminations [LoE] CSF - ABWF Works (Timber Finishes & other Post OP Works)	0 47	20-Oct-18	27-Nov-19	08-Apr-19 A 14-May-20 A	01-Dec-20 A 24-Feb-21	-300	29			L			
RDE To		47			14-11ay-20 A	24-1 60-21		29						
		17	10 Nov 10	10 Esh 00	10 Nov 10 A	00 1 01	005	170						
9839	[LoE] RDE - ABWF Works	17	10-Nov-18	13-Feb-20	10-Nov-18 A	20-Jan-21	-285	-173						
9838	[LoE] RDE - EWS Facade Works to Weather Tight Stage (incl. Roof & UF) [LoE] RDE - MEP Works to Completion of Final Terminations (L4 to 15MF)	0	27-Dec-18 23-Nov-18	18-Oct-19 06-Feb-20	27-Dec-18 A 07-Jan-19 A	24-Dec-20 A 28-Jan-21	-354 -298	-176						
9836 9840	[LoE] RDE - MC's T&C for FSD Inspection	24 36	23-Nov-18 29-Nov-19	27-Feb-20	21-Nov-19 A	11-Feb-21	-290	40				 		
9841	[LoE] RDE - MEP Works @ 15MF (BoH Plant Rooms)	24	29-Oct-19	06-Feb-20	22-Feb-20 A	28-Jan-21	-298	-186	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	·····		ا لد		!
9794	[LoE] RDE - Post OP Miscellaneous Works	31	20 000 10	0010020	20-Jan-21	19-Feb-21	200	0						
	I Works	0,	<u> </u>	<u> </u>			I							
9814	[LoE] EXT - Along Building Boundaries	4	20-Oct-18	15-Jan-20	20-Oct-18 A	05-Jan-21	-290	43						
	ETION STATUTORY INSPECTIONS & APPROVALS	-	20 000 10	19 0411 20	20 001 1077	00 0011 21	200	-10						
Basem	ent, Podium, M+ Tower & CSF Building											 		
FSD & I	3D							1				 		
FSD2	FSD - FSD MAIN Inspection/Re-Inspection/Remedial Works - BASEMENT	12	20-Dec-19	23-Mar-20	21-May-20 A	19-Jan-21	-251	-163	*****	*****]			
FSD2b	FSD - FSD MAIN Inspection/Re-Inspection/Remedial Works - M+ TOWER	6	03-Jan-20	23-Jan-20	21-May-20 A	19-Jan-21	-295	-163	*****	*****]			
1189	BD - Obtain OP for Basement/Podium/M+/CSF	0	24-Mar-20	30-Mar-20	18-Dec-20 A	24-Dec-20 A	-224					 		
RDE Bu	ıilding											1	1	
FSD & I	3D							1					:	
7484	RDE_FSD - Submit Form 314 & Form 501	0		20-Feb-20		28-Dec-20 A	-258							
RDE_FS	D RDE_FSD - FSD Inspection/Re-Inspection/Remedial Works (layouts & sys	4	28-Feb-20	24-Apr-20	08-Jan-21*	12-Jan-21	-218	-192		×××		 		
RDE_BI	D RDE_BD - Inspection/Re-Inspection	6	25-Apr-20	23-May-20	04-Jan-21*	09-Jan-21	-192	-192		XXX				
7490	RDE_BD - Obtain OP for RDE	10	25-May-20	30-May-20	08-Jan-21	19-Jan-21	-194	-194		××××××	1	 		
	S Base Line MS Current - Struct Works Cur	rent - Faca					ar Ch	art (1	2rd Undete	Date	Rev	ision	Checked	Approved
	V Wilestone Current - MEP Works Crit	ical Works		1ev. U_23			ai Un	art (2	3rd Update	01-Feb-19	CMWP Rev. 0 - Approv			BG
Ga Ga	Current - Other Works Current - ABWF Works Bas	e Line ACT			DD:	31Dec20)				11-Jan-21	CMWP Rev 0_23 - 23rd	Update (dd: 31	Dec 20) AB	BG

L1

Activity ID	Activity Name	Start Date	Finish Date		202		
				Jan 37	Feb 38	Mar 39	Apr 40
L1 Contra	ct for Lyric Theatre Complex (3MF	RD)		51	30		
	re C - Basement	u)					
	e C1 - Essential Basement Structure (Ex	cl. AET Protection & I	Box Culvert)				
	South Basement - Central Area	30-Apr-19 A				■	
		· · ·					· · · · · · · · · · · · · · · · · · ·
SU11000	South Basement - South / West Area	14-Dec-19A	19-Feb-21				
SU12000	South Basement - East Area	27-Feb-20 A	10-Mar-21				
SU13000	North Basement - North Area	12-Jun-19A	09-Apr-21				
SU14000	North Basement - Area 6	01-Jun-19A	11-Feb-21				
Cost Centr	e C3 - AET Protection						
	Wall Beam WE	08-Jun-20 A	09-Jan-21 A				
SU25000	Wall Beam WC	06-May-20 A	08-Jan-21 A				
SU27000	Structure between Wal Beam	19-Aug-20 A	12-Jan-21 A				
SU28000	On-grade Slab between Wall Beam	25-Jan-21 A	27-Feb-21				
Cost Centr	e C4 - Box Culvert						
	South Section	30-Dec-20 A	30-Mar-21				
SU31000	North Section	22-Jun-20 A	30-Mar-21				
SU32000	Austin Road	29-Jun-20 A	05-Aug-21				
Cost Cent	re D - Public Infrastructure Works (PIW)					
SU40000	Drainage Works	20-Mar-18 A	08-Feb-21				
SU41000	Utilities & Road Works	04-Oct-18 A	06-May-21		 		
SU42000	Box Culvert Outfall	24-Nov-20 A	06-Sep-21				1
Cost Cent	re E - Miscellaneous Works				 		
SU50000	Drainage & Sewerage Works	19-Nov-19A	31-May-21				·
SU52000	DCS Outfall	24-Nov-20 A	06-Sep-21				
Remainin Oritical Re Actual W Milestone	ork 20210131-ENV Layout: L1-3MRP (Env)	L1 Contract for	or Lyric Theat	Cultural District Author re Complex & Extende ime (3MRP) - Status as	d Basement	Ga	mmon

L2

TASK filter: L2 UPD: Level 1 Summary.

	Activity	RD	Start	Finish	BL	LM	2020	01.1	01-1	20	21	<u></u>	0. 1	2	2022			4	2023		1 0	20
					VAR	VAR	Qtr 2 Qtr 3 A J J A S	Qtr 4	Qtr 1	Qtr 2	Qtr 3	Qtr 4	Qtr 1	Qtr 2	2 Qtr 3	3 Qtr 4		Qtr 2	2 Qtr	3 Qtr	Qtr	1
		961	20-Jul-19 A	13-Apr-24	-56	0	A JJJAB		JHM		JAS		JITN		J J J A		JIL		JJA		DJF	
				· · ·																		
NERAL &	& PRELIMINARIES	961	20-Jul-19 A	13-Apr-24	-56	0																
ontract Sig	gnificant Dates	844	20-Jul-19 A	13-Apr-24	-77	0																
	ent & Completion Dates	844	20-Jul-19 A	13-Apr-24	-77	0			+ -				+					+				
Section Keyda		844	21-Dec-21	13-Apr-24	-77	0		!!							$-\frac{1}{2}-\frac{1}{2}-\frac{1}{2}-\frac{1}{2}-\frac{1}{2}$							
KD05	PC for HO of the Remaining Works for M+ Promenade South	0		21-Dec-21*	-91	-29					Ø	∇						+				
KD05A	Complete Required Pedestrian Access Corridor and Floor Finishes at AURW	0		13-May-22*	0	0								⊗								
KD05B	Complete Required Pedestrian Access Corridor & associated top slab at Avenue Level [if instructed]	0		13-May-22*	0	0																
KD05C	PC for HO of Landscape Area at Avenue & Pedestrian level between P31 & P34 [if instructed]	0		13-May-22*	0	0								V	$-\frac{1}{1}$ $-\frac{1}{1}$ $-\frac{1}{1}$ $-\frac{1}{1}$ $-\frac{1}{1}$ $-\frac{1}{1}$							
KD08	PC for HO Loc ICT/Risers Rms to APC for ICT Sys Instn Wrks	0		06-Jan-24*	-68	0			+ -						-+		+ -			Ø		
KD10	PC for HO of ASDA, Lyric Theatre Promenade South to Authority	0		06-Jan-24*	-47	0														Ø		
KD09	PC for HO of RDE areas for Tenancy Fit-out Wrks	0		06-Jan-24*	-68	0														Ø	7	L
KD11	PC for HO of Extended Basement for HO to Authority & HO of Carriageway to Relevant Govt Authority	0		13-Mar-24*	-74	0							+								Ø	$\mathbf{\nabla}$
KD07	PRACTICAL COMPLETION for C'Way 3A (M+ Day 2 Works)	0		13-Apr-24*	-77	0							+								Ø	
KD13	PRACTICAL COMPLETION for Lyric Theatre, Extended Basement & C'Way 3B	0		13-Apr-24*	-77	0							+								Ø	
Stage Keydate		679	20-Jul-19 A	09-Mar-24	-73	0							†				+!-	+				
KD01	Compl Dsgn Coor/Subm and obtn NNO for L1 Contr Bsmt constn wrks	0		20-Jul-19 A	0	0							† <u>-</u>				+	+				
KD06	PC for Fountain Related Plantroom(s)	0		30-Apr-22*	0	0							† <u>-</u>					+				
KD03	OBTAIN OP for Lyric Theatre & Extended Basement	0		06-Jan-24*	-68	0							†				+i-			⊘	7	H = -1 1 1 1 1
KD14	Complete U/G road and the associated plantrooms at Zone 3A&3B Integrated Basement	0		22-Jan-24*	-69	0							+		- 4 1 4 -					Ø	▼	
KD02	Obtain BA14 Acknowledge from BD for M+ Day2 A&A Works	0		09-Mar-24*	-73	0															Ø	$\mathbf{\nabla}$
ımmarv P	Program - Level 1	961	06-May-20 A	13-Apr-24	-56	0																
JM10	[LoE] CC_B Lyric Theatre - Substructure RC Structural Concrete	180	06-May-20 A	31-Aug-21	-71	-5																
JM30	[LoE] CC_H - Vibration Isolation Spring System Remaining as of 30Apr2020 (AS=30Sep19)	38	09-May-20 A	22-Feb-21	-40	-6																
JM25	[LoE] CC_E - DCS Cofferdam A Works & Obtain BA14	427	23-Jun-20 A	28-Jul-22	-67	-25			<u></u>	<u></u>		<u>i_i_</u>	<u></u>	<u></u>	<u></u>							
JM20	[LoE] CC_C - LT EVA1 & EVA2	797	11-Jan-21	14-Dec-23	-55	-7						****								<u></u>	a -	
JM26	[LoE] CC_F - Mods to Existing Pump Cell Civil & MEP Works (Excl. Options 2 Add. Pumps)	200	25-Jan-21	26-Oct-21	-39	-7												+	i+			
JM23	[LoE] CC_C - Artist SQ. Bridge (ASB_1/2/3; ASB_3; P31_2; P34_2; AS_1/2; ASB-6/P31 EVA)	738	01-Feb-21	27-Oct-23	20	0																
UM24	[LoE] CC_D - Remaining Works for M+ Promenade South	232	19-Feb-21	21-Dec-21	-72	-25						L! 		-ll- ll- ll-	- 4 1 4 -			- Ll L l l l l	! #!	<u> </u>		1 - 1 1 - 1
JM14	[LoE] CC_B Lyric Theatre - ABWF Work Including Theatres (Excl. Punch List Works)	843	04-Mar-21	09-Jan-24	-56	0							 	<u></u>			<u> </u>		<u></u>	<u></u> !		
JM22	[LoE] CC_C - HoR Development (P32-1, P29-1, P31-EVA)	636	30-Mar-21	05-Aug-23	59	0				<u></u>		<u></u>	<u>+:</u> -					<u></u>				
JM27	[LoE] CC_G Extended Basement - ABWF Works (Incl. Deferred Areas Under Deck)	623	02-Apr-21	16-May-23	-46	0							+ii	-iii- 								
JM31	[LoE] CC_I Carriageway 3B - ABWF Works	488	02-Apr-21	23-Nov-22	-23	-1									- +			+				
UM15	[LoE] CC_B Lyric Theatre - MEP 1st to Final Fix (Excl. TH SYS, TH Non-FSD in Walls, etc.)	689	19-Apr-21	19-Aug-23	-68	0			·····				+									
JM35	[LoE] CC_J - M+ Day 2 Works (excl. connections to M+ and SZ_1 FS Changeover)	727	19-Apr-21	05-Oct-23	-52	-3																
UM11	[LoE] CC_B Lyric Theatre - Superstructure RC Structural Concrete	391	23-Apr-21	10-Oct-22	-53	0						******										
JM28	[LoE] CC_G Extended Basement - MEP 1st Fix to Final Fix (Incl. Deferred Areas Under Deck)	581	03-May-21	24-Apr-23	-46	0																
JM32	[LoE] CC_I Carriageway 3B - MEP Works (1st Fix to Final Fix)	367	26-Jun-21	21-Sep-22	-16	-1																
UM41	[LoE] CC_B Lyric Theatre - Structural Steel by CSD	395	05-Aug-21	12-Jan-23	-59	0																
JM40	[LoE] CC_N Lifts & Escalators	510	23-Aug-21	20-May-23	-18	0								+ + +								
JM20	[LoE] CC_C - LT Promenade & Pocket Square Bridge	550	01-Sep-21	09-Sep-23	-25	-18														- 		
JM12	[LoE] CC_B Lyric Theatre - EWS Weather Tight Type	296	22-Nov-21	19-Dec-22	-64	-16									-+		-	+				
JM17	[LoE] CC_B Lyric Theatre - Theatre Specialist Systems Incl. T&C, Precom. & Commissioning	639	09-Feb-22	13-Apr-24	-56	0	· · · · · · · · · · ·												<u></u>			. <u>.</u>
JM13	[LoE] CC_B Lyric Theatre - EWS Non-Weather Tight Type 4.1 & 4.3	281	22-Jun-22	04-Jul-23	-46	-3								÷								
JM29	[LoE] CC_G Extended Basement - T&C	258	30-Jun-22	16-May-23	-46	0							<u> </u>				<u></u>	+				
JM39	[LoE] CC_K - Water Main at Promenade	150	30-Jul-22	14-Feb-23	-22	-15												+				
JM42	[LoE] CC_E - DCS Outside of Cofferdam A Works (Connect DIA1,600 & Remove Temp O'fall)	64	30-Jul-22	26-Oct-22	-14	-7																·
JM33	[LoE] CC_I Underpass 3B & Associated Area - T&C	129	02-Aug-22	04-Jan-23	-42	-6						Ll								<u>_</u>		
JM16	[LoE] CC_B Lyric Theatre - T&C (Excluding Non-FSD ELV & Electrical)	141	18-Mar-23	07-Sep-23	-56	0																
JM18	[LoE] CC_B Lyric Theatre, EB, C'Way 3B - Stat. Insp. & Approval (from Form 314/501 to BD OP)	98	08-Sep-23	06-Jan-24	-56	0																
	[LoE] CC_J - M+ Day 2 FS Changeover in 3A SZ_1, Connections to M+, Integrated T&C [LoE] CC_J Carriageway 3A - Stat. Insp. & Approvals (from Form 314A to BA14)	99	22-Sep-23	22-Jan-24 09-Mar-24	-56 -56	0							+									<u>k</u>
UM38 UM34	[LUE] CC_J Callageway SA - Stat. Insp. & Applovals (1011 F0111 S14A to DA14)	56	28-Dec-23	09-11/12/24	-50	0		1 1	1 1 1		1 1 1	1.1		1 1 1							- ! !	1 1

Page 1 / 1

C. Action and Limit Levels for Construction Phase

Air Quality

The Action and Limit Levels for 1-hour and 24-hour TSP for the monitoring station are presented in following tables:

Table C-1: Action and Limit Levels for 1-hour TSP						
Monitoring Station Ac		Action Level (mg/m ³)	Limit Level (mg/m ³)			
AM	1	273.7	500			
AM2	2B	274.2	500			

Table C-2: Action and Limit Levels for 24-hour TSP

Monitoring Station	Action Level (µg/m³)	Limit Level (µg/m³)
AM1	143.6	260
AM2B	151.1	260

<u>Noise</u>

The Action and Limit Levels for Noise for the monitoring stations are presented in following table:

Table C-3: Action and Limit Levels for Construction Noise

Time Period & Monitoring Locations	Action Level	Limit Level
NM1A		
0700-1900 hours on normal weekdays	When one valid documented complaint is received.	75 dB(A)

D. Event and Action Plan for Air Quality, Noise, Landscape and Visual Impact

Air Quality

In case the Action and Limit Levels are not complied during construction stage, the following Event and Action Plan should be followed:

Event	Action							
	ET	IEC	WKCDA	Contractor				
Action Level								
1. Exceedance for one sample	 Identify source, investigate the causes of exceedance and propose remedial measures; Inform IEC and WKCDA; Repeat measurement to confirm finding; Increase monitoring frequency to daily. 	 Check monitoring data submitted by ET; Check Contractor's working method. 	1. Notify Contractor	 Rectify any unacceptable practice; Amend working methods if appropriate. 				
2. Exceedance for two or more consecutive samples	 Identify source; Inform IEC and WKCDA; Advise the WKCDA on the effectiveness of the proposed remedial measures; Repeat measurements to confirm findings; Increase monitoring frequency to daily; Discuss with IEC and Contractor on remedial actions required; If exceedance continues, arrange meeting with IEC and WKCDA; If exceedance stops, cease additional monitoring. 	 Check monitoring data submitted by ET; Check Contractor's working method; Discuss with ET and Contractor on possible remedial measures; Advise the ET on the effectiveness of the proposed remedial measures; Monitor the implementation of remedial measures. 		 Submit proposals for remedial to WKCDA within three working days of notification; Implement the agreed proposals; Amend proposal if appropriate. 				
Limit Level	inoimoinig.							
1. Exceedance for one sample	 Identify source, investigate the causes of exceedance and propose remedial measures; Inform WKCDA, Contractor and EPD; Repeat measurement to confirm finding; Increase monitoring frequency to daily; Assess effectiveness of Contractor's remedial actions and keep IEC, EDD and WKCDA 	 Check Contractor's working method; Discuss with ET and Contractor on possible premedial measures; Advise the WKCDA on the effectiveness of the proposed remedial 		action to avoid further exceedance;				

remedial measures.

EPD and WKCDA

informed of the results.

Event

Action

two or more consecutive	 Notify IEC, WKCDA, Contractor and EPD; Identify source; 	 Check monitoring data submitted by ET; Check Contractor's 		1. Take immediate action to avoid further exceedance;
samples	 Repeat measurement to confirm findings; Increase monitoring frequency to daily; Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented; Arrange meeting with IEC and WKCDA to discuss the remedial actions to be taken; Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and WKCDA informed of the results; If exceedance stops, cease additional monitoring. 	 Discuss amongst WKCDA, ET, and Contractor on the potentia remedial actions; Review Contractor's remedial actions whenever necessary to assure their effectiveness and advise the WKCDA accordingly; Monitor the implementation of remedial measures 	 In consolidation with the IEC, agree liwith the Contractor on the remedial measures to be implemented; Ensure remedial 	 Submit proposals for remedial actions to IEC within three working days of notification; Implement the agreed proposals; Resubmit proposals if problem still not under control; Stop the relevant portion of works as determined by the WKCDA until the exceedance is abated.

Construction Noise

In case the Action and Limit Levels are not complied during construction stage, the following Event and Action Plan should be followed:

Event	Action								
	ET	IEC	WKCDA	Contractor					
Action Level	 Notify WKCDA, IEC and Contractor; Carry out investigation; Report the results of investigation to the IEC, WKCDA and Contractor; Discuss with the IEC and Contractor on remedial measures required; Increase monitoring frequency to check mitigation effectiveness. 	investigation results	in writing; 2. Notify Contractor; 3. In consolidation	mitigation proposals to IEC and WKCDA;					
Limit Level	 Inform IEC, WKCDA, Contractor and EPD; Repeat measurements to confirm findings; Increase monitoring frequency; Identify source and investigate the cause of exceedance; Carry out analysis of Contractor's working procedures; Discuss with the IEC, Contractor and WKCDA on remedial measures required; Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and WKCDA informed of the results; If exceedance stops, cease additional monitoring. 	 Discuss amongst WKCDA, ET, and Contractor on the potentia remedial actions; Review Contractor's remedial actions whenever necessary to assure their effectiveness and advise the WKCDA accordingly. 	 lin writing; Notify Contractor; In consolidation with the IEC, agree with the Contractor on the remedial measures to be implemented; Supervise the implementation of remedial measures; If exceedance continues, consider stopping the Contractor to 	 action to avoid further exceedance; 2. Submit proposals for remedial actions to IEC and WKCDA within 3 working days of notification; 3. Implement the agreed proposals; 4. Submit further proposal if problem still not under control; 5. Stop the relevant portion of works as instructed by the WKCDA until the exceedance is abated. 					

 Table D-2:
 Event and Action Plan for Construction Noise

Landscape and Visual Impact

In case of non-compliance of landscape and visual impacts, procedures in accordance with the Event and Action Plan should be followed:

Event	Action									
	ET	IEC	WKCDA	Contractor						
Design Check	1. Design check to make sure the design complies with all the proposed mitigation measures in the EIA report;	 Check report submitted by ET; Recommend remedial design if necessary. 	1. Undertake remedial design if necessary.	-						
	2. Prepare and submit report.									
Non-conformity on one occasion	1. Identify source of non- conformity;	1. Check and verify source of non-conformity;	 Notify Contractor; Ensure remedial 	1. Amend working method as necessary;						
	2. Report to IEC and WKCDA;	2. Discuss remedial actions with ET and	actions are properly 2. Recti	2. Rectify damage and undertake necessary						
	3. Discuss remedial	Contractor;		replacement and						
	actions with IEC, WKCDA and Contractor;	effectiveness of proposed		remedial actions.						
	4. Monitor remedial actions until rectification	remedial actions; 4. Check implementation								
	has been completed.	of remedial actions.								
Repeated non conformity	-1. Identify source of non- conformity;	1. Check and verify source of non-conformity;	 Notify Contractor; Ensure remedial 	1. Amend working method as necessary;						
	2. Report to IEC and WKCDA;	2. Check Contractor's working method;	actions are properly implemented.	2. Rectify damage and undertake necessary						
	 Increase monitoring frequency; 	3. Discuss remedial actions with ET and		replacement and remedial actions.						
	4. Discuss remedial	Contractor;								
	actions with IEC, WKCDA and Contractor;	effectiveness of proposed								
	5. Monitor remedial	remedial actions;								
	actions until rectification has been completed;	5. Supervise implementation of								
	6. If non-conformity rectified, reduce monitoring frequency back to normal.	remedial actions.								

Table D-3: Event and Action Plan for Landscape and Visual Impact

E. Monitoring Schedule

January 2021

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
27	28	29	30	31	1	2
3	4 M+ Landscape & Visual Inspection	5 AM1, AM2B - 24hrTSP, 1hr TSP x3 NM1A - Noise Impact Monitoring	6	7	8	9
10	11 AM1, AM2B - 24hrTSP, 1hr TSP x3 NM1A - Noise Impact Monitoring	12	13	14	15 Lyric Landscape & Visual Inspection	16 AM1, AM2B - 24hrTSP, 1hr TSP x3
17	18 M+ Landscape & Visual Inspection	19	20	21	22 AM1, AM2B - 24hrTSP, 1hr TSP x3 NM1A - Noise Impact Monitoring	23
24	25 Lyric Landscape & Visual Inspection	26	27	28 AM1, AM2B - 24hrTSP, 1hr TSP x3 NM1A - Noise Impact Monitoring	29	30
31		Notes: AM1 - International Comr AM2B - 1st Floor of Gam NM1A - International Cor	mon's Site Office			

February 2021

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
31	1	2	3 AM1, AM2B - 24hrTSP, 1hr TSP x3 NM1A - Noise Impact Monitoring	4	5	6
7	8	9 AM1, AM2B - 24hrTSP, 1hr TSP x3 NM1A - Noise Impact Monitoring	10	11 AM1, AM2B - 24hrTSP, 1hr TSP x3	12	13
14	15	16	17 AM1, AM2B - 24hrTSP, 1hr TSP x3 NM1A - Noise Impact Monitoring	18	19	20
21	22	23 AM1, AM2B - 24hrTSP, 1hr TSP x3 NM1A - Noise Impact Monitoring	24	25	26	27
28	1	2	3	4	5	6
7	8	Notes: AM1 - International Commerce Centre (ICC) AM2B - 1st Floor of Gammon's Site Office NM1A - International Commerce Centre (ICC)				

F. Calibration Certifications

32

	High-Volume TSP Sampler 5-Point Calibration Record		
Location Calibrated by Date	: : :	AM1(ICC) K.T.Ho 20/11/2020	
<u>Sampler</u> Model Serial Number	:	TE-5170 S/N 0767	
Calibration Orifice and Standard C Serial Number Service Date Slope (m) Intercept (b) Correlation Coefficient(r)	Calibration : : : :	n Relationship 2454 18 February 2020 2.07134 -0.04091 0.99999	
<u>Standard Condition</u> Pstd (hpa) Tstd (K)	:	1013 298.18	
<u>Calibration Condition</u> Pa (hpa) Ta(K)	:	1018 298	

Resistance Plate		dH [green liquid]	Z	X=Qstd	IC	Y
		(inch water)		(cubic meter/min)	(chart)	(corrected)
1	18 holes	11.4	3.385	1.654	60	60.15
2	13 holes	8.8	2.974	1.455	50	50.12
3	10 holes	6.6	2.575	1.263	42	42.10
4	7 holes	4.6	2.150	1.058	30	30.07
5	5 holes	2.8	1.677	0.830	18	18.04

Notes:Z=SQRT{dH(Pa/Pstd)(Tstd/Ta)}, X=Z/m-b, Y(Corrected Flow)=IC*{SQRT(Pa/Pstd)(Tstd/Ta)}

Sampler Calibration Relationship

Slope(m):51.013

Intercept(b): -23.766

Correlation Coefficient(r): 0.9988

Checked by: Magnum Fan

Date: 23/11/2020

<u>High-Volume TSP Sampler</u> <u>5-Point Calibration Record</u>

Location	:	AM2B (Gammon Office)
Calibrated by	:	K.T.Ho
Date	:	20/11/2020
<u>Sampler</u> Model Serial Number	:	TE-5170 S/N 8919

Calibration Orifice and Standard Calibration Relationship Serial Number 2454

Serial Number		2454
Service Date	:	18 February 2020
Slope (m)	:	2.07134
Intercept (b)	:	-0.04091
Correlation Coefficient(r)	:	0.99999

<u>Standard Condition</u> Pstd (hpa) Tstd (K)	:	1013 298.18
Calibration Condition Pa (hpa) Ta(K)	: :	1018 298

Resistance Plate dH		dH [green liquid]	Ζ	X=Qstd	IC	Y
		(inch water)		(cubic meter/min)	(chart)	(corrected)
1	18 holes	11.6	3.414	1.668	62	62.15
2	13 holes	9.4	3.074	1.504	50	50.12
3	10 holes	7.2	2.690	1.318	38	38.09
4	7 holes	4.6	2.150	1.058	28	28.07
5	5 holes	3.0	1.736	0.858	16	16.04

Notes:Z=SQRT{dH(Pa/Pstd)(Tstd/Ta)}, X=Z/m-b, Y(Corrected Flow)=IC*{SQRT(Pa/Pstd)(Tstd/Ta)}

Sampler Calibration Relationship

Slope(m):<u>54.842</u>

Intercept(b):-31.366

Correlation Coefficient(r): 0.9941

1 Checked by: Magnum Fan

Date: 23/11/2020

× ··		
Location	:	AM1 (ICC)
Calibrated by	:	К. Т. Но
Date	:	20/01/2021
<u>Sampler</u>		
Model	:	TE-5170
Serial Number	:	S/N 0767
Calibration Orifice and Stand	lard Calibration	n Relationship
Serial Number	:	2454
Service Date	:	18 February 2020
Slope (m)	:	2.07134
Intercept (b)	:	-0.04091
Correlation Coefficient(r)	:	0.99999
Standard Condition		
Pstd (hpa)	:	1013
Tstd (K)	:	298.18
		_,
Calibration Condition		
Pa (hpa)	:	1019
Ta(K)		293
1 ((11)	•	275

Resi	stance Plate	dH [green liquid]	Z	X=Qstd	IC	Y
		(inch water)		(cubic meter/min)	(chart)	(corrected)
1	18 holes	11.2	3.385	1.654	58	58.67
2	13 holes	8.2	2.896	1.418	50	50.57
3	10 holes	6.2	2.519	1.236	42	42.48
4	7 holes	4.4	2.122	1.044	32	32.37
5	5 holes	2.6	1.631	0.807	20	20.23

High-Volume TSP Sampler 5-Point Calibration Record

Notes:Z=SQRT{dH(Pa/Pstd)(Tstd/Ta)}, X=Z/m-b, Y(Corrected Flow)=IC*{SQRT(Pa/Pstd)(Tstd/Ta)}

Sampler Calibration Relationship (Linear Regression)

Slope(m):<u>45.943</u>

Intercept(b):-15.729

Correlation Coefficient(r): 0.9960

Checked by: Magnum Fan

Date: 25/01/2021

High-Volume TSP Sampler 5-Point Calibration Record

Location Calibrated by Date	:	AM2B(Gammon Office) K. T. Ho 20/01/2021
<u>Sampler</u> Model	:	TE-5170
Serial Number	•	S/N 8919
Calibration Orifice and Standar	d Calibrat	ion Relationship
Serial Number	:	2454
Service Date	:	18 February 2020
Slope (m)	:	2.07134
Intercept (b)	:	-0.04091
Correlation Coefficient(r)	:	0.99999
Standard Condition		
Pstd (hpa)	:	1013
Tstd (K)	:	298.18
Calibration Condition		
Pa (hpa)	:	1019
Ta(K)	:	293

Resi	stance Plate	dH [green liquid]	Z	X=Qstd	IC	Y
		(inch water)		(cubic meter/min)	(chart)	(corrected)
1	18 holes	12.4	3.562	1.739	60	60.69
2	13 holes	9.0	3.034	1.485	54	54.62
3	10 holes	6.4	2.559	1.255	45	45.52
4	7 holes	4.2	2.073	1.021	32	32.37
5	5 holes	2.2	1.500	0.744	22	22.25

Notes:Z=SQRT{dH(Pa/Pstd)(Tstd/Ta)}, X=Z/m-b, Y(Corrected Flow)=IC*{SQRT(Pa/Pstd)(Tstd/Ta)}

Sampler Calibration Relationship (Linear Regression)

Slope(m):<u>40.342</u>

Intercept(b):-7.287

Correlation Coefficient(r): 0.9919

Checked by: Magnum Fan

Date: 25/01/2021

LIE	and a state of the	and the fam.		7			D	ALIBRATION UE DATE: ary 18, 202
Enviro		tifu	cate	A CONTRACTOR OF A CONTRACTOR A CONTR			ation	
Operator:		, 2020		neter S/N: ·	438320	Ta:	294 753.1	"K mm Hg
Calibration	Model #:	Vol. Init	Vol. Final	ΔVol.	ΔTime	ΔP	Δн	1
	Run	(m3)	(m3)	(m3)	(min)	(mm Hg)	(in H2O)	
	1	1	2	1	1,4190	3.2	2.00	10.00
	2	3	4	1	1.0100	6.4	5.00	
		7			0.8600	8.8	5.50	
	5	9			0.7110	12.7	8.00	10
			1	Data Tabula	tion			
	(march	and and and	Jah (Pa	V Tstd		-	JAH(Ta/Pa)	
	Vsta	Qstd	and the second second		100	Qa (x-anis)	(y-axis)	
	(m3)	(x-axis) 0.7048	(ya) 1.41		Va 0.9958	0.7017	0.8836	
	0.9959		and the second se		0.9915	0.9817	1.2496	
	0.9939				0.9895	1.0970	1.3971 1.4553	
	0.9927		and the second se		0.9883	1.1497	1.7672	
	0.9875	- 1360 m				m=	1.29704	
	QSTD	b			QA	b× r=	-0.02551 0.99999	
		1 1	- 0.55	Calculatio	05			
	Vate	- AVoitiPa-0	P)/Pstd)(Tstd/			AVOIIIPa-A	Py/Pa)	
		= Vstd/ATim	ic		and the second s	Va/&Time	11.2. A.	
	1	-	For subseq	puent flow ra	te calculatio	11	11	
	Qstd	= 1/m ((Ja	H Pstd Ta	()))))	Qə=	1/m((10	н(та/Ра))-6)	-
		ns Condition	15	1		817.1	LIBRATION	
	std: 298.1	5 °K O mm Hg			The second	STOCKED BEE	No. of Concession, Name	out name Tologa
ZH call ZP root	arator manon smeter mano al absolute te al barometric	Key neter reading meter readin mperature (ig (mm Hg) K)		40 Code Appendia Determina	e of Federal B to Part 5 ation of 5us	Annual recalibration Regulations Part 0, Reference Metho pended Particular sere, 9.2.17, page	50 to 51, hod for the te Matter in
Tisch Environmental 145 South Miami Av	inc.						14	www.tisch fOLL FREE: (\$77)2 FAX: (\$13)

ALS Technichem (HK) Pty Ltd

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

SUB-CONTRACTING REPORT

CONTACT	: MR K.W. FAN	WORK ORDER HK2045301
CLIENT	ENVIROTECH SERVICES CO.	
ADDRESS	: RM113, 1/F, MY LOFT, 9 HOI WING ROAD, TUEN MUN, N.T. HONG KONG	SUB-BATCH:1DATE RECEIVED:24-NOV-2020DATE OF ISSUE:30-NOV-2020
PROJECT	:	NO. OF SAMPLES : 1 CLIENT ORDER :

General Comments

- Sample(s) was/ were submitted by client. Sample(s) arrived laboratory in ambient condition. The result(s) related only to the item(s) tested.
- Sample information (Project name, Sample ID, Sampling date/time, etc., if any) is provided by client.
- Calibration was subcontracted to and analysed by Action United Enviro Services.

Signatories

This document has been signed by those names that appear on this report and are the authorised signatories

Signatories	Position
Richard Fung	Managing Director

This is the Final Report and supersedes any preliminary report with this batch number.

All pages of this report have been checked and approved for release.

ALS Technichem (HK) Pty Ltd Part of the ALS Laboratory Group

11/F. Chung Shun Knitting Centre 1 - 3 Wing Yip Street Kwai Chung N.T. Hong Kong Tel. +852 2610 1044 Fax. +852 2610 2021 www.alsglobal.com WORK ORDER

: HK2045301

SUB-BATCH CLIENT PROJECT

[:] 1 : ENVIROTECH SERVICES CO. : ----

ALS Lab ID	Client's Sample ID	Sample Type	Sample Date	External Lab Report No.
HK2045301-001	S/N: 245833	Equipments	24-Nov-2020	S/N: 245833

Equipment Verification Report (TSP)

Equipment Calibrated:

Туре:	Laser Dust monitor	
Manufacturer:	Sibata LD-3B	
Serial No.	245833	
Equipment Ref:	Nil	
Job Order	HK2045301	

Standard Equipment:

Standard Equipment:	Higher Volume Sampler (TSP)
Location & Location ID:	AUES office (calibration room)
Equipment Ref:	HVS 018
Last Calibration Date:	8 October 2020

Equipment Verification Results:

Verification Date:

26 November 2020

Hour	Time	Mean Temp °C	Mean Pressure (hPa)	Concentration in mg/m ³ (Standard Equipment)	Total Count (Calibrated Equipment)	Count/Minute (Total Count/min)
2hr01min	09:18 ~ 11:19	24.0	1019.3	0.041	4525	37.3
2hr	11:22 ~ 13:22	24.0	1019.3	0.034	3430	28.6
2hr01min	13:25 ~ 15:26	24.0	1019.3	0.044	5196	42.9

Linear Regression of Y or X

Slope (K-factor):	0.0011
Correlation Coefficient	0.9932
Date of Issue	30 November 2020

Remarks:

1. Strong Correlation (R>0.8)

2. Factor 0.0011 should be applied for TSP monitoring

*If R<0.5, repair or re-verification is required for the equipment

Operator :	Fai So	Signature :	Ja	Date :	30 November 2020
			1		
QC Reviewer :	Ben Tam	Signature :	4	_ Date : _	30 November 2020

ALS Technichem (HK) Pty Ltd

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

SUB-CONTRACTING REPORT

CONTACT	: MR K.W. FAN	WORK ORDER HK2045304
CLIENT	ENVIROTECH SERVICES CO.	
ADDRESS	: RM113, 1/F, MY LOFT, 9 HOI WING ROAD, TUEN MUN, N.T. HONG KONG	SUB-BATCH: 1DATE RECEIVED: 24-NOV-2020DATE OF ISSUE: 30-NOV-2020
PROJECT	:	NO. OF SAMPLES : 1 CLIENT ORDER :

General Comments

- Sample(s) was/ were submitted by client. Sample(s) arrived laboratory in ambient condition. The result(s) related only to the item(s) tested.
- Sample information (Project name, Sample ID, Sampling date/time, etc., if any) is provided by client.
- Calibration was subcontracted to and analysed by Action United Enviro Services.

Signatories

This document has been signed by those names that appear on this report and are the authorised signatories

Signatories	Position	
Richard Formy		
Richard Fung	Managing Director	

This is the Final Report and supersedes any preliminary report with this batch number.

All pages of this report have been checked and approved for release.

ALS Technichem (HK) Pty Ltd Part of the ALS Laboratory Group

11/F. Chung Shun Knitting Centre 1 - 3 Wing Yip Street Kwai Chung N.T. Hong Kong Tel. +852 2610 1044 Fax. +852 2610 2021 www.alsglobal.com WORK ORDER : I

: HK2045304

SUB-BATCH:CLIENT:PROJECT:----

ALS Lab ID	Client's Sample ID	Sample Type	Sample Date	External Lab Report No.
HK2045304-001	S/N: 276015	Equipments	24-Nov-2020	S/N: 276015

Equipment Verification Report (TSP)

Equipment Calibrated:

Туре:	Laser Dust monitor
Manufacturer:	Sibata LD-3B
Serial No.	276015
Equipment Ref:	Nil
Job Order	HK2045304

Standard Equipment:

Standard Equipment:	Higher Volume Sampler (TSP)
Location & Location ID:	AUES office (calibration room)
Equipment Ref:	HVS 018
Last Calibration Date:	8 October 2020

Equipment Verification Results:

Verification Date:

26 November 2020

Hour	Time	Mean Temp °C	Mean Pressure (hPa)	Concentration in mg/m ³ (Standard Equipment)	Total Count (Calibrated Equipment)	Count/Minute (Total Count/min)
2hr01min	09:18 ~ 11:19	24.0	1019.3	0.041	4541	37.5
2hr	11:22 ~ 13:22	24.0	1019.3	0.034	3443	28.7
2hr01min	13:25 ~ 15:26	24.0	1019.3	0.044	5211	43.0

Linear Regression of Y or X	
Slope (K-factor):	0.0011
Correlation Coefficient	0.9933
Date of Issue	30 November 2020

Remarks:

1. Strong Correlation (R>0.8)

Factor 0.0011 should be applied for TSP monitoring 2.

*If R<0.5, repair or re-verification is required for the equipment

Operator :	Fai So	Signature :	Ja	Date :	30 November 2020
QC Reviewer :	Ben Tam	Signature :	K	_ Date : _	30 November 2020

Sun Creation Engineering Limited

Calibration & Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.: C203822 證書編號

TEM TESTED	/送檢項	目 (Job No. / 序引編號: IC2	0-1389) Date		/山内//山田· 20 June 202
TEM TESTED			Date Date	of Receipt	:/ 收件日期: 30 June 202
Description / 儀器	器名稱 :	Sound Level Meter			
Manufacturer / 製	造商 :	Rion			
Model No. / 型號		: NL-52			*
Serial No. / 編號		: 01010406			
Supplied By / 委i	託者	Envirotech Services Co.			*
		Room 113, 1/F, My Loft, 9 New Territories, Hong Kon		Mun,	
TEST CONDIT	IONS / 溴	11.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1			
Temperature / 溫	度:	$(23 \pm 2)^{\circ}C$	Relative H	umidity /	相對濕度 : (50±25)%
Line Voltage / 霍					
TEST SPECIFIC	CATION	IS / 測試規範	•		
Calibration check	k				
DATE OF TEST	Γ/测試E	日期 : 9 July 2020			
and the second se					
TEST RESULT:	S/測試約	吉果			
The results apply	to the pa	吉果 rticular unit-under-test only. manufacturer's specification.			
The results do no	to the pa	rticular unit-under-test only.			
The results apply The results do no The results are de The test equipme - The Governme - Agilent Techno - Fluke Everett S	to the pa ot exceed etailed in ent used for ont of The ologies / I Service Co	rticular unit-under-test only. manufacturer's specification. the subsequent page(s). or calibration are traceable to Na Hong Kong Special Administra Keysight Technologies		Calibratio	on Laboratory
The results apply The results do no The results are de The test equipme - The Governme - Agilent Techno - Fluke Everett S - The Bruel & K	to the pa ot exceed etailed in ent used for ent of The ologies / I Service Co jaer Calil	rticular unit-under-test only. manufacturer's specification. the subsequent page(s). or calibration are traceable to Na Hong Kong Special Administra Keysight Technologies enter, USA pration Laboratory, Denmark		Calibratio	on Laboratory
The results apply The results do no The results are do The test equipme - The Governme - Agilent Techno - Fluke Everett S - The Bruel & K Tested By	to the pa ot exceed etailed in ent used for ont of The ologies / I Service Co	rticular unit-under-test only. manufacturer's specification. the subsequent page(s). or calibration are traceable to Na Hong Kong Special Administra Keysight Technologies enter, USA oration Laboratory, Denmark		Calibratio	on Laboratory
The results apply The results do no The results are de The test equipme - The Governme - Agilent Techno - Fluke Everett S - The Bruel & K	to the pa ot exceed etailed in ent used for ent of The ologies / I Service Co jaer Calil	rticular unit-under-test only. manufacturer's specification. the subsequent page(s). or calibration are traceable to Na Hong Kong Special Administra Keysight Technologies enter, USA oration Laboratory, Denmark		Calibratio	on Laboratory
The results apply The results do no The results are do The test equipme - The Governme - Agilent Techno - Fluke Everett S - The Bruel & K Tested By	to the pa ot exceed etailed in ent used for ent of The ologies / I Service Co jaer Calil	rticular unit-under-test only. manufacturer's specification. the subsequent page(s). or calibration are traceable to Na Hong Kong Special Administra Keysight Technologies enter, USA oration Laboratory, Denmark		Calibratio	on Laboratory
The results apply The results do no The results are de The test equipme - The Governme - Agilent Techno - Fluke Everett S - The Bruel & K Tested By 測試	to the pa ot exceed etailed in ent used for ent of The ologies / I Service Co jaer Calil	rticular unit-under-test only. manufacturer's specification. the subsequent page(s). or calibration are traceable to Na Hong Kong Special Administra Keysight Technologies enter, USA oration Laboratory, Denmark	ative Region Standard &	Calibratio	
The results apply The results do no The results do no The results are do The test equipme - The Governme - Agilent Techno - Fluke Everett S - The Bruel & K Tested By 測試	to the pa ot exceed etailed in ent used for ent of The ologies / I Service Co jaer Calil	Articular unit-under-test only. manufacturer's specification. the subsequent page(s). or calibration are traceable to Na Hong Kong Special Administra Keysight Technologies enter, USA pration Laboratory, Denmark Chenk K P Cheuk Assistant Engineer	ative Region Standard & Date of Issue	Calibratio	on Laboratory 10 July 2020
The results apply The results do no The results are de The test equipme - The Governme - Agilent Techno - Fluke Everett S - The Bruel & K Tested By 測試	to the pa ot exceed etailed in ent used for ent of The ologies / I Service Co jaer Calil	rticular unit-under-test only. manufacturer's specification. the subsequent page(s). or calibration are traceable to Na Hong Kong Special Administra Keysight Technologies enter, USA oration Laboratory, Denmark	ative Region Standard &	Calibratio	

Sun Creation Engineering Limited – Calibration & Testing Laboratory c/o 4/F, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong 輝創工程有限公司 - 校正及檢測實驗所 c/o 香港新界屯門與安里一號四樓 Tel:電話: (852) 2927 2606 Fax/傳真: (852) 2744 8986 E-mail/電郵: callab@suncreation.com Website/網址: www.suncreation.com

Sun Creation Engineering Limited

Calibration & Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.: C203822 證書編號

- 1. The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours, and switched on to warm up for over 10 minutes before the commencement of the test.
- 2. Self-calibration was performed before the test.
- 3. The results presented are the mean of 3 measurements at each calibration point.
- 4. Test equipment :

Equipment ID	Description	Certificate No.
·CL280	40 MHz Arbitrary Waveform Generator	C200258
CL281	Multifunction Acoustic Calibrator	CDK1806821

- 5. Test procedure : MA101N.
- 6. Results :
- 6.1 Sound Pressure Level
- 6.1.1 Reference Sound Pressure Level

	UUT	Setting		Applie	d Value	UUT	IEC 61672 Class 1 Spec. (dB)
Range (dB)	Function	Frequency Weighting	Time Weighting	Level (dB)	Freq. (kHz)	Reading (dB)	
30 - 130	L _A	A	Fast	94.00	1	93.8	± 1.1

6.1.2 Linearity

	UU'	Γ Setting	Applied	UUT		
Range (dB)	Function	Frequency Weighting	Time Weighting	Level (dB)	Freq. (kHz)	Reading (dB)
30 - 130	L _A	A	Fast	94.00 104.00	1	93.8 (Ref.) 103.9
		3		114.00		113.8

IEC 61672 Class 1 Spec. : \pm 0.6 dB per 10 dB step and \pm 1.1 dB for overall different.

6.2 Time Weighting

UUT Setting				Applie	d Value	UUT	IEC 61672
Range (dB)	Function	Frequency Weighting	Time Weighting	Level (dB)	Freq. (kHz)	Reading (dB)	Class 1 Spec. (dB)
30 - 130	L _A	A	Fast	94.00	1	. 93.8	Ref.
			Slow			93.8	± 0.3

The test equipment used for calibration is traceable to the National Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited

Calibration & Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. : C203822 證書編號

6.3 Frequency Weighting

6.3.1 A-Weighting

	UUT	Setting		Applied Value		UUT	IEC 61672
Range (dB)	Function	Frequency Weighting	Time Weighting	Level (dB)	Freq.	Reading (dB)	Class 1 Spec. (dB)
30 - 130	L _A	A	Fast	94.00	63 Hz	67.5	-26.2 ± 1.5
					125 Hz	77.6	-16.1 ± 1.5
					250 Hz	85.1	-8.6 ± 1.4
					500 Hz	90.6	-3.2 ± 1.4
					1 kHz	93.8	Ref.
					2 kHz	95.1	$+1.2 \pm 1.6$
					4 kHz	94.9	$+1.0 \pm 1.6$
					8 kHz	92.8	-1.1 (+2.1 ; -3.1)
					12.5 kHz	89.4	-4.3 (+3.0 ; -6.0)

6.3.2 <u>C-Weighting</u>

	UUT	Setting		Applied Value		UUT	IEC 61672
Range (dB)	Function	Frequency Weighting	Time Weighting	Level (dB)	Freq.	Reading (dB)	Class 1 Spec. (dB)
30 - 130	L _C	C	Fast	94.00	63 Hz	92.9	-0.8 ± 1.5
					125 Hz	93.6	-0.2 ± 1.5
					250 Hz	93.8	0.0 ± 1.4
					500 Hz	93.8	0.0 ± 1.4
					1 kHz	93.8	Ref.
					2 kHz	93.7	-0.2 ± 1.6
					4 kHz	93.0	-0.8 ± 1.6
					8 kHz	90.9	-3.0 (+2.1 ; -3.1)
					12.5 kHz	87.5	-6.2 (+3.0 ; -6.0)

The test equipment used for calibration is traceable to the National Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited

Calibration & Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.: C203822 證書編號

Remarks : - UUT Microphone Model No. : UC-59 & S/N : 04871

- Mfr's Spec. : IEC 61672 Class 1

		1
- Uncertainties of Applied Value :	94 dB : 63 Hz - 125 Hz	: ± 0.35 dB
	250 Hz - 500 Hz	: ± 0.30 dB
	1 kHz	: ± 0.20 dB
	2 kHz - 4 kHz	: ± 0.35 dB
	8 kHz	: ± 0.45 dB
	12.5 kHz	: ± 0.70 dB
	104 dB: 1 kHz	$\pm 0.10 \text{ dB}$ (Ref. 94 dB)
	114 dB : 1 kHz	$\pm 0.10 \text{ dB}$ (Ref. 94 dB)

- The uncertainties are for a confidence probability of not less than 95 %.

Note :

Only the original copy or the laboratory's certified true copy is valid.

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration is traceable to the National Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited

Calibration & Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.: C202843 證書編號

Description / 儀器名稱 :	D	Date of Receipt / 收件日期: 12 May 2020
T	Precision Acoustic Calibrator	
Manufacturer / 製造商 :	LARSON DAVIS	
Model No. / 型號 :	CAL200	
Serial No. / 編號 :	11333	
Supplied By / 委託者 :	Envirotech Services Co.	
	Room 113, 1/F, My Loft, 9 Hoi Wing Roa	id, Tuen Mun,
	New Territories, Hong Kong	

TEST CONDITIONS / 測試條件

Temperature / 溫度 : (23 ± 2)°C Line Voltage / 電壓 : --- Relative Humidity / 相對濕度 : (50±25)%

.

TEST SPECIFICATIONS / 測試規範

Calibration check

1 15

DATE OF TEST / 測試日期 : 23 May 2020

TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only. The results do not exceed manufacturer's specification. The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via :

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory
- The Bruel & Kjaer Calibration Laboratory, Denmark
- Agilent Technologies / Keysight Technologies
- Fluke Everett Service Center, USA

Tested By 測試 H T Wong Assistant Engineer Certified By 核證 KC lee

Date of Issue 簽發日期

•

25 May 2020

The test equipment used for calibration is traceable to the National Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Engineer

Sun Creation Engineering Limited

Calibration & Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. : C202843 證書編號

- 1. The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours before the commencement of the test.
 - 2. The results presented are the mean of 3 measurements at each calibration point.
 - 3. Test equipment :

Equipment ID	Description	Certificate No.
CL130	Universal Counter	C193756
CL281	Multifunction Acoustic Calibrator	CDK1806821
TST150A	Measuring Amplifier	C201309

- 4. Test procedure : MA100N.
- 5. Results :
- 5.1 Sound Level Accuracy

UUT Nominal Value	Measured Value (dB)	Mfr's Spec. (dB)	Uncertainty of Measured Value (dB)
94 dB, 1 kHz	93.8	± 0.2	± 0.2
114 dB, 1 kHz	113.8		

5.2 Frequency Accuracy

1 -

UUT Nominal Value	Measured Value	Mfr's	Uncertainty of Measured Value
(kHz)	(kHz)	Spec.	(Hz)
1	1.000	1 kHz ± 1 %	± 1

Remark : The uncertainties are for a confidence probability of not less than 95 %.

Note :

Only the original copy or the laboratory's certified true copy is valid.

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration is traceable to the National Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。
G. Graphical Plots of the Monitoring Results

	Weather			Conc. (µg/m ³)	Action Level	Limit Level
Date	Condition	Time	1 st Hour	2 nd Hour	3 rd Hour	(µg/m³)	(µg/m³)
05-Jan-21	Cloudy	8:22 - 11:22	68	75	82	273.7	500
11-Jan-21	Cloudy	8:22 - 11:22	69	77	85	273.7	500
16-Jan-21	Sunny	8:32 - 11:32	62	58	50	273.7	500
22-Jan-21	Fine	8:27 - 11:27	71	78	85	273.7	500
28-Jan-21	Sunny	8:33 - 11:33	72	80	88	273.7	500

Air Quality Monitoring Result at Station AM1 (1-hour TSP)

Graphical Presentation of Air Quality Monitoring Result at Station AM1 (1-hour TSP)

	Weather			Conc. (µg/m³)	Action Level	Limit Level
Date	Condition	Time	1 st Hour	2 nd Hour	3 rd Hour	(µg/m ³)	(µg/m³)
05-Jan-21	Cloudy	8:38 - 11:38	70	77	84	274.2	500
11-Jan-21	Cloudy	8:36 - 11:36	71	78	86	274.2	500
16-Jan-21	Sunny	8:48 - 11:48	79	86	80	274.2	500
22-Jan-21	Fine	8:43 - 11:43	73	80	88	274.2	500
28-Jan-21	Sunny	8:47 - 11:47	74	82	90	274.2	500

Air Quality Monitoring Result at Station AM2B (1-hour TSP)

Graphical Presentation of Air Quality Monitoring Result at Station AM2B (1-hour TSP)

Sta	rt	Finis	sh	Filter W	eight (g)	Elapsed Time Reading		Sampling	Flow	Rate (m ³ /	min)	Conc.	Weather	Action	Limit
Date	Time	Date	Time	Initial	Final	Initial	Final	Time (hrs)	Initial	Final	Average	(µg/m ³)	Condition	Level	Level
05-Jan-21	08:20	06-Jan-21	08:20	2.6819	2.7364	22784.38	22808.38	24	1.29	1.29	1.29	29	Cloudy	143.6	260
11-Jan-21	10:20	12-Jan-21	10:20	2.6881	2.8030	22808.38	22832.38	24	1.29	1.29	1.29	62	Cloudy	143.6	260
16-Jan-21	08:30	17-Jan-21	08:30	2.6861	2.7596	22832.38	22856.38	24	1.29	1.29	1.29	40	Sunny	143.6	260
22-Jan-21	08:25	23-Jan-21	08:25	2.6906	2.7778	22856.38	22880.38	24	1.26	1.26	1.26	48	Fine	143.6	260
28-Jan-21	08:30	29-Jan-21	08:30	2.7286	2.8375	22880.38	22904.38	24	1.26	1.26	1.26	60	Sunny	143.6	260

Air Quality Monitoring Result at Station AM1 (24-hour TSP)

Graphical Presentation of Air Quality Monitoring Result at Station AM1 (24-hour TSP)

Sta	rt	Finis	sh	Filter We	eight (g)	Elapsed Time Reading		Sampling	Flow	Rate (m ³ /	min)	Conc.	Weather	Action	Limit
Date	Time	Date	Time	Initial	Final	Initial	Final	Time (hrs)	Initial	Final	Average	(µg/m ³)	Condition	Level	Level
05-Jan-21	08:36	06-Jan-21	08:36	2.6815	2.7977	22339.05	22363.05	24	1.34	1.34	1.34	60	Cloudy	151.1	260
11-Jan-21	08:34	12-Jan-21	08:34	2.6823	2.8487	22363.05	22387.05	24	1.34	1.34	1.34	86	Cloudy	151.1	260
16-Jan-21	08:46	17-Jan-21	08:46	2.6845	2.8088	22387.05	22411.05	24	1.34	1.34	1.34	64	Sunny	151.1	260
22-Jan-21	08:40	23-Jan-21	08:40	2.6823	2.8343	22411.05	22435.05	24	1.22	1.22	1.22	87	Fine	151.1	260
28-Jan-21	08:45	29-Jan-21	08:45	2.6676	2.9193	22435.05	22459.05	24	1.22	1.22	1.22	143	Sunny	151.1	260

Air Quality Monitoring Result at Station AM2B (24-hour TSP)

Graphical Presentation of Air Quality Monitoring Result at Station AM2B (24-hour TSP)

Date	Time	Measured L ₁₀ , dB(A)	Measured L ₉₀ , dB(A)	L _{eq} (30 min.)* <i>,</i> dB(A)
05-Jan-21	09:24	66.5	62.7	
05-Jan-21	09:29	65.4	61.5	
05-Jan-21	09:34	65.3	61.7	68
05-Jan-21	09:39	66.7	62.0	00
05-Jan-21	09:44	67.2	63.3	
05-Jan-21	09:49	67.0	63.9	
11-Jan-21	09:05	67.0	63.7	
11-Jan-21	09:10	66.4	62.3	
11-Jan-21	09:15	66.4	62.2	68
11-Jan-21	09:20	68.5	64.1	00
11-Jan-21	09:25	67.5	63.8	
11-Jan-21	09:30	66.2	62.6	
22-Jan-21	09:30	66.2	62.6	
22-Jan-21	09:35	67.4	63.1	
22-Jan-21	09:40	68.6	64.5	68
22-Jan-21	09:45	66.3	62.5	00
22-Jan-21	09:50	66.8	62.6	
22-Jan-21	09:55	67.0	63.3	
28-Jan-21	09:36	66.0	62.1	
28-Jan-21	09:41	67.3	63.9	
28-Jan-21	09:46	68.4	64.5	68
28-Jan-21	09:51	66.1	62.3	UO
28-Jan-21	09:56	66.4	62.6	
28-Jan-21	10:01	67.7	63.9	

Noise Monitoring Result at Station NM1A

Remarks:

* +3dB (A) correction was applied to free-field measurement.

The station set-up of a free-field measurement at Station NM1A.

Graphical Presentation Noise Monitoring Result at Station NM1A

H. Meteorological Data Extracted from Hong Kong Observatory

Extract of Meteorological Observations for King's Park Automatic Weather Station,

January 2021

I. Waste Flow table

M+ Museum

		Actual Qua	intities of Ine	rt C&D Mater	ials Generat	ed Monthly		ŀ	Actual Quanti	ties of C&D \	Nastes Gene	erated Monthl	у
Month	Total Quantity Generated	Hard Rocks and Large Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Disposed to Sorting Facility	Imported Fill	Metals	Paper/ Cardboard Packaging	Plastics	Wood/ Timber	Chemical Waste	Others, e.g. General Refuse
	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)
2015							-	-	-			-	
Nov	46607.4	0.0	0.0	8240.0	38367.4	0.0	0.0	76.2	0.0	0.0	0.0	0.0	67.6
Dec	29652.9	0.0	0.0	29621.4	31.5	0.0	0.0	26.3	0.0	0.0	0.0	1.0	66.0
Sub-total (2015)	76260.3	0.0	0.0	37861.4	38398.9	0.0	0.0	102.5	0.0	0.0	0.0	1.0	133.6
2016													
Jan	21077.4	0.0	6352.0	14576.0	149.4	0.0	0.0	18.8	0.0	0.0	0.0	0.0	23.2
Feb	7626.2	0.0	3424.0	4048.0	154.2	0.0	0.0	59.8	0.0	0.0	0.0	0.0	20.5
Mar	10442.5	0.0	1600.0	7888.0	954.5	0.0	0.0	29.7	0.0	0.0	0.0	0.0	46.3
Apr	30413.2	0.0	6352.0	23408.0	653.2	0.0	0.0	25.8	0.1	0.0	27.8	0.0	34.5
May	24083.5	0.0	112.0	23216.0	755.5	0.0	0.0	61.5	0.4	0.0	33.6	0.0	62.3
Jun	7880.1	0.0	4736.0	2384.0	760.1	0.0	0.0	106.6	0.1	0.0	14.6	0.0	52.8
Jul	5893.1	0.0	2656.0	2240.0	997.1	0.0	0.0	77.6	0.0	0.0	33.6	0.0	83.1
Aug	13709.6	0.0	0.0	12432.0	1277.6	0.0	0.0	111.3	0.2	0.0	38.5	0.0	104.9
Sep	6702.0	0.0	0.0	5648.0	1000.1	53.9	0.0	104.2	0.0	0.0	45.5	0.2	107.9
Oct	2103.6	0.0	0.0	496.0	1595.4	12.2	0.0	83.0	0.4	0.0	73.5	0.0	108.2
Nov	3302.7	0.0	0.0	2384.0	855.5	63.2	0.0	88.4	0.6	0.0	63.0	0.0	129.1
Dec	899.8	0.0	0.0	736.0	126.8	37.0	0.0	48.3	0.6	0.0	70.0	0.0	89.0
Sub-total (2016)	134133.5	0.0	25232.0	99456.0	9279.3	166.3	0.0	814.9	2.3	0.0	400.1	0.2	861.8
2017									-			-	
Jan	675.2	0.0	0.0	432.0	237.9	5.3	0.0	79.5	1.0	0.0	70.0	0.0	79.7
Feb	927.7	0.0	0.0	768.0	125.6	34.0	0.0	70.5	0.6	0.0	84.0	0.0	81.4
Mar	1856.7	0.0	0.0	1280.0	466.9	109.8	0.0	62.8	0.4	0.0	98.0	0.0	148.5
Apr	642.4	0.0	0.0	160.0	324.9	157.5	0.0	87.5	0.7	0.0	175.0	0.0	102.5
May	1118.2	0.0	0.0	528.0	416.4	173.7	0.0	118.3	0.0	0.0	280.0	0.0	139.0
Jun	650.0	0.0	0.0	0.0	451.6	198.4	0.0	199.7	1.4	0.0	350.0	0.0	98.7
Jul	1762.0	0.0	0.0	0.0	1466.6	295.4	0.0	36.9	1.2	0.0	244.0	0.0	164.2
Aug	1231.5	0.0	0.0	0.0	867.5	364.0	0.0	82.5	0.9	0.0	59.0	0.0	186.9
Sep	1681.7	0.0	0.0	0.0	1342.0	339.7	0.0	114.3	0.7	0.0	77.0	0.0	265.3
Oct	483.6	0.0	0.0	0.0	242.5	241.1	0.0	458.1	0.6	0.0	24.1	0.0	128.5
Nov	822.8	0.0	0.0	0.0	344.5	478.3	0.0	1168.9	0.7	0.0	140.0	0.2	219.1
Dec	601.3	0.0	0.0	0.0	236.2	365.1	0.0	995.8	0.8	0.0	320.0	0.0	241.9
Sub-total (2017)	12453.0	0.0	0.0	3168.0	6522.6	2762.4	0.0	3474.8	8.9	0.0	1921.1	0.2	1855.5

		Actual Qua	intities of Ine	rt C&D Mater	ials Generat	ed Monthly		A	Actual Quanti	ties of C&D \	Nastes Gene	erated Month	у
Month	Total Quantity Generated	Hard Rocks and Large Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Disposed to Sorting Facility	Imported Fill	Metals	Paper/ Cardboard Packaging	Plastics	Wood/ Timber	Chemical Waste	Others, e.g. General Refuse
	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)
2018	-					-						-	_
Jan	1015.3	0.0	0.0	0.0	574.1	441.2	0.0	634.6	1.5	0.0	100.0	0.0	183.6
Feb	847.6	0.0	0.0	0.0	608.3	239.3	0.0	14.2	1.0	0.0	25.0	0.0	154.9
Mar	1507.0	0.0	0.0	0.0	1102.1	404.9	0.0	647.5	1.5	0.0	120.0	0.0	264.1
Apr	2942.8	0.0	0.0	0.0	2542.4	400.4	0.0	253.4	0.3	0.0	100.0	0.0	252.5
May	2109.2	0.0	0.0	0.0	1593.3	515.9	0.0	179.4	0.4	0.0	70.0	0.0	311.4
Jun	1697.6	0.0	0.0	0.0	1162.4	535.2	0.0	81.3	0.3	0.0	105.0	0.0	188.2
Jul	945.5	0.0	0.0	0.0	646.1	299.4	0.0	47.6	0.4	0.0	150.0	0.0	277.6
Aug	730.8	0.0	0.0	0.0	461.4	269.4	0.0	29.3	0.0	0.0	40.0	0.0	109.1
Sep	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Oct	1193.1	0.0	0.0	0.0	895.7	297.5	0.0	130.8	2.7	0.0	200.0	0.0	116.6
Nov	1608.9	0.0	0.0	0.0	841.1	767.7	0.0	139.9	1.1	0.0	245.0	0.0	213.9
Dec	1457.8	0.0	0.0	314.4	341.9	801.5	0.0	352.7	0.8	0.0	180.0	0.0	198.2
Sub-total (2018)	16055.4	0.0	0.0	314.4	10768.7	4972.3	0.0	2510.6	9.9	0.0	1335.0	0.0	2270.2
2019	-					-		•	-		•		
Jan	1632.5	0.0	0.0	153.6	572.3	906.6	0.0	587.8	0.8	0.0	40.0	0.0	303.9
Feb	618.5	0.0	0.0	0.0	397.4	221.2	0.0	158.3	1.2	0.0	20.0	0.0	429.7
Mar	1555.1	0.0	0.0	441.6	920.2	193.2	0.0	371.3	0.0	0.0	20.0	0.0	645.2
Apr	327.4	0.0	0.0	0.0	127.3	200.2	0.0	291.4	1.3	0.0	300.0	0.9	477.4
May	712.8	0.0	0.0	361.9	116.7	234.3	0.0	197.4	0.8	0.0	320.0	0.0	531.1
Jun	219.9	0.0	0.0	0.0	95.6	124.4	0.0	199.6	0.5	0.0	350.0	0.0	448.0
Jul	445.8	0.0	0.0	0.0	171.6	274.1	0.0	137.7	1.1	0.0	300.0	0.6	553.1
Aug	692.6	0.0	0.0	55.2	354.1	283.3	0.0	139.1	0.0	0.0	0.0	0.0	596.8
Sep	549.4	0.0	0.0	72.0	218.2	259.2	0.0	374.9	0.0	0.0	420.0	0.0	560.5
Oct	373.0	0.0	0.0	0.0	204.4	168.6	0.0	161.9	0.0	1.2	450.0	0.4	657.7
Nov	681.1	0.0	0.0	192.0	263.0	226.1	0.0	143.9	0.7	0.9	380.0	0.0	659.8
Dec	727.5	0.0	0.0	240.0	341.0	146.5	0.0	476.1	0.8	0.7	345.0	0.0	682.3
Sub-total (2019)	8535.5	0.0	0.0	1516.3	3781.6	3237.7	0.0	3239.3	7.1	2.8	2945.0	1.9	6545.5

		Actual Qua	antities of Ine	rt C&D Mater	rials Generat	ed Monthly		A	Actual Quanti	ties of C&D V	Vastes Gene	erated Month	y
Month	Total Quantity Generated	Hard Rocks and Large Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Disposed to Sorting Facility	Imported Fill	Metals	Paper/ Cardboard Packaging	Plastics	Wood/ Timber	Chemical Waste	Others, e.g. General Refuse
	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)
2020													
Jan	404.3	0.0	0.0	0.0	351.1	53.2	0.0	224.2	0.8	0.0	335.0	0.0	523.7
Feb	699.4	0.0	0.0	144.0	511.3	44.1	0.0	61.0	1.7	1.6	280.0	0.0	333.2
Mar	613.8	0.0	0.0	144.0	459.4	10.4	0.0	165.5	0.6	0.7	140.0	0.0	394.9
Apr	365.5	0.0	0.0	0.0	333.6	31.9	0.0	554.3	0.9	0.0	0.0	0.0	389.4
May	96.8	0.0	0.0	0.0	84.2	12.6	0.0	181.2	0.5	0.0	0.0	0.0	401.1
Jun	467.9	0.0	0.0	0.0	455.9	12.0	0.0	89.8	0.4	0.0	0.0	0.0	232.0
Jul	1022.0	0.0	0.0	0.0	1022.0	0.0	0.0	108.8	0.9	0.0	0.0	0.0	282.1
Aug	267.5	0.0	0.0	0.0	261.0	6.5	0.0	137.7	0.4	0.0	0.0	0.0	189.3
Sep	112.6	0.0	0.0	0.0	105.4	7.2	0.0	25.8	0.3	0.0	0.0	0.0	189.3
Oct	489.3	0.0	0.0	413.3	76.1	0.0	0.0	35.5	0.7	0.0	0.0	0.0	227.3
Nov	156.6	0.0	0.0	59.5	46.7	50.3	0.0	175.3	0.3	0.0	0.0	0.0	170.8
Dec	7.3	0.0	0.0	0.0	0.0	7.3	0.0	7.9	0.3	0.0	0.0	0.0	137.7
Sub-total (2020)	4702.9	0.0	0.0	760.8	3706.7	235.5	0.0	1767.1	7.6	2.4	755.0	0.0	3470.8
2021									-				
Jan	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	218.0
Feb	0.0												
Mar	0.0												
Apr	0.0												
May	0.0												
Jun	0.0												
Sub-total (2021)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	218.0
Total	252140.7	0.0	25232.0	143076.9	72457.6	11374.1	0.0	11909.2	35.8	5.1	7356.2	3.2	15355.4

		Actual Qua	ntities of Ine	rt C&D Mater	rials Generat	ed Monthly		ŀ	Actual Quantit	ties of C&D V	Vastes Gene	rated Monthl	у
Month	Total Quantity Generated	Hard Rocks and Large Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Disposed to Sorting Facility	Imported Fill	Metals	Paper/ Cardboard Packaging	Plastics	Wood/ Timber	Chemical Waste	Others, e.g. General Refuse
	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)

Note:

0 tonne, 0 tonne, 0 tonne, 0 tonne of inert C&D material were disposed of as public fill to Chai Wan Public Fill Barging Point, Tuen Mun Area 38, Tseung Kwan O Area 137 Public Fill and Tseung Kwan O Area 137 Sorting Facility respectively in the reporting month.

For inert C&D materials reused in other projects, the projects refer to (1) Green Valley; (2) Advance Works for Shek Wu Hui Sewage Treatment Works (3) Design and Construction of Kai Tak Cable Tunnel, CLP; (4) MTR Contract 1002 Whampoa Station and Overrun Tunnel; (5) CEDD Tuen Mun Area 54 Contract No. CV/2015/03; (6) Union Construction Ltd.'s site; (7) Foundation Works at Marriot Hotel at Ocean Park.(8) Ming Tai warehoues (9) No.1 Plantation Road; (10) L1 lyric theather (11) sales to Ho Jet Plant (12) to J3868 Wales Hospital Project; (13) to J3888 AA's ITT project; (14) to J3908 AA's T2 project

Lyric Theatre Complex

		Actual Qu	antities of Ine	rt C&D Mater	ials Generate	d Monthly			Actual Quant	ities of C&D \	Vastes Gener	ated Monthly	,
Month	Total Quantity Generated	Hard Rocks and Large Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Disposed to Sorting Facilty	Imported Fill	Metals	Paper/ Cardboard Packaging	Plastics	Wood/ Timber	Chemical Waste	Others, e.g. General Refuse
	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)
2016	-	•											
Mar	2702.1	0.0	0.0	0.0	2702.1	0.0	0.0	4.5	0.1	0.0	0.0	0.0	30.6
Apr	8631.5	0.0	0.0	0.0	8631.5	0.0	0.0	16.0	0.0	0.0	0.0	0.0	19.2
May	12487.8	0.0	0.0	0.0	12487.8	0.0	0.0	34.0	0.0	0.0	0.0	0.7	60.5
Jun	8600.8	0.0	0.0	0.0	8600.8	0.0	0.0	31.4	0.2	0.0	0.0	0.5	13.5
Jul	12624.2	0.0	0.0	0.0	12624.2	0.0	0.0	19.6	0.0	0.0	0.0	2.0	9.9
Aug	14419.9	0.0	0.0	0.0	14419.9	0.0	0.0	43.9	0.0	0.0	0.0	0.0	11.1
Sep	13671.3	0.0	0.0	0.0	13671.3	0.0	0.0	59.8	0.0	0.0	0.0	1.6	12.4
Oct	13088.9	0.0	0.0	0.0	13088.9	0.0	0.0	36.9	0.2	1.5	0.0	0.0	15.2
Nov	12424.7	0.0	0.0	0.0	12424.7	0.0	0.0	74.7	0.0	0.0	0.0	1.4	10.2
Dec	12487.6	0.0	0.0	0.0	12487.6	0.0	0.0	13.9	0.0	0.0	0.0	1.3	9.0
Sub-total (2016)	111138.8	0.0	0.0	0.0	111138.8	0.0	0.0	334.5	0.4	1.5	0.0	7.6	191.6
2017		•			•								•
Jan	9607.8	0.0	0.0	0.0	9607.8	0.0	0.0	29.5	0.0	0.0	0.0	0.0	7.3
Feb	9108.2	0.0	0.0	0.0	9108.2	0.0	0.0	50.2	0.2	0.0	0.0	0.7	9.8
Mar	11361.7	0.0	0.0	0.0	11361.7	0.0	0.0	16.1	0.0	0.0	0.0	1.4	8.5
Apr	2591.5	0.0	0.0	0.0	2591.5	0.0	0.0	35.7	0.0	0.0	0.0	0.0	4.7
May	2579.3	0.0	0.0	99.0	2480.3	0.0	0.0	20.9	0.1	0.0	0.0	0.5	10.0
Jun	476.0	0.0	0.0	341.0	129.7	5.3	0.0	0.0	0.0	0.0	0.0	0.0	7.6
Jul	3419.0	0.0	0.0	804.0	2615.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	17.8
Aug	3730.9	0.0	0.0	1377.5	2353.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4.4
Sep	2108.2	0.0	0.0	1133.5	974.7	0.0	0.0	34.6	0.2	0.0	0.0	0.0	10.8
Oct	9159.0	0.0	0.0	7868.0	1291.0	0.0	0.0	0.0	0.0	0.0	0.0	0.7	9.3
Nov	5095.4	0.0	0.0	4352.0	725.2	18.1	0.0	0.0	0.0	0.0	0.0	0.0	38.8
Dec	3856.2	0.0	0.0	3076.0	780.2	0.0	0.0	0.0	0.2	0.0	0.0	0.4	8.4
Sub-total (2017)	63093.1	0.0	0.0	19051.0	44018.7	23.4	0.0	187.1	0.7	0.0	0.0	3.8	137.3

		Actual Qu	antities of Ine	rt C&D Mater	ials Generate	d Monthly			Actual Quant	tities of C&D \	Nastes Gener	ated Monthly	
Month	Total Quantity Generated	Hard Rocks and Large Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Disposed to Sorting Facilty	Imported Fill	Metals	Paper/ Cardboard Packaging	Plastics	Wood/ Timber	Chemical Waste	Others, e.g. General Refuse
	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)
2018													
Jan	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Feb	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.5
Mar	6120.2	0.0	0.0	5782.0	338.2	0.0	0.0	0.0	0.0	1.0	0.0	0.5	17.6
Apr	14460.3	0.0	0.0	12484.1	1976.3	0.0	0.0	0.0	0.0	0.2	0.0	0.0	7.6
May	59783.7	0.0	0.0	46989.0	12794.7	0.0	0.0	59.6	0.0	0.0	0.0	0.0	9.4
Jun	53117.5	0.0	0.0	37642.8	15474.7	0.0	0.0	51.5	0.2	0.0	0.0	0.0	12.8
Jul	89901.5	0.0	0.0	85317.1	4584.4	0.0	165.1	114.6	0.0	0.0	0.0	0.0	41.3
Aug	35137.3	0.0	0.0	33731.6	1405.7	0.0	214.3	148.1	0.0	0.0	0.0	0.0	48.5
Sep	4924.3	0.0	0.0	4641.2	196.1	87.0	174.6	40.0	0.0	0.0	0.0	0.0	179.2
Oct	19099.9	0.0	0.0	11301.0	7642.8	156.1	0.0	106.3	0.4	0.0	0.0	0.0	528.5
Nov	104168.0	0.0	0.0	79811.6	24351.0	5.3	0.0	54.5	0.0	0.6	0.0	0.0	31.5
Dec	62989.9	0.0	0.0	51284.4	11699.9	5.6	0.0	95.1	0.0	0.6	0.0	0.0	65.9
Sub-total (2018)	449702.6	0.0	0.0	368984.8	80463.7	254.0	553.9	669.7	0.5	2.4	0.0	0.5	943.7
2019													
Jan	74479.1	0.0	0.0	69249.5	5229.7	0.0	318.0	326.7	0.2	0.0	0.0	0.0	76.3
Feb	21969.9	0.0	0.0	17723.9	4246.0	0.0	16.5	55.2	0.0	0.0	0.0	0.0	26.7
Mar	19311.9	0.0	0.0	8569.9	10742.0	0.0	337.8	61.5	0.0	0.0	0.0	0.0	36.3
Apr	28559.9	0.0	0.0	21280.3	7279.6	0.0	0.0	32.6	0.0	0.8	0.0	0.0	24.9
May	45418.0	0.0	0.0	11200.6	34217.4	0.0	0.0	27.4	0.2	0.5	0.0	0.0	33.7
Jun	66633.4	0.0	0.0	23874.5	42748.0	10.9	59.2	11.9	0.0	0.9	0.0	0.0	35.3
Jul	36619.6	0.0	0.0	1632.7	34960.9	26.0	64.4	120.7	0.0	0.0	0.0	0.0	57.9
Aug	2526.8	0.0	0.0	0.0	2499.0	27.8	31.9	40.2	0.0	0.8	0.0	0.0	66.3
Sep	4117.6	0.0	0.0	0.0	4088.7	28.9	95.2	19.0	0.0	0.6	0.0	0.0	127.4
Oct	6974.2	0.0	0.0	0.0	6948.1	26.1	15.9	11.4	0.2	1.0	0.0	0.6	223.6
Nov	5334.4	0.0	0.0	0.0	5304.1	30.3	0.0	8.9	0.0	0.0	0.0	0.0	151.6
Dec	6236.8	0.0	0.0	0.0	6236.8	0.0	0.0	70.6	0.0	0.0	0.0	0.0	98.9
Sub-total (2019)	318181.6	0.0	0.0	153531.3	164500.1	150.1	938.9	785.8	0.6	4.6	0.0	0.6	959.0

		Actual Qu	antities of Ine	rt C&D Mater	ials Generate	d Monthly			Actual Quant	tities of C&D \	Vastes Gener	ated Monthly	
Month	Total Quantity Generated	Hard Rocks and Large Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Disposed to Sorting Facilty	Imported Fill	Metals	Paper/ Cardboard Packaging	Plastics	Wood/ Timber	Chemical Waste	Others, e.g. General Refuse
	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)
2020													
Jan	7089.9	0.0	0.0	0.0	7089.9	0.0	0.0	10.6	0.2	0.0	0.0	0.0	65.7
Feb	16822.3	0.0	0.0	0.0	16822.3	0.0	0.0	232.2	0.1	0.0	0.0	0.0	66.3
Mar	6559.0	0.0	0.0	0.0	6559.0	0.0	110.4	63.1	0.0	0.9	0.0	0.0	138.3
Apr	4997.9	0.0	0.0	1615.7	3382.2	0.0	159.2	1123.9	1.9	0.0	0.0	0.0	113.2
May	2236.0	0.0	0.0	452.3	1783.6	0.0	0.0	406.5	0.0	0.0	0.0	0.0	188.8
Jun	1134.3	0.0	0.0	0.0	1134.3	0.0	31.5	262.6	0.2	0.6	0.0	0.0	210.6
Jul	148.8	0.0	0.0	0.0	148.8	0.0	31.5	458.5	0.5	0.0	0.0	0.0	220.0
Aug	540.7	0.0	0.0	0.0	540.7	0.0	0.0	340.8	0.0	0.0	0.0	0.0	238.3
Sep	1432.3	0.0	0.0	0.0	1432.3	0.0	0.0	750.7	0.2	0.0	0.0	0.0	291.9
Oct	1381.5	0.0	0.0	0.0	1381.5	0.0	0.0	717.9	0.2	0.0	0.0	0.0	400.2
Nov	1444.1	0.0	0.0	0.0	1437.4	6.7	475.8	473.6	0.2	0.5	0.0	0.0	377.8
Dec	793.8	0.0	0.0	0.0	793.8	0.0	0.0	478.3	0.2	0.0	0.0	0.0	435.8
Sub-total (2020)	44580.6	0.0	0.0	2068.1	42505.8	6.7	808.3	5318.7	3.7	2.0	0.0	0.0	2746.8
2021													
Jan	881.4	0.0	0.0	0.0	881.4	0.0	0.0	835.1	0.0	0.0	0.0	0.0	497.0
Feb	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Mar	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Apr	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
May	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Jun	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Jul	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Aug	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Sep	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Oct	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Nov	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Dec	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Sub-total (2021)	881.4	0.0	0.0	0.0	881.4	0.0	0.0	835.1	0.0	0.0	0.0	0.0	497.0
Total	987578.0	0.0	0.0	543635.2	443508.5	434.3	2301.1	8130.8	5.8	10.5	0.0	12.5	5475.4

		Actual Quantities of Inert C&D Materials Generated Monthly						Actual Quantities of C&D Wastes Generated Monthly						
Мо	onth	Total Quantity Generated	Hard Rocks and Large Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Disposed to Sorting Facilty	Imported Fill	Metals	Paper/ Cardboard Packaging	Plastics	Wood/ Timber	Chemical Waste	Others, e.g. General Refuse
		(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)

Note:

- 705.84 tonnes and 175.55 tonnes of inert C&D materials were disposed of as public fill to Tseung Kwan O Area 137 Public Fill and Tuen Mun Area 38 Public Fill respectively in the reporting month.

J. Environmental Mitigation Measures – Implementation Status

Table J-1: Environmental Mitigation Measures Implementation Status (Jan 2021)

		Implementation Stage				
EM&A Ref.	Recommendation Measures	M+ Museum	L1	L2		
Air Quality Impact (Construction)						
2.1 & 10.3.1	General Dust Control Measures					
	Frequent water spraying for active construction areas (12 times a day or once every one hour), including Heavy construction activities such as construction of buildings or roads, drilling, ground excavation, cut and fill operations (i.e., earth moving)	\checkmark	\checkmark	\checkmark		
2.1 &	Best Practice For Dust Control					
10.3.1	The relevant best practices for dust control as stipulated in the Air Pollution Control (construction Dust) Regulation should be adopted to further reduce the construction dust impacts from the Project. These best practices include: Good Site Management					
	 Good site management is important to help reducing potential air quality impact down to an acceptable level. As a general guide, the Contractor should maintain high standard of housekeeping to prevent emission of fugitive dust. Loading, unloading, handling and storage of raw materials, wastes or by-products should be carried out in a manner so as to minimise the release of visible dust emission. Any piles of materials accumulated on or around the work areas should be cleaned up regularly. Cleaning, repair and maintenance of all plant facilities within the work areas should be carried out in a manner minimising generation of fugitive dust emissions. The material should be handled properly to prevent fugitive dust emission before cleaning. 	Rem	~	Obs		
	 Disturbed Parts of the Roads Each and every main temporary access should be paved with concrete, bituminous hardcore materials or metal plates and kept clear of dusty materials; or 	\checkmark	\checkmark	✓		
	 Unpaved parts of the road should be sprayed with water or a dust suppression chemical so as to keep the entire road surface wet. 	\checkmark	\checkmark	\checkmark		

		Implementation Stage					
EM&A Ref.	Recommendation Measures	M+ Museum	L1	L2			
	Exposed Earth						
	• Exposed earth should be properly treated by compaction, hydroseeding, vegetation planting or seating with latex, vinyl, bitumen within six months after the last construction activity on the site or part of the site where the exposed earth lies.	N/A No exposed earth in this project.	N/A No exposed earth in this project.	N/A No exposed earth in this project.			
	Loading, Unloading or Transfer of Dusty Materials						
	 All dusty materials should be sprayed with water immediately prior to any loading or transfer operation so as to keep the dusty material wet. 	\checkmark	\checkmark	\checkmark			
	Debris Handling						
	• Any debris should be covered entirely by impervious sheeting or stored in a debris collection area sheltered on the top and the three sides.	\checkmark	\checkmark	\checkmark			
	 Before debris is dumped into a chute, water should be sprayed so that it remains wet when it is dumped. 	\checkmark	\checkmark	\checkmark			
	Transport of Dusty Materials						
	 Vehicle used for transporting dusty materials/spoils should be covered with tarpaulin or similar material. The cover should extend over the edges of the sides and tailboards. 	\checkmark	\checkmark	\checkmark			
	Wheel washing						
	 Vehicle wheel washing facilities should be provided at each construction site exit. Immediately before leaving the construction site, every vehicle should be washed to remove any dusty materials from its body and wheels. 	\checkmark	\checkmark	~			
	Use of vehicles						
	 The speed of the trucks within the site should be controlled to about 10km/hour in order to reduce adverse dust impacts and secure the safe movement around the site. 	~	\checkmark	\checkmark			
	 Immediately before leaving the construction site, every vehicle should be washed to remove any dusty materials from its body and wheels. 	\checkmark	\checkmark	\checkmark			
	• Where a vehicle leaving the construction site is carrying a load of dusty materials, the load should be covered entirely by clean impervious sheeting to ensure that the dusty materials do not leak from the vehicle.	✓	\checkmark	\checkmark			
			Implementation Stage				
-----------	--	---	---	---			
EM&A Ref.	Recommendation Measures	M+ Museum	L1	L2			
	Site hoarding						
	 Where a site boundary adjoins a road, street, service lane or other area accessible to the public, hoarding of not less than 2.4m high from ground level should be provided along the entire length of that portion of the site boundary except for a site entrance or exit. 	\checkmark	\checkmark	✓			
2.1 &	Best Practicable Means for Cement Works (Concrete Batching Plant)						
10.3.1	The relevant best practices for dust control as stipulated in the Guidance Note on the Best Practicable Means for Cement Works (Concrete Batching Plant) BPM 3/2(93) should be followed and implemented to further reduce the construction dust impacts of the Project. These best practices include:						
	Exhaust from Dust Arrestment Plant						
	 Wherever possible the final discharge point from particulate matter arrestment plant, where is not necessary to achieve dispersion from residual pollutants, should be at low level to minimise the effect on the local community in the case of abnormal emissions and to facilitate maintenance and inspection 	N/A No concrete batching plant in this project.	N/A No concrete batching plant in this project.	N/A No concrete batching plant in this project.			
	Emission Limits						
	All emissions to air, other than steam or water vapour, shall be colourless and free from persistent mist or smoke	N/A No concrete batching plant in this project.	N/A No concrete batching plant in this project.	N/A No concrete batching plant in this project.			
	Engineering Design/Technical Requirements						
	 As a general guidance, the loading, unloading, handling and storage of fuel, raw materials, products, wastes or by-products should be carried out in a manner so as to prevent the release of visible dust and/or other noxious or offensive emissions 	N/A No concrete batching plant in this project.	N/A No concrete batching plant in this project.	N/A No concrete batching plant in this project.			
	Non-Road Mobile Machinery (NRMM):						
	All NRMMs operating on-site which are subject to emission control of Air Pollution Control (Non-road Mobile Machinery) (Emission) Regulation are approved/exempted (as the case may be) and affixed with the requisite approval/exemption labels.	\checkmark	\checkmark	✓			

			Implementation Stage	
EM&A Ref.	Recommendation Measures	M+ Museum	L1	L2
Noise Impa	tct (Construction)			
3.1 & 10.4.1	Good Site Practice Good site practice and noise management can significantly reduce the impact of construction site activities on nearby NSRs. The following package of measures should be followed during each phase of construction:			
	 only well-maintained plant to be operated on-site and plant should be serviced regularly during the construction works; 	\checkmark	\checkmark	\checkmark
	 machines and plant that may be in intermittent use to be shut down between work periods or should be throttled down to a minimum 	\checkmark	\checkmark	\checkmark
	 plant known to emit noise strongly in one direction, should, where possible, be orientated to direct noise away from the NSRs; 	\checkmark	\checkmark	\checkmark
	 mobile plant should be sited as far away from NSRs as possible; and 	\checkmark	\checkmark	\checkmark
	 material stockpiles and other structures to be effectively utilised, where practicable, to screen noise from on-site construction activities. 	1	\checkmark	4
3.1 &	Adoption of Quieter PME			
10.4.1	The recommended quieter PME adopted in the assessment were taken from the EPD's QPME Inventory and " <i>Sound Power Levels of Other</i> <i>Commonly Used PME</i> " are presented in Table 4.26 in the EIA report. It should be noted that the silenced PME selected for assessment can be found in Hong Kong.	~	~	✓
3.1 &	Use of Movable Noise Barriers			
10.4.1	Movable noise barriers can be very effective in screening noise from particular items of plant when constructing the Project. Noise barriers located along the active works area close to the noise generating component of a PME could produce at least 10 dB(A) screening for stationary plant and 5 dB(A) for mobile plant provided the direct line of sight between the PME and the NSRs is blocked.	~	~	✓
3.1 &	Use of Noise Enclosure/ Acoustic Shed			
10.4.1	The use of noise enclosure or acoustic shed is to cover stationary PME such as air compressor and concrete pump. With the adoption of the noise enclosure, the PME could be completely screened, and noise reduction of 15 dB(A) can be achieved according to the EIAO Guidance Note No. 9/2010.	\checkmark	~	✓

			Implementation Stage	
EM&A Ref.	Recommendation Measures	M+ Museum	L1	L2
3.1 &	Use of Noise Insulating Fabric			
10.4.1	Noise insulating fabric can also be adopted for certain PME (e.g. drill rig, pilling machine etc). The fabric should be lapped such that there are no openings or gaps on the joints. According to the approved Tsim Sha Tsui Station Northern Subway EIA report (AEIAR-127/2008), a noise reduction of 10 dB(A) can be achieved for the PME lapped with the noise insulating fabric.	✓	~	✓
3.1 & 10.4.1	Scheduling of Construction Works outside School Examination Periods			
	During construction phase, the contractor should liaise with the educational institutions (including NSRs LCS and CRGPS) to obtain the examination schedule and avoid the noisy construction activities during school examination periods.	N/A No educational institutions nearby the site.	N/A No educational institutions nearby the site.	N/A No educational institutions nearby the site.
Water Qua	lity Impact (Construction)			
4.1 &	Construction site runoff and drainage			
10.5.1	The site practices outlined in ProPECC Note PN 1/94 should be followed as far as practicable in order to minimise surface runoff and the chance of erosion. The following measures are recommended to protect water quality and sensitive uses of the coastal area, and when properly implemented should be sufficient to adequately control site discharges so as to avoid water quality impacts:			
	 At the start of site establishment, perimeter cut-off drains to direct off- site water around the site should be constructed with internal drainage works and erosion and sedimentation control facilities implemented. Channels, earth bunds or sand bag barriers should be provided on site to direct storm water to silt removal facilities. The design of the temporary on-site drainage system should be undertaken by the WKCDA's Contractor prior to the commencement of construction; 	✓	~	Rem

		Implementation Stage		
EM&A Ref.	Recommendation Measures	M+ Museum	L1	L2
	 Sand/silt removal facilities such as sand/silt traps and sediment basins should be provided to remove sand/silt particles from runoff to meet the requirements of the TM standards under the WPCO. The design of efficient silt removal facilities should be based on the guidelines in Appendix A1 of ProPECC Note PN 1/94. Sizes may vary depending upon the flow rate. The detailed design of the sand/silt traps should be undertaken by the WKCDA's Contractor prior to the commencement of construction. 	~	~	~
	 All drainage facilities and erosion and sediment control structures should be regularly inspected and maintained to ensure proper and efficient operation at all times and particularly during rainstorms. Deposited silt and grit should be regularly removed, at the onset of and after each rainstorm to ensure that these facilities are functioning properly at all times. 	~	Rem	~
	 Measures should be taken to minimize the ingress of site drainage into excavations. If excavation of trenches in wet periods is necessary, they should be dug and backfilled in short sections wherever practicable. Water pumped out from foundation excavations should be discharged into storm drains via silt removal facilities. 	\checkmark	✓	~
	 All vehicles and plant should be cleaned before leaving a construction site to ensure no earth, mud, debris and the like is deposited by them on roads. An adequately designed and sited wheel washing facility should be provided at construction site exit where practicable. Wash- water should have sand and silt settled out and removed regularly to ensure the continued efficiency of the process. The section of access road leading to, and exiting from, the wheel-wash bay to the public road should be paved with sufficient backfall toward the wheel-wash bay to prevent vehicle tracking of soil and silty water to public roads and drains. 	~	✓	~
	 Open stockpiles of construction materials or construction wastes on- site should be covered with tarpaulin or similar fabric during rainstorms. Measures should be taken to prevent the washing away of construction materials, soil, silt or debris into any drainage system. 	~	~	~

		Implementation Stage		
EM&A Ref.	Recommendation Measures	M+ Museum	L1	L2
	• Manholes (including newly constructed ones) should be adequately covered and temporarily sealed so as to prevent silt, construction materials or debris being washed into the drainage system and stormwater runoff being directed into foul sewers.	Rem	√	4
	• Precautions should be taken at any time of the year when rainstorms are likely. Actions should be taken when a rainstorm is imminent or forecasted and actions to be taken during or after rainstorms are summarized in Appendix A2 of ProPECC Note PN 1/94. Particular attention should be paid to the control of silty surface runoff during storm events, especially for areas located near steep slopes.	\checkmark	\checkmark	~
	 Bentonite slurries used in piling or slurry walling should be reconditioned and reused wherever practicable. Temporary enclosed storage locations should be provided on-site for any unused bentonite that needs to be transported away after all the related construction activities are completed. The requirements in ProPECC Note PN 1/94 should be adhered to in the handling and disposal of bentonite slurries. 	N/A No bentonite slurries are used in this project.	N/A No bentonite slurries are used in this project.	N/A No bentonite slurries are use in this project.
	Barging facilities and activities			
	Recommendations for good site practices during operation of the proposed barging point include:			
	 All vessels should be sized so that adequate clearance is maintained 	N/A	N/A	N/A
	between vessels and the seabed in all tide conditions, to ensure that undue turbidity is not generated by turbulence from vessel movement or propeller wash;	No barging facilities in this project.	No barging facilities in this project.	No barging facilities in this project.
	• Loading of barges and hoppers should be controlled to prevent	N/A	N/A	N/A
	splashing of material into the surrounding water. Barges or hoppers should not be filled to a level that will cause the overflow of materials or polluted water during loading or transportation;	No barging facilities in this project.	No barging facilities in this project.	No barging facilities in this project.
	• All hopper barges should be fitted with tight fitting seals to their bottom openings to prevent leakage of material; and	N/A No barging facilities in this project.	N/A No barging facilities in this project.	N/A No barging facilities in this project.
	• Construction activities should not cause foam, oil, grease, scum, litter or other objectionable matter to be present on the water within the site.	N/A No barging facilities in this project.	N/A No barging facilities in this project.	N/A No barging facilities in this project.

		Implementation Stage		
EM&A Ref.	Recommendation Measures	M+ Museum	L1	L2
l.1 & 0.5.1	Sewage effluent from construction workforce Temporary sanitary facilities, such as portable chemical toilets, should be employed on-site where necessary to handle sewage from the workforce. A licensed contractor should be employed to provide appropriate and adequate portable toilets and be responsible for appropriate disposal and maintenance.	✓	~	✓
4.1 &	General construction activities			
10.5.1	 Construction solid waste, debris and refuse generated on-site should be collected, handled and disposed of properly to avoid entering any nearby storm water drain. Stockpiles of cement and other construction materials should be kept covered when not being used. 	✓	\checkmark	~
	• Oils and fuels should only be stored in designated areas which have pollution prevention facilities. To prevent spillage of fuels and solvents to any nearby storm water drain, all fuel tanks and storage areas should be provided with locks and be sited on sealed areas, within bunds of a capacity equal to 110% of the storage capacity of the largest tank. The bund should be drained of rainwater after a rain event.	~	Obs	~
Vaste Mar	nagement Implications (Construction)			
6.1 & 10.7.1	Good Site Practices Recommendations for good site practices during the construction activities include:			
	 Nomination of an approved person, such as a site manager, to be responsible for good site practices, arrangements for collection and effective disposal to an appropriate facility, of all wastes generated at the site 	✓	~	~
	 Training of site personnel in proper waste management and chemical handling procedures 	\checkmark	\checkmark	\checkmark
	 Provision of sufficient waste disposal points and regular collection of waste 	\checkmark	\checkmark	\checkmark
	 Appropriate measures to minimise windblown litter and dust/odour during transportation of waste by either covering trucks or by transporting wastes in enclosed containers 	\checkmark	\checkmark	\checkmark

			Implementation Stage	
EM&A Ref.	Recommendation Measures	M+ Museum	L1	L2
	 Provision of wheel washing facilities before the trucks leaving the works area so as to minimise dust introduction to public roads 	\checkmark	\checkmark	\checkmark
	 Well planned delivery programme for offsite disposal such that adverse environmental impact from transporting the inert or non-inert C&D materials is not anticipated 	✓	\checkmark	\checkmark
6.1 &	Waste Reduction Measures			
10.7.1	Recommendations to achieve waste reduction include:			
	 Sort inert C&D material to recover any recyclable portions such as metals 	\checkmark	\checkmark	\checkmark
	 Segregation and storage of different types of waste in different containers or skips to enhance reuse or recycling of materials and their proper disposal 	√	\checkmark	\checkmark
	 Encourage collection of recyclable waste such as waste paper and aluminium cans by providing separate labelled bins to enable such waste to be segregated from other general refuse generated by the work force 	✓	~	✓
	 Proper site practices to minimise the potential for damage or contamination of inert C&D materials 	\checkmark	\checkmark	\checkmark
	 Plan the use of construction materials carefully to minimise amount of waste generated and avoid unnecessary generation of wastes 	\checkmark	\checkmark	\checkmark
6.1 &	Inert and Non-inert C&D Materials			
10.7.1	In order to minimise impacts resulting from collection and transportation of inert C&D material for off-site disposal, the excavated materials should be reused on-site as fill material as far as practicable. In addition, inert C&D material generated from excavation works could be reused as fill materials in local projects that require public fill for reclamation.	~	~	✓
	 The surplus inert C&D material will be disposed of at the Government's PFRFs for beneficial use by other projects in Hong Kong. 	\checkmark	\checkmark	\checkmark
	 Liaison with the CEDD Public Fill Committee (PFC) on the allocation of space for disposal of the inert C&D materials at PFRF is underway. No construction work is allowed to proceed until all issues on management of inert C&D materials have been resolved and all relevant arrangements have been endorsed by the relevant authorities including PFC and EPD. 	\checkmark	~	✓

		Implementation Stage		
EM&A Ref.	Recommendation Measures	M+ Museum	L1	L2
	 The C&D materials generated from general site clearance should be sorted on site to segregate any inert materials for reuse or disposal of at PFRFs whereas the non-inert materials will be disposed of at the designated landfill site. 	\checkmark	✓	✓
	 In order to monitor the disposal of inert and non-inert C&D materials at respectively PFRFs and the designated landfill site, and to control fly- tipping, it is recommended that the Contractor should follow the Technical Circular (Works) No. 6/2010 for Trip Ticket System for Disposal of Construction & Demolition Materials issued by Development Bureau. In addition, it is also recommended that the Contractor should prepare and implement a Waste Management Plan detailing their various waste arising and waste management practices in accordance with the relevant requirements of the Technical Circular (Works) No. 19/2005 Environmental Management on Construction Site. 	✓	✓	✓
6.1 &	Chemical Waste			
10.7.1	 If chemical wastes are produced at the construction site, the Contractor will be required to register with the EPD as a chemical waste producer and to follow the guidelines stated in the "Code of Practice on the Packaging Labelling and Storage of Chemical Wastes". Good quality containers compatible with the chemical wastes should be used, and incompatible chemicals should be stored separately. Appropriate labels should be securely attached on each chemical waste container indicating the corresponding chemical characteristics of the chemical waste, such as explosive, flammable, oxidizing, irritant, toxic, harmful, corrosive, etc. The Contractor should use a licensed collector to transport and dispose of the chemical wastes at the approved Chemical Waste Treatment Centre or other licensed recycling facilities, in accordance with the Waste Disposal (Chemical Waste) (General) Regulation. 	~	✓	✓
	 Potential environmental impacts arising from the handling activities (including storage, collection, transportation and disposal of chemical waste) are expected to be minimal with the implementation of appropriate mitigation measures as recommended. 	✓	√	✓

			Implementation Stage	
EM&A Ref.	Recommendation Measures	M+ Museum	L1	L2
6.1 & 10.7.1	General Refuse General refuse should be stored in enclosed bins or compaction units separated from inert C&D materials. A reputable waste collector should be employed by the Contractor to remove general refuse from the site, separately from inert C&D materials. Preferably an enclosed and covered area should be provided to reduce the occurrence of 'wind blown' light material.	✓	✓	✓
Land Conta	amination (Construction)			
7.1 & 10.8.1	The potential for land contamination issues at the TST Fire Station due to its future relocation will be confirmed by site investigation after land acquisition. Where necessary, mitigation measures for minimising potential exposure to contaminated materials (if any) or remediation measures will be identified. If contaminated land is identified (e.g., during decommissioning of fuel oil storage tanks) after the commencement of works, mitigation measures are proposed in order to minimise the potentially adverse effects on the health and safety of construction workers and impacts arising from the disposal of potentially contaminated materials. The following measures are proposed for excavation and transportation of			
	contaminated material:			
	 To minimize the chance for construction workers to come into contact with any contaminated materials, bulk earth-moving excavation equipment should be employed; 	N/A TST Fire Station is out of this project boundary, no mitigation measure is required.	N/A TST Fire Station is out of this project boundary, no mitigation measure is required.	N/A TST Fire Station is out of this project boundary, no mitigation measure is required.
	 Contact with contaminated materials can be minimised by wearing appropriate clothing and personal protective equipment such as gloves and masks (especially when interacting directly with contaminated material), provision of washing facilities and prohibition of smoking and eating on site; 	N/A TST Fire Station is out of this project boundary, no mitigation measure is required.	N/A TST Fire Station is out of this project boundary, no mitigation measure is required.	N/A TST Fire Station is out of this project boundary, no mitigation measure is required.
	 Stockpiling of contaminated excavated materials on site should be avoided as far as possible; 	N/A TST Fire Station is out of this project boundary, no mitigation measure is required.	N/A TST Fire Station is out of this project boundary, no mitigation measure is required.	N/A TST Fire Station is out of this project boundary, no mitigation measure is required.

Implementation Stage

		implementation otage		
EM&A Ref.	Recommendation Measures	M+ Museum	L1	L2
	• The use of contaminated soil for landscaping purpose should be	N/A	N/A	N/A
	avoided unless pre-treatment was carried out;	TST Fire Station is out of this project boundary, no mitigation measure is required.	TST Fire Station is out of this project boundary, no mitigation measure is required.	TST Fire Station is out of this project boundary, no mitigation measure is required.
	• Vehicles containing any contaminated excavated materials should be	N/A	N/A	N/A
	suitably covered to reduce dust emissions and/or release of contaminated wastewater;	TST Fire Station is out of this project boundary, no mitigation measure is required.	TST Fire Station is out of this project boundary, no mitigation measure is required.	TST Fire Station is out of this project boundary, no mitigatior measure is required.
	• Truck bodies and tailgates should be sealed to stop any discharge;	N/A	N/A	N/A
		TST Fire Station is out of this project boundary, no mitigation measure is required.	TST Fire Station is out of this project boundary, no mitigation measure is required.	TST Fire Station is out of this project boundary, no mitigation measure is required.
	• Only licensed waste haulers should be used to collect and transport	N/A	N/A	N/A
	contaminated material to treatment/disposal site and should be equipped with tracking system to avoid fly tipping;	TST Fire Station is out of this project boundary, no mitigation measure is required.	TST Fire Station is out of this project boundary, no mitigation measure is required.	TST Fire Station is out of this project boundary, no mitigation measure is required.
	• Speed control for trucks carrying contaminated materials should be	N/A	N/A	N/A
	exercised;	TST Fire Station is out of this project boundary, no mitigation measure is required.	TST Fire Station is out of this project boundary, no mitigation measure is required.	TST Fire Station is out of this project boundary, no mitigatior measure is required.
	• Observe all relevant regulations in relation to waste handling, such as	N/A	N/A	N/A
	Waste Disposal Ordinance (Cap. 354), Waste Disposal (Chemical Waste) (General) Regulation (Cap. 354) and obtain all necessary permits where required; and	TST Fire Station is out of this project boundary, no mitigation measure is required.	TST Fire Station is out of this project boundary, no mitigation measure is required.	TST Fire Station is out of this project boundary, no mitigation measure is required.
	• Maintain records of waste generation and disposal quantities and	N/A	N/A	N/A
	disposal arrangements.	TST Fire Station is out of this	TST Fire Station is out of this	TST Fire Station is out of this
		project boundary, no mitigation measure is required.	project boundary, no mitigation measure is required.	project boundary, no mitigatior measure is required.
cological	Impact (Construction)			
	No mitigation measure is required.			
andscape	and Visual Impact (Construction)			

			Implementation Stage	
EM&A Ref.	Recommendation Measures	M+ Museum	L1	L2
Table 9.1 & 10.8 (CM1)	Trees should be retained in situ on site as far as possible. Should tree removal be unavoidable due to construction impacts, trees will be transplanted or felled with reference to the stated criteria in the Tree Removal Applications to be submitted to relevant government departments for approval in accordance to ETWB TCW No. 29/2004 and 3/2006.	~	✓	~
Table 9.1 & 10.8 (CM2)	Compensatory tree planting shall be incorporated to the proposed project and maximize the new tree, shrubs and other vegetation planting to compensate tree felled and vegetation removed. Also, implementation of compensatory planting should be of a ratio not less than 1:1 in terms of quality and quantity within the site.	~	N/A Compensatory tree planting is being reviewed.	N/A Compensatory tree planting is being reviewed.
Table 9.1 & 10.8 (CM3)	Buffer trees for screening purposes to soften the hard architectural and engineering structures and facilities.	×	N/A Roof garden is designed to be built, but it has not been completed yet.	N/A Roof garden is designed to be built, but it has not been completed yet.
Table 9.1 & 10.8 (CM4)	Softscape treatments such as vertical green wall panel /planting of climbing and/or weeping plants, etc, to maximize the green coverage and soften the hard architectural and engineering structures and facilities.	~	N/A Climbing or weeping plants are designed to be planted, but proposal is being reviewed for the planting location.	N/A Climbing or weeping plants are designed to be planted, but proposal is being reviewed for the planting location.
Table 9.1 & 10.8 (CM5)	Roof greening by means of intensive and extensive green roof to maximize the green coverage and improve aesthetic appeal and visual quality of the building/structure.	¥	N/A Roof garden is designed to be built, but it has not been completed yet.	N/A Roof garden is designed to be built, but it has not been completed yet.
Table 9.1 & 10.8 (CM6)	Sensitive streetscape design should be incorporated along all new roads and streets.	4	N/A Greening along the seafront is proposed, but it has not been completed yet.	N/A Greening along the seafront is proposed, but it has not been completed yet.
Table 9.1 & 10.8 (CM7)	Structure, ornamental planting shall be provided along amenity strips to enhance the landscape quality.	4	N/A Gardens are designed to be built, but it has not been completed yet.	N/A Gardens are designed to be built, but it has not been completed yet.

			Implementation Stage	
EM&A Ref.	Recommendation Measures	M+ Museum	L1	L2
Table 9.1 & 10.8 (CM8)	Landscape design shall be incorporated to architectural and engineering structures in order to provide aesthetically pleasing designs.	\checkmark	N/A Roof garden is designed to be built, but it has not been completed yet.	N/A Roof garden is designed to be built, but it has not been completed yet.
Table 9.1 (CM9)	Minimize the structure of marine facilities to be built on the seabed and foreshore in order to minimize the affected extent to the waterbody	N/A No marine facilities for this project.	N/A No marine facilities for this project.	N/A No marine facilities for this project.
Table 9.2 & 10.9 (MCP1)	Use of decorative screen hoarding/boards	\checkmark	~	✓
Table 9.2 & 10.9 (MCP2)	Early introduction of landscape treatments	\checkmark	N/A No landscape treatments during this stage.	N/A No landscape treatments during this stage.
Table 9.2 & 10.9 (MCP3)	Adoption of light colour for the temporary ventilation shafts for the basement during the transition period.	N/A No ventilation shafts for this project.	N/A No ventilation shafts for this project.	N/A No ventilation shafts for this project.
Table 9.2 & 10.9 (MCP4)	Control of night time lighting	✓	4	√
Table 9.2 & 10.9 (MCP5)	Use of greenery such as grass cover for the temporary open areas will help achieve the visual balance and soften the hard edges of the structures.	N/A No temporary open areas for this project.	N/A No temporary open areas for this project.	N/A No temporary open areas for this project.

N/A - Not Applicable

✓ - Implemented

Obs - Observed

Rem - Reminder

K. Cumulative Statistics on Complaints, Notifications of Summons and Successful Prosecutions

Cumulative statistics for complaints, notifications of summons and successful prosecutions for the Project account for period starting from the date of commencement of construction works (i.e. 31 October 2015 for M+ Museum main works and 1 March 2016 for Lyric Theatre Complex) to the end of the reporting month and are summarised in the **Table K-1** and **Table K-2** below respectively.

Table K-1: Statistics for complaints, notifications of summons and successful prosecutions for M+ Museum Main Works

Reporting Period		Cumulative Statistic	S
	Complaints	Notifications of summons	Successful prosecutions
This reporting month	1	0	0
From 31 October 2015 to end of the reporting month (Jan 2021)	13	1	0

Table K-2: Statistics for complaints, notifications of summons and successful prosecutions for Lyric Theatre Complex

Reporting Period		Cumulative Statistic	S
	Complaints	Notifications of summons	Successful prosecutions
This reporting month	1	0	0
From 1 March 2016 to end of the reporting month (Jan 2021)	16	0	0

END OF PART-1

Part-2: EM&A for Foundation, Excavation and Lateral Works for Integrated Basement and Underground Road in Zone 2A

Foundation, Excavation and Lateral Works for Integrated Basement and Underground Road in Zone 2A

APEX TESTING & CERTIFICATION LIMITED Unit D6A, 10/F, TML Plaza, 3 Hoi Shing Road, Tsuen Wan, N.T. Hong Kong Tel: (852) 39733585 Fax: (852) 30079385 Email: info@apextestcert.com

The information supplied and contained within this report is, to the best of our knowledge, correct at time of printing

Contents

Exe	ecutive	summa	ry	1
1	Intro	duction		3
	1.1	Backgro	bund	3
	1.2	Project	Organisation	3
	1.3	Constru	ction Works Status in the Reporting Period	3
	1.4	Summa	ry of EM&A Requirements and Alternative Monitoring Locations	4
		1.4.1	Summary Of EM&A Requirements	4
		1.4.2	Alternative Monitoring Locations	4
2	Impa	act Monit	toring Methodology	7
	2.1	Introduc	tion	7
	2.2	Air Qua	lity	7
		2.2.1	Monitoring Parameters, Frequency and Duration	7
		2.2.2	Monitoring Locations	7
		2.2.3	Monitoring Equipment	7
		2.2.4	Monitoring Methodology	8
	2.3	Noise		10
		2.3.1	Monitoring Parameters, Frequency and Duration	10
		2.3.2	Monitoring Location	10
		2.3.3	Monitoring Equipment	10
		2.3.4	Monitoring Methodology	10
	2.4	Landsca	ape and Visual	11
		2.4.1	Monitoring Program	11
3	Mon	itoring R	esults	12
	3.1	Impact I	Monitoring	12
	3.2	Air Qual	lity Monitoring	12
		3.2.1	1-hour TSP	12
		3.2.2	24-hour TSP	12
	3.3	Noise N	Ionitoring	13
	3.4	Landsca	ape and Visual Impact	14
4	Site	Environr	mental Management	15
	4.1	Site Ins	pection	15
	4.2	Advice o	on the Solid and Liquid Waste Management Status	16
	4.3	Status c	of Environmental Licenses and Permits	16
	4.4	Recomr	nended Mitigation Measures	17

5	Com	pliance with Environmental Permit	18
6		rt in Non-compliance, Complaints, Notification of Summons and essful Prosecutions	19
	6.1	Record on Non-compliance of Action and Limit Levels	19
	6.2	Record on Environmental Complaints Received	19
	6.3	Record on Notifications of Summons and Successful Prosecution	19
7	Futur	e Key Issues	20
	7.1	Construction Works for the Coming Month(s)	20
	7.2	Key Issues for the Coming Month	20
	7.3	Monitoring Schedule for the Coming Month	20
8	Conc	lusions and Recommendations	21
	8.1	Conclusions	21
	8.2	Recommendations	21
Figu	re 1	Site Layout Plan and Monitoring Stations	22
Appe	endice	S	23
A.	Proje	ct Organisation	24
B.	Tenta	ative Construction Programme	25
C.	Actio	n and Limit Levels for Construction Phase	26
D.	Even Impa	t and Action Plan for Air Quality, Noise, Landscape and Visual	27
	mpu		21
E.	Moni	toring Schedule	28
F.	Calib	ration Certifications	29
G.	Grap	hical Plots of the Monitoring Results	30
Н.	Mete	orological Data Extracted from Hong Kong Observatory	31
I.	Waste Flow table 3		32
J.	Environmental Mitigation Measures – Implementation Status		33

K. Cumulative Statistics on Complaints, Notifications of Summons and Successful Prosecutions

34

Executive summary

Apex Testing & Certification Limited (Apex) was commissioned to undertake the Environmental Team (ET) services (including environmental monitoring and audit (EM&A)) for the construction activities in Zone 2A at WKCD, consisting of Foundation, Excavation and Lateral Support Works for Integrated Basement and Underground Road (Contract No.: GW/2020/05/073). The construction works and EM&A programme for Zone 2A commenced on 3 October 2020.

The Project Proponent is the West Kowloon Cultural District Authority (WKCDA). The overall works for the WKCD fall under two separate categories of Designated Project (DP) of the Environmental Impact Assessment Ordinance (EIAO), namely an "engineering feasibility study of urban development projects with a study area covering more than 20 ha or involving a total population of more than 100 000" (Item 1 of Schedule 3) and "an underpass more than 100m in length under the built areas" (Item A.9, Part I, Schedule 2). An Environmental Permit No. EP-453/2013/B (EP) was issued with respect to the "Underpass Road and Austin Road Flyover Serving the West Kowloon Cultural District" which specifically includes the abovementioned category of DP under Item A.9, Part I, Schedule 2 of the EIAO.

This Monthly EM&A Report presents the monitoring works at Zone 2A from 1 to 31 January 2021.

Exceedance of Action and Limit Levels

There was no breach of Action or Limit levels for Air Quality (1-hour TSP and 24-hour TSP) and Noise monitoring in this reporting month.

Implementation of Mitigation Measures

Construction phase weekly site inspections were carried out on 7, 14, 21 and 28 January 2021 for Foundation, Excavation and Lateral Support Works in Zone 2A to confirm the implementation measures undertaken by the Contractors in the reporting month. The outcomes are presented in Section 4 and the status of implementation of mitigation measures in the site is shown in **Appendix J**.

Landscape and visual impact inspections were conducted as part of the abovementioned weekly site inspections during the reporting month. No adverse comment on landscape and visual aspects was made during these inspections.

Record of Complaints

One environmental complaint was recorded in the reporting month

Record of Notifications of Summons and Successful Prosecutions

No notifications of summons and successful prosecutions were recorded in the reporting month.

Future Key Issues

The major site works for Zone 2A scheduled to be commissioned in the coming month include:

- Grouting Curtain Works (Trial 1 & Trial 2)
 - Trial Grouting (Trial 1 & Trial 2) Stage 2 Grouting
- Bored Pile Works
 - Bored Pile Construction

- ELS (Stage 1)
 - Grouting Works
 - Pipe Pile Construction

Potential environmental impacts due to the construction activities, including air, noise, water quality, waste, landscape and visual, will be monitored or reviewed. The recommended environmental mitigation measures shall be implemented on site and regular inspections as required will be carried out to ensure that the environmental conditions are acceptable.

1 Introduction

1.1 Background

Apex Testing & Certification Limited (Apex) was commissioned to undertake the Environmental Team (ET) services (including environmental monitoring and audit (EM&A)) for the construction activities in Zone 2A at WKCD, consisting of Foundation, Excavation and Lateral Support Works for Integrated Basement and Underground Road (Contract No.: GW/2020/05/073). The purpose of the development in Zone 2A is to reserve for Integrated Basement (IB) and Underground Road (UR). The Zone 2A construction activities involve the foundation, excavation and lateral support (ELS) works, road works, drainage diversion works, and temporary car parking. The construction works and EM&A programme for Zone 2A commenced on 3 October 2020.

The overall works for the WKCD fall under two separate categories of Designated Project (DP) of the Environmental Impact Assessment Ordinance (EIAO), namely an "engineering feasibility study of urban development projects with a study area covering more than 20 ha or involving a total population of more than 100 000" (Item 1 of Schedule 3) and "an underpass more than 100m in length under the built areas" (Item A.9, Part I, Schedule 2). An Environmental Permit No. EP-453/2013/B (EP) was issued with respect to the "Underpass Road and Austin Road Flyover Serving the West Kowloon Cultural District" which specifically includes the abovementioned category of DP under Item A.9, Part I, Schedule 2 of the EIAO. The captioned projects include part of the abovementioned underpass road located within the site boundary falls under this same category.

The Monthly EM&A Report is prepared in accordance with the Condition 3.4 of the Environmental Permit No. EP-453/2013/B. This Monthly EM&A Report presents the monitoring works at Zone 2A from 1 to 31 January 2021. The purpose of this report is to summarise the findings in the EM&A of the project over the reporting period.

1.2 **Project Organisation**

The organisation chart and lines of communication with respect to the on-site environmental management structure together with the contact information of the key personnel are shown in **Appendix A**.

1.3 Construction Works Status in the Reporting Period

During the reporting period, construction works at Zone 2A undertaken include:

- Grouting Curtain Works (Trial 1 & Trial 2)
 - Trial Grouting (Trial 1 & Trial 2) Stage 2 Grouting
- Bored Pile Works
 - Bored Pile Construction
- ELS (Stage 1)
 - Grouting Works
 - Pipe Pile Construction

The Construction Works Programme of Zone 2A is provided in **Appendix B**. A layout plan of the Project is provided in **Figure 1**. Please refer to **Table 4.2** on the status of the environmental licenses.

1.4 Summary of EM&A Requirements and Alternative Monitoring Locations

1.4.1 Summary of EM&A Requirements

The EM&A programme requires environmental monitoring of air quality, noise, landscape and visual as specified in the approved EM&A Manual.

A summary of impact EM&A requirements is presented in **Table 1.1**.

Parameters	Descriptions	Locations	Frequencies
	24-Hours TSP	AM3-The Victoria Towers Tower 1	At least once every 6 days
	1-Hour TSP	AM3-The Victoria Towers Tower 1	At least 3 times every 6 days
	24-Hours TSP	AM4-Canton Road Government Primary School	At least once every 6 days
Air Quality	1-Hour TSP	AM4-Canton Road Government Primary School	At least 3 times every 6 days
	24-Hours TSP	AM5-Topside Developments at West Kowloon Terminus Site	At least once every 6 days
	1-Hour TSP	AM5-Topside Developments at West Kowloon Terminus Site	At least 3 times every 6 days
	Leq, 30 minutes	NM2-The Arch, Sun Tower	Weekly
	Leq, 30 minutes	NM3-The Victoria Towers Tower 1	Weekly
Noise	Leq, 30 minutes	NM4-Canton Road Government Primary School	Weekly
	Leq, 30 minutes	NM5-Development next to Austin Station	Weekly
Landscape & Visual	Monitor implementation of proposed mitigation measures during the construction stage	As described in Table 9.1 and 9.2 of the EM&A Manual	Bi-Weekly

Table 1.1: Summary of Impact EM&A Requirements

1.4.2 Alternative Monitoring Locations

The EM&A programme for the Project should require 5 noise monitoring station and 5 air quality monitoring stations located closest to the Project area. With regard to the monitoring activities at M+ Museum and the Lyric Complex, three monitoring stations had been considered, including AM1 (International Commerce Centre), AM2 (The Harbourside Tower 1) for air monitoring, and NM1 (The Harbourside Tower 1) for noise monitoring.

In the context of the construction activities in Zone 2A, all other monitoring locations including AM3 (The Victoria Towers Tower 1), AM4 (Canton Road Government Primary School), and AM5 (Topside Developments at West Kowloon Terminus Site) for air monitoring; and NM2 (The Arch, Sun Tower), NM3 (The Victoria Towers Tower 1), NM4 (Canton Road Government Primary School) and NM5 (Development next to Austin Station) for noise monitoring, have been taken

into account. However, access to all these originally designated monitoring stations was declined as described below point-by-point.

The Arch management office and owners' committee have formally declined the proposal of setting up noise monitoring instrument on its premises at the podium level of Sun Tower (NM2) on 24 July 2014. Thus, alternative noise monitoring location was identified at the ground floor in front of The Arch – Sun Tower (NM2A), which is at the same location as stated in the EM&A Manual for consistency. No management approval is required at the ground floor for conducting the noise monitoring. This alternative air monitoring location was approved by EPD on 29 September 2020.

The Victoria Towers management office formally declined the proposal of setting up air quality and noise monitoring instruments on its premises at the podium area of Tower 1 (AM3/NM3) on 16 June 2020. Alternative air monitoring location was identified at ground floor at the Northeast corner of West Kowloon Station's station box (AM3A), in the same direction to the area of major construction site activities in Zone 2A. This alternative air monitoring location was identified at the ground floor in front of the Xiqu Centre (NM3A), which is set closer to the construction site boundary with more direct line sight to the major site activities and higher exposure to the construction noise with no disturbance to the premises' occupants during noise monitoring activities. No management approval is required at the ground floor for conducting the noise monitoring. This alternative air monitoring location was approved by EPD on 29 September 2020.

Canton Road Government Primary School formally declined the proposal of setting up air quality and noise monitoring instruments on its premise at the podium level (AM4/NM4) on 16 June 2020. Alternative air monitoring location was identified at ground floor at the Southeast corner of West Kowloon Station's station box (AM4A), in same direction to the area of major construction site activities in Zone 2A. This alternative air monitoring location was approved by EPD on 29 September 2020. An alternative noise monitoring location was identified at the ground floor next to Tsim Sha Tsui Fire Station (NM4A), which is set closer to the construction site boundary with more direct line sight to the major site activities and higher exposure to the construction noise with no disturbance to the premises' occupants during noise monitoring activities. No management approval is required at the ground floor for conducting the noise monitoring. This alternative air monitoring location was approved by EPD on 29

MTR also formally declined the access to the designated AM5 location (topside developments at West Kowloon Terminus Site) on 15 July 2020. Alternative air monitoring location was identified at ground floor at the North of West Kowloon Station's station box (AM5A), in same direction to the area of major construction site activities in Zone 2A. This alternative air monitoring location was approved by EPD on 29 September 2020.

Grand Austin property management office formally declined our proposal of setting up noise monitoring instrument on its premises at the podium level (NM5) on 10 July 2020. Alternative noise monitoring location was identified at the Pedestrian road (ground floor) outside West Kowloon Station (NM5A), which is set closer to the construction site boundary with more direct line sight to the major site activities and higher exposure to the construction noise with no disturbance to the premises' occupants during noise monitoring activities. No management approval is required at the ground floor for conducting the noise monitoring. This alternative air monitoring location was approved by EPD on 29 September 2020.

The Environmental Quality Performance Limits for air quality and noise are shown in **Appendix C**.

The Event and Action Plan for air quality, construction noise, and landscape and visual are shown in **Appendix D**.

The EM&A programme followed the recommended mitigation measures in the EM&A Manual. The EM&A requirements as well as the summary of implementation status of the environmental mitigation measures are provided in **Appendix J**.

2 Impact Monitoring Methodology

2.1 Introduction

Air quality and noise monitoring methodology, including the monitoring locations, equipment used, parameters, frequency and duration etc., are described in this Section. The environmental monitoring schedules for the reporting period and the tentative monitoring Schedule for the coming month are provided in Appendix E.

The relevant EM&A monitoring requirements and details for landscape and audit impact, are also presented in this Section.

2.2 **Air Quality**

2.2.1 Monitoring Parameters, Frequency and Duration

Table 2.1 summarizes the monitoring parameters, frequency and duration of the TSP monitoring.

Table 2.1:	Air Quality Monitoring Parameters, Frequency and Duration	
Parameter	Frequency	Duration
24-hour TSP At least once in every six-days 24 hours		24 hours
1-hour TSP	At least 3 times every six-days	60 minutes

Monitoring Locations 2.2.2

Monitoring stations and locations are given in Table 2.2 and shown in Figure 1.

Table 2.2: **Air Quality Monitoring Station**

Monitoring Station	Location Description
АМЗА	Northeast corner of West Kowloon Station's station box (G/F)
AM4A	Southeast corner of West Kowloon Station's station box (G/F)
AM5A	North of West Kowloon Station's station box (G/F)

2.2.3 **Monitoring Equipment**

Continuous 24-hour TSP air quality monitoring was conducted using High Volume Sampler (HVS) (Model: TE-5170) located at the designated monitoring station. The HVS meets all the requirements stated in of the EM&A Manual. Portable direct reading dust meter was used to carry out the 1-hour TSP monitoring. Table 2.3 summarizes the equipment used in the impact air quality monitoring. Copies of the calibration certificates for the HVS, calibration kit and portable dust meters are attached in Appendix F.

Table 2.3: **TSP Monitoring Equipment**

Equipment	Model
24-hour TSP monitoring	
High Volume Sampler	TE-5170 (Serial No.: 4340; 3998; 4344)
Calibrator	TE-5025A (Orifice I.D.: 3543)

Equipment Model	
1-hour TSP monitoring	
Portable direct reading dust meter	Sibata LD-3B (Serial No.: 235811, 336338, 567188)

Calibration of the HVS (five-point calibration) using Calibration Kit was carried out every two months. The HVS calibration orifice will be calibrated annually. Calibration certificate of the TE-5025A Calibration Kit and the HVS are provided in **Appendix F**.

The 1-hour TSP monitoring should be determined periodically (e.g. annually) by the HVS to check the validity and accuracy of the results measured by direct reading method.

2.2.4 Monitoring Methodology

24-hour TSP Monitoring

Installation

The HVS was installed at the site boundary. The following criteria were considered in the installation of the HVS.

- A horizontal platform with appropriate support to secure the sampler against gusty wind was provided.
- The distance between the HVS and any obstacles, such as buildings, was at least twice the height that the obstacle protrudes above the HVS.
- A minimum of 2 metres separation from walls, parapets and penthouse was required for rooftop sampler.
- A minimum of 2 metres separation from any supporting structure, measured horizontally was required.
- No furnace or incinerator flues or building vent were nearby.
- Airflow around the sampler was unrestricted.
- The sampler has been more than 20 metres from any drip line.
- Permission was obtained to set up the sampler and to obtain access to the monitoring station.
- A secured supply of electricity is needed to operate the sampler.

Preparation of Filter Papers

- Glass fibre filters were labelled and sufficient filters that were clean and without pinholes were selected.
- The filters used are specified to have a minimum collection efficiency of 99 percent for 0.3 µm (DOP) particles.
- All filters were equilibrated in the conditioning environment for 24 hours before weighing. The conditioning environment temperature was around 25 °C and not variable by more than ±3 °C with relative humidity (RH) < 50% and was not variable by more than ±5 %. A convenient working RH was 40%. All preparation of filters was done by Hong Kong Laboratory Accreditation Scheme (HOKLAS) accredited laboratory.

Field Monitoring Procedures

- The power supply was checked to ensure the HVS works properly.
- The filter holder and the area surrounding the filter were cleaned.
- The filter holder was removed by loosening the four bolts and a new filter, with stamped number upward, on a supporting screen was aligned carefully.

- The filter was properly aligned on the screen so that the gasket formed an airtight seal on the outer edges of the filter.
- The swing bolts were fastened to hold the filter holder down to the frame. The pressure applied should be sufficient to avoid air leakage at the edges.
- The shelter lid was closed and was secured with the aluminium strip.
- The HVS was warmed-up for about 5 minutes to establish run-temperature conditions.
- A new flow rate record sheet was set into the flow recorder.
- The flow rate of the HVS was checked and adjusted at around 1.3 m³/min. The range specified in the EM&A Manual was between 0.6-1.7 m³/min.
- The programmable timer was set for a sampling period of 24 hours, and the starting time, weather condition and the filter number were recorded.
- The initial elapsed time was recorded.
- At the end of sampling, the sampled filter was removed carefully and folded in half length so that only surfaces with collected particulate matter were in contact.
- It was then placed in a clean plastic envelope and sealed.
- All monitoring information was recorded on a standard data sheet.
- Filters were sent to a Hong Kong Laboratory Accreditation Scheme (HOKLAS) accredited laboratory for analysis.

Maintenance and Calibration

- The HVS and its accessories are maintained in good working condition, such as replacing motor brushes routinely and checking electrical wiring to ensure a continuous power supply.
- HVSs were calibrated upon installation and thereafter at bi-monthly intervals. The calibration kits were calibrated annually.
- Calibration records for HVS and calibration kit are shown in Appendix F.

1-hour TSP Monitoring

Field Monitoring

The measuring procedures of the 1-hour dust meter are in accordance with the Manufacturer's Instruction Manual as follows:

- Turn the power on.
- Close the air collecting opening cover.
- Push the "TIME SETTING" switch to [BG].
- Push "START/STOP" switch to perform background measurement for 6 seconds.
- Turn the knob at SENSI ADJ position to insert the light scattering plate.
- Leave the equipment for 1 minute upon "SPAN CHECK" is indicated in the display.
- Push "START/STOP" switch to perform automatic sensitivity adjustment. This measurement takes 1 minute.
- Pull out the knob and return it to MEASURE position.
- Setting time period of 1 hour for the 1-hour TSP measurement.
- Push "START/STOP" to start the 1-hour TSP measurement.
- Regular checking of the time period setting to ensure monitoring time of 1 hour.

Maintenance and Calibration

- The 1-hour dust meter would be checked at 3-month intervals and calibrated at 1-year intervals throughout all stages of the air quality monitoring.
- Calibration records for direct dust meters are shown in Appendix F.

Weather Condition

 Meteorological data extracted from Hong Kong Observatory for the reporting month is provided in Appendix H.

2.3 Noise

2.3.1 Monitoring Parameters, Frequency and Duration

Table 2.4 summarizes the monitoring parameters, frequency and duration of noise monitoring. The noise in A-weighted levels L_{eq} , L_{10} and L_{90} are recorded in a 30-minute interval between 0700 and 1900 hours.

Table 2.4: Noise Monitoring Parameters, Period and Frequency

Time Period	Parameters	Frequency
Daytime on normal weekdays (0700-1900 hours)	$L_{eq}(30 min), L_{90}(30 min) \& L_{10} (30 min)$	Once every week

Note: *70 dB(A) for schools and 65 dB(A) during school examination periods.

If works are to be carried out during restricted hours, the conditions stipulated in the Construction Noise Permit (CNP) issued by the Noise Control Authority have to be followed.

2.3.2 Monitoring Location

Noise monitoring stations and locations are given in Table 2.5 and shown in Figure 1.

Table 2.5: Noise Monitoring Station

Monitoring Station	Location
NM2A	The Arch – Sun Tower (G/F)
NM3A	Xiqu Centre (G/F)
NM4A	Next to Tsim Sha Tsui Fire Station (G/F)
NM5A	Pedestrian road (G/F) outside West Kowloon Station

2.3.3 Monitoring Equipment

Integrating Sound Level Meter was used for noise monitoring. It was a Type 1 sound level meter capable of giving a continuous readout of the noise level readings including equivalent continuous sound pressure level (L_{Aeq}) and percentile sound pressure level (L_x). They comply with International Electrotechnical Commission Publications 651:1979 (Type 1) and 804:1985 (Type 1). **Table 2.6** summarizes the noise monitoring equipment model being used.

Table 2.6: Noise Monitoring Equipment

Equipment Model	
Integrating Sound Level Meter	Calibrator
AWA5661 (Serial No.: 301135)	Pulsar 100B (Serial No.: 039507)

2.3.4 Monitoring Methodology

Field Monitoring

- The microphone of the Sound Level Meter was set at least 1.2 m above the ground.
- Free Field measurement was made at NM5A monitoring location.
- The battery condition was checked to ensure the correct functioning of the meter.

- Parameters such as frequency weighting, the time weighting and the measurement time were set as follows:
 - frequency weighting: A
 - time weighting: Fast
- time measurement: 30 minutes intervals (between 0700-1900 on normal weekdays)
 Prior to and after each noise measurement, the meter was calibrated using a Calibrator for 94 dB at 1 kHz. If the difference in the calibration level before and after measurement was more than 1 dB, the measurement would be considered invalid and has to be repeated after re-calibration or repair of the equipment.
- During the monitoring period, the L_{eq}, L₁₀ and L₉₀ were recorded. In addition, any site observations and noise sources were recorded on a standard record sheet.
- A correction of +3dB(A) was made to the free field measurements.

Maintenance and Calibration

- The microphone head of the sound level meter and calibrator is cleaned with soft cloth at quarterly intervals.
- The sound level meter and calibrator are sent to the supplier or HOKLAS laboratory to check and calibrate at yearly intervals.
- Calibration records are shown in **Appendix F**.

Weather Condition

 Meteorological data extracted from Hong Kong Observatory for the reporting month is provided in Appendix H.

2.4 Landscape and Visual

2.4.1 Monitoring Program

Table 2.7 details the monitoring program (as proposed in the WKCD EIA report) for landscape and visual impact during the construction phase.

Table 2.7:Monitoring Program for Landscape and Visual Impact during ConstructionPhase

Stage	Monitoring Task	Frequency	Report	Approval
Construction	Monitor implementation of proposed mitigation measures during the construction stage.	Bi-weekly	ET to report on Contractor's compliance	Counter- signed by IEC

During the landscape and visual impact monitoring, any changes in relation to the landscape and visual amenity should be monitored with reference to the baseline conditions of the site. In addition, mitigation measures were proposed in the WKCD EIA report to minimise the landscape and visual impacts during the construction phase. The proposed mitigation measures as shown in Table 9.1 and Table 9.2 of the EM&A Manual should be checked for proper implementation.

3 Monitoring Results

3.1 Impact Monitoring

Air quality, noise and landscape and visual impact monitoring was undertaken in compliance with the EM&A Manual during the reporting month.

3.2 Air Quality Monitoring

3.2.1 1-hour TSP

Results of 1-hour TSP are summarised in **Table 3.1**. Graphical plots of the monitoring results are shown in **Appendix G**.

Monitoring	Monitoring	Start	1-ho	ur TSP (µ	g/m3)	Range	Action	Limit
Station	Date	Time	1st Result	2nd Result	3rd Result	(µg/m3)	Level (µg/m3)	Level (µg/m3)
	02-Jan-21	8:31	51	43	46			
	08-Jan-21	14:22	48	45	50			
АМЗА	14-Jan-21	8:27	69	66	71	43-71	280.4	500
	20-Jan-21	14:08	53	57	51			
	26-Jan-21	8:20	61	66	59			
	02-Jan-21	8:39	44	48	50			
	08-Jan-21	14:30	53	55	47			
AM4A	14-Jan-21	8:35	65	72	74	44-74	44-74 278.5	500
	20-Jan-21	14:16	50	55	58			
	26-Jan-21	8:28	57	62	65			
	02-Jan-21	8:54	49	45	43			
AM5A	08-Jan-21	14:47	49	51	54			
	14-Jan-21	8:50	71	75	73	43-75	275.4	Level) (µg/m3) 500
	20-Jan-21	14:33	56	48	53			
	26-Jan-21	8:43	64	61	67			

Table 3.1: Summary of 1-hour TSP monitoring results

3.2.2 24-hour TSP

Results of 24-hour TSP are summarised in **Table 3.2**. Graphical plots of the monitoring results are shown in **Appendix G**.

Table 3.2: Summary of 24-hour TSP monitoring results

Monitoring Station	Monitoring Date	Start Time	Monitoring Results (µg/m³)	Range (µg/m³)	Action Level (µg/m³)	Limit Level (µg/m³)
	02-Jan-21	10:00	42.2			
	08-Jan-21	10:00	43.2	40.0.04.0 450.4		260
АМЗА	14-Jan-21	10:00	64.8	42.2-64.8	152.4	260
	20-Jan-21	10:00	52.3			

Monitoring Station	Monitoring Date	Start Time	Monitoring Results (µg/m³)	Range (µg/m³)	Action Level (μg/m³)	Limit Level (µg/m³)
	26-Jan-21	10:00	56.3			
	02-Jan-21	10:00	45.6			
	08-Jan-21	10:00	47.5			
AM4A	14-Jan-21	10:00	67.1	45.6-67.1	152.6	260
	20-Jan-21	10:00	47.9			
	26-Jan-21	10:00	56.8			
	02-Jan-21	10:00	46.6			
	08-Jan-21	10:00	47.7			
AM5A	14-Jan-21	10:00	73.7	46.6-73.7	141.1	260
	20-Jan-21	10:00	48.2			
	26-Jan-21	10:00	58.4			

No exceedance of 1-hour and 24-hour TSP (Action or Limit Level) was recorded in the reporting period.

3.3 Noise Monitoring

The construction noise monitoring results are summarized in **Table 3.3**. Graphical plots of the monitoring data and the station set-up as façade and free-field measurements are shown in **Appendix G**.

Table 3.3:	Summary of no	ise monitoring resເ	ults during normal	weekdays
------------	---------------	---------------------	--------------------	----------

	-				
Monitoring Stations	Monitoring Date	Start Time	End Time	L _{eq} (30 mins) dB(A)	Limit Level for L _{eq} (dB(A))
	02-Jan-21	08:31	09:01	63.2	
-	08-Jan-21	14:22	14:52	63.9	
NM2A	14-Jan-21	08:27	08:57	64.2	75
	20-Jan-21	14:08	14:38	64.5	
	26-Jan-21	08:20	08:50	64.1	
_	02-Jan-21	10:01	10:31	73.6	
	08-Jan-21	15:55	16:25	74.1	
NM3A	14-Jan-21	09:57	10:27	73.7	75
	20-Jan-21	15:41	16:11	71.2	
	26-Jan-21	09:50	10:20	70.5	
_	02-Jan-21	10:36	11:06	69.0	
	08-Jan-21	16:30	17:00	69.1	
NM4A	14-Jan-21	10:32	11:02	67.8	70/65^#
	20-Jan-21	16:16	16:46	64.0	
_	26-Jan-21	10:25	10:55	64.2	
	02-Jan-21	09:21	09:51	65.2	
-	08-Jan-21	15:14	15:44	64.6	
NM5A*	14-Jan-21	09:17	09:47	65.7	75
-	20-Jan-21	15:00	15:30	65.0	
-	26-Jan-21	09:10	09:40	64.5	

Remarks:

* +3dB (A) correction was applied to free-field measurement.

^ 70 dB(A) for schools and 65 dB(A) during school examination periods.

[#] School examination was conducted on 20 and 26 January 2021 during the reporting period.

No exceedance (Action/Limit Level) of construction noise was recorded in the reporting period.

Construction works were extended to 1900-2300 hours on 2 January, 4 to 9 January, 11 to 16 January, 18 to 23 January, and 25-30 January 2021 and to holidays on 3, and 24 January 2021. In accordance with the EM&A Manual, additional monitoring was carried out during the restricted hours on 2, 3, 8, 14, 20, 24 and 26 January 2021. The L_{eq} (5 mins) is in the range of 53.6-69.9 dB(A). Construction Noise Permits for the works carried out during restricted hours were obtained and listed in **Table 4.2**.

One noise related environmental complaint (which was documented and found not related to Zone 2A construction activities) was received during the reporting period. The noise levels recorded during the monitoring period were below the limit level.

3.4 Landscape and Visual Impact

Landscape and visual impact inspections were conducted as part of the weekly site inspections on 07 and 21 January 2021 for Zone 2A during the reporting month. As reviewed by the registered Landscape Architect, no adverse comment on landscape and visual aspects was made during these inspections.

The landscape and visual mitigation measures were implemented during the reporting period. The summary of implementation status of the environmental mitigation measures is provided in **Appendix J**.

4 Site Environmental Management

4.1 Site Inspection

Construction phase weekly site inspections were carried out on 7, 14, 21 and 28 January 2021. The joint site inspection with IEC, ET, ER and Contractor was held on 14 January 2021. All observations have been recorded in the site inspection checklist and passed to the Contractor together with the appropriate recommended mitigation measures where necessary. The key observations from the site inspections and associated recommendations are summarized in **Table 4.1**.

Inspection Date	Parameter	Observation / Recommendation	Contactor's Responses / Action(s) Undertaken	Close-out (Date)
07-Jan-21	Water Quality	The contractor was reminded to provide drainage facility to pump the water away to the treatment facility.	The contractor has provided drainage facility.	13-Jan-21
07-Jan-21	Noise	Noise barriers were suggested to cover the plant as far as possible.	The contractor has provided more noise barriers to cover the plant as far as possible minimise construction noise impact.	08-Jan-21
14-Jan-21	Air Quality	Dusty haul road was observed. Contractor was reminded to implement more frequent dust suppression measures.	The contractor has sprayed water on road regularly to supress dust.	14-Jan-21
14-Jan-21	Water Quality	The contractor was reminded to provide sufficient prevention measures to prevent muddy water direct discharge to the sea.	The contractor has provided barrier to prevent muddy water direct discharge to the sea.	18-Jan-21
21-Jan-21	Air Quality	The contractor was reminded to check / maintain the plants regularly to minimise generation of dark smoke emission.	The contractor has checked the plant and changed the diesel filter to minimise generation of dark smoke emission.	21-Jan-21
21-Jan-21	Water Quality	The contractor was reminded to clean the U-channel regularly.	The contractor has cleaned the U-channel.	22-Jan-21
21-Jan-21	Noise	Noise barriers were suggested to set at proper direction to minimise noise impact to the nearby noise sensitive receiver.	The contractor has set the noise barrier at direction facing the nearby noise sensitive receiver.	21-Jan-21
28-Jan-21	Air Quality	The contractor was reminded to check / maintain the plants regularly to minimise generation of dark smoke emission.	The contractor has checked the plant and changed the diesel filter to minimise generation of dark smoke emission.	28-Jan-21
28-Jan-21	Water Quality	The contractor was suggested to provide higher bunding near the U-channel.	The contractor has provided higher soil bunding to prevent materials washed into the U- channel.	30-Jan-21

Table 4.1: Summary of Site Inspections and Recommendations for Zone 2A

Inspection	Parameter	Observation /	Contactor's Responses /	Close-out
Date		Recommendation	Action(s) Undertaken	(Date)
28-Jan-21	Noise	Noise barriers were suggested to set at proper direction to minimise noise impact to the nearby noise sensitive receiver.	The contractor has set the noise barrier at direction facing the nearby noise sensitive receiver.	30-Jan-21

4.2 Advice on the Solid and Liquid Waste Management Status

The Contractors have been registered as a chemical waste producer for the Project. Construction and demolition (C&D) material sorting will be carried out on site. A sufficient number of receptacles were available for general refuse collection.

As advised by the Contractor, 215.99 tonnes, 6580.77 tonnes of inert C&D material were disposed of as public fill to Tseung Kwan O Area 137 Public Fill, and Tuen Mun Area 38 Public Fill respectively, while 18.94 tonnes and 1.00 tonne of general refuse were disposed of at SENT landfill and WENT landfill. 0.0 tonne of metals, 0.0 tonne of paper/cardboard packaging, 0.0 tonne of plastics and 0.0 tonne of timber was collected by recycling contractors in the reporting month. 52.90 tonnes of inert C&D material were reused on site. 0.0 tonne of inert C&D material were reused in other projects and 0.0 tonnes of inert C&D material was imported for reuse at site in the reporting month. 0.0 tonne of inert C&D material was disposed to sorting facility and 0.0 tonne of chemical waste was collected by licensed contractors in the reporting period.

The cumulative waste generation records for Zone 2A are shown in Appendix I.

4.3 Status of Environmental Licenses and Permits

The environmental permits, licenses, and/or notifications on environmental protection for this Project which were valid during the period are summarised in **Table 4.2**.

Table 4.2. 51		s, Licenses and Pen	mits for Zone ZA	
Permit / License	Valid	Period	Status	Remarks
No. / Notification / Reference No.	From	То	_	
Chemical Waste Pro	ducer Registration			
WPN5113-256- B2597-01	10-Sep-20		Valid	
Billing Account Con	struction Waste Dispos	al		
7037500	09-Jun-20		Account Active	
Construction Noise	Permit			
GW-RE-1040-20	11-Dec-20	10-Jan-21	Valid in the reporting period	Piling Works
GW-RE-0006-21	11- Jan-21	10-Mar-21	Valid	Piling Works
Wastewater Dischar	ge License			
457581			Under EPD Approval	
Notification under A	ir Pollution Control (Co	nstruction Dust) Reg	ulation	
456376	21-May-20		Notified	
Permit to Dump Mat	erial at sea under Dump	ing at Sea Ordinance	;	
461895			Under EPD Approval	

Table 4.2: Status of Environmental Submissions, Licenses and Permits for Zone 2A

4.4 Recommended Mitigation Measures

The EM&A programme followed the recommended mitigation measures in the EM&A Manual. The EM&A requirements as well as the summary of implementation status of the environmental mitigation measures are provided in **Appendix J**. In particular, the following mitigation measures were brought to attention during the site inspections:

Air Quality

- Maintain water spraying for active construction area and main haul road.
- Check / maintain the plants regularly to minimise generation of dark smoke emission.

Noise Control

- Provide more noise barrier to cover the plant as far as possible to minimise construction noise impact.
- Noise barrier shall be set at proper direction to minimise noise impact to the nearby noise sensitive receiver.

Temporary Water Drainage System & Water Quality

- The temporary drainage system should be updated with the site condition.
- U-channel should be cleaned regularly.
- The water treatment facilities should be cleaned regularly to maintain proper function.
- Barrier should be provided to avoid muddy water flow out from the working area.
- Higher bunding shall be provided near the U-channel to prevent the washing away of materials into any drainage system.
5 Compliance with Environmental Permit

The status of the required submission under the EP during the reporting period is summarized in **Table 5.1**.

Table 5.1: Status of Submissions under the Environmental Perm

EP Condition	Submission	Submission Date
Condition 3.4	Monthly EM&A Report for December 2020	14 January 2021

6 Report in Non-compliance, Complaints, Notification of Summons and Successful Prosecutions

6.1 Record on Non-compliance of Action and Limit Levels

There was no breach of Action or Limit levels for Air Quality (1-hour TSP and 24-hour TSP) and Noise monitoring in this reporting month (the noise related environmental complaint received in the reporting month was not related to Zone 2A construction site).

6.2 Record on Environmental Complaints Received

One environmental complaint was recorded in the reporting month.

On 27 January 2021, WKCD has received an enquiry from the office of Mr. Derek Hung (YTMDC member) about the noise from WKCD site. A resident from The Harbourside, who has reflected the noise problem since March 2020, expressed that he/she has been affected by the construction noise around 7:15 am on 27 January 2021. The resident understood that the working hours permitted by government is 7am-7pm, except public holidays. However, he/she would like to seek if we could reduce noise disturbance, especially before 9am.

After investigation and analysis of the complaint video sent by the complainant on 27 January 2021, it appeared that, no construction works were formally carried out in Zone 2A site in the morning over 07:00-07:30 am. Moreover, the noise control measures have been enhanced on site (via trainings, noise barrier erection, noise measurement and monitoring with no exceedance, and promotional activities). Thus, the complaint could not be attributable to Zone 2A. However, the Contractor is recommended to enhance the site management and noise control. The Contractor is also recommended to maintain on-site noise control measures in order to minimize disturbance to site neighbors.

The cumulative statistics on complaints were provided in Appendix K.

6.3 Record on Notifications of Summons and Successful Prosecution

No notifications of summons or successful prosecutions were received this month. The cumulative statistics on notifications of summons and successful prosecutions were provided in **Appendix** K.

7 Future Key Issues

7.1 Construction Works for the Coming Month(s)

- Grouting Curtain Works (Trial 1 & Trial 2)
 - Trial Grouting (Trial 1 & Trial 2)
- Bored Pile Works
 - Bored Pile Construction
- ELS (Stage 1)
 - King Post
 - Grouting Works
 - Pipe Pile Construction

7.2 Key Issues for the Coming Month

Key issues to be considered in the coming month include:

- Generation of dust from construction works;
- Noise impact from piling works;
- Generation of site surface runoffs and wastewater from activities on-site;
- Management of stockpiles and slopes, particularly on rainy days;
- Sorting, recycling, storage and disposal of general refuse and construction waste; and
- Management of chemicals and avoidance of oil spillage on-site.

7.3 Monitoring Schedule for the Coming Month

The environmental site inspection and environmental monitoring will be continued in the coming month. Impact monitoring for air quality and noise in accordance with the approved EM&A Manual has commenced since 3 October 2020 for Zone 2A. The tentative monitoring schedule for the coming month is shown in the **Appendix E**.

8 **Conclusions and Recommendations**

8.1 Conclusions

The EM&A programme as recommended in the EM&A Manual has been undertaken with the commencement of the construction activities at Zone 2A on 3 October 2020.

Monitoring of air quality and noise with respect to the Projects is underway. In particular, the 1hour TSP, 24-hour TSP, noise level (as L_{eq} , 30 minutes) under monitoring have been checked against established Action and Limit levels. There was no breach of Action or Limit levels for Air Quality (1-hour TSP and 24-hour TSP) and Noise monitoring in this reporting month.

One environmental complaint was recorded in the reporting month. No notifications of summons or successful prosecutions were received during the reporting month.

Weekly construction phase site inspections and bi-weekly landscape and visual impact inspections were conducted during the reporting month as required. It was observed that the Contractors had implemented all possible and feasible mitigation measures to mitigate the potential environmental impacts during construction phase works.

8.2 Recommendations

Potential environmental impacts due to the construction activities, including air quality, noise, water quality, waste, landscape and visual, will be monitored or reviewed. The recommended environmental mitigation measures shall be implemented on site and regular inspections as required will be carried out to ensure that the environmental conditions are acceptable.

Figure 1 Site Layout Plan and Monitoring Stations

Appendices

- A. Project Organisation
- B. Tentative Construction Programme
- C. Action and Limit Levels for Construction Phase
- D. Event and Action Plan for Air Quality, Noise, Landscape and Visual Impact
- E. Monitoring Schedule
- F. Calibration Certifications
- G. Graphical Plots of the Monitoring Results
- H. Meteorological Data Extracted from Hong Kong Observatory
- I. Waste Flow table
- J. Environmental Mitigation Measures Implementation Status
- K. Cumulative Statistics on Complaints, Notifications of Summons and Successful Prosecutions

A. Project Organisation

Table A-1: Contract Information

Company Name	Role	Name	Telephone	Email
West Kowloon Cultural District Authority	WKCDA Representative & Project ETL	Mr. C.K. WU	5506 9178	ck.wu@wkcda.hk
Meinhardt Infrastructure & Environment Limited	Independent Environmental Checker	Ms. Claudine LEE	2859 5409	caludinelee@meinhardt.com.hk
AECOM Asia Company Limited	Resident Engineer	Mr. Alex GBAGUIDI	3619 6287	alex.gbaguidi@aecom.com
Bachy Soletanche – Fujita Corporation Joint	Quality, Safety, Health &	Mr. Vincent CHAN	9733 7310	Chuen.Kwok.CHAN@soletanche-
Venture	Environmental Manager			bachy.com
Bachy Soletanche – Fujita Corporation Joint	Environmental Engineer	Mr. William CHAN	54083045	william-hou.chan@soletanche-
Venture				bachy.com
Apex Testing & Certification Limited	Contractor's Environmental Team Leader	Mr. Calvin LUI	9629 9718	calvinlui@apextestcert.com

B. Tentative Construction Programme

Project Name: Foundation and ELS Works for Integrated Basement and Underground Road in Zone 2A of the West Kowloon Cultural District

3-Month Rolling Programme

		Duration (Cal. Day)								2021							
Activity ID	Activity Description		Start Date	Finish Date	Jan					Feb				Mar			
Adding ib					1 W34	8 W35	15 W36	22 W37	29 W38	5 W39	12 W40	19 W41	26 W42	5 W43			26 W46
	Preliminaries Works																
PRE. 10010	Water, Power and Discharge Point Installation	174	8-May-20	28-Oct-20													
	Grouting Works (Trial 1 & Trial 2)																
	Pipe Pile Construction (Trial 1 and 2) (40/40 Nos Completed)	36	7-Oct-20	11-Nov-20													
	Trial Grouting (Trial 1 and 2) - Stage 2 grouting (24/48 Nos Completed)	54	19-Dec-20	10-Feb-21													
	ELS (Stage 1) - Grouting / Pipe Pile Works																
2A1. 10290	King Post (0/65 Nos Completed)	59	1-Apr-21	29-May-21													
	Bored Pile Works																
	Bored Pile Construction (Total 32 Nos. 2~4 Workfront)																
	BP31L, BP33L, BP34I1, BP34G, BP31P, BP36F1, BP31R, BP33G (6 Nos. Cast; 1 Nos. completed RCD; 1 Nos. RCD in progress)	198	9-Nov-20	25-May-21													
	ELS (Stage 1) - Grouting / Pipe Pile Works																
2A2. 10210	Stage 1a & 1b grouting (155/1054 Nos Completed)	404	22-Oct-20	29-Nov-21													
2A2. 10180	Pipe Pile Construction (1/523 Nos Completed)	408	17-Nov-20	29-Dec-21				i I	i I				i I				

- Actual

- Remaining Works

- Critical Remaining Works

C. Action and Limit Levels for Construction Phase

Air Quality

The Action and Limit Levels for 1-hour and 24-hour TSP for the monitoring stations are presented in following tables:

Table C-1: Action and Limit Levels for 1-hour TSP

Monitoring Station	Action Level (µg/m3)	Limit Level (µg/m3)
АМЗА	280.4	500
AM4A	278.5	500
AM5A	275.4	500

Table C-2: Action and Limit Levels for 24-hour TSP

Monitoring Station	Action Level (µg/m3)	Limit Level (μg/m3)
AM3A	152.4	260
AM4A	152.6	260
AM5A	141.1	260

<u>Noise</u>

The Action and Limit Levels for Noise for the monitoring stations are presented in following table:

Table C-3: Action and Limit Levels for Construction Noise

Time Period & Monitoring Locations	Action Level	Limit Level
NM2A, NM3A, NM4A and NM5A		
0700-1900 hours on normal weekdays	When one valid documented complaint is	75
	received from any one of the sensitive receiver	

Note:

*Reduce to 70dB(A) for school and 65 dB(A) during school examination period.

D. Event and Action Plan for Air Quality, Noise, Landscape and Visual Impact

Air Quality

In case the Action and Limit Levels are not complied during construction stage, the following Event and Action Plan should be followed:

Event	Action						
Event	ET	WKCDA	Contractor				
Action Level							
1. Exceedance for one sample	 Identify source, investigate the causes of exceedance and propose remedial measures; Inform IEC and WKCDA; Repeat measurement to confirm finding; Increase monitoring frequency to daily. 	 Check monitoring data submitted by ET; Check Contractor's working method. 	1. Notify Contractor	 Rectify any unacceptable practice; Amend working methods if appropriate. 			
2. Exceedance for two or more consecutive samples	 Identify source; Inform IEC and WKCDA; Advise the WKCDA on the effectiveness of the proposed remedial measures; Repeat measurements to confirm findings; Increase monitoring frequency to daily; Discuss with IEC and Contractor on remedial actions required; If exceedance continues, arrange meeting with IEC and WKCDA; If exceedance stops, cease additional monitoring. 	 Check monitoring data submitted by ET; Check Contractor's working method; Discuss with ET and Contractor on possible remedial measures; Advise the ET on the effectiveness of the proposed remedial measures; Monitor the implementation of remedial measures. 	 Confirm receipt of notification of failure in writing; Notify Contractor; Ensure remedial measures properly implemented. 	 Submit proposals for remedial to WKCDA within three working days of notification; Implement the agreed proposals; Amend proposal if appropriate. 			

Table D-1: Typical Event and Action Plan for Air Quality

Frend	Action						
Event	ET	IEC	WKCDA	Contractor			
Limit Level							
1. Exceedance for one sample	 Identify source, investigate the causes of exceedance and propose remedial measures; Inform WKCDA, Contractor and EPD; Repeat measurement to confirm finding; Increase monitoring frequency to daily; Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and WKCDA informed of the results. 	 Check monitoring data submitted by ET; Check Contractor's working method; Discuss with ET and Contractor on possible remedial measures; Advise the WKCDA on the effectiveness of the proposed remedial measures; Monitor the implementation of remedial measures. 	 Confirm receipt of notification of failure in writing; Notify Contractor; Ensure remedial measures properly implemented. 	 Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IEC within three working days of notification; Implement the agreed proposals; Amend proposal if appropriate. 			
2. Exceedance for two or more consecutive samples	 Notify IEC, WKCDA, Contractor and EPD; Identify source; Repeat measurement to confirm findings; Increase monitoring frequency to daily; Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented; Arrange meeting with IEC and WKCDA to discuss the remedial actions to be taken; Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and WKCDA informed of the results; If exceedance stops, cease additional 	 Check monitoring data submitted by ET; Check Contractor's working method; Discuss amongst WKCDA, ET, and Contractor on the potential remedial actions; Review Contractor's remedial actions whenever necessary to assure their effectiveness and advise the WKCDA accordingly; Monitor the implementation of remedial measures. 	 Confirm receipt of notification of failure in writing; Notify Contractor; In consolidation with the IEC, agree with the Contractor on the remedial measures to be implemented; Ensure remedial measures properly implemented; If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated. 	 Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IEC within three working days of notification; Implement the agreed proposals; Resubmit proposals if problem still not			

Construction Noise

In case the Action and Limit Levels are not complied during construction stage, the following Event and Action Plan should be followed:

Table D-2: Event and Action Plan for Construction Noise

Event	Action					
Event	ET	IEC	WKCDA	Contractor		
Action Level	 Notify WKCDA, IEC and Contractor; Carry out investigation; Report the results of investigation to the IEC, WKCDA and Contractor; Discuss with the IEC and Contractor on remedial measures required; Increase monitoring frequency to check mitigation effectiveness. 	 Review the investigation results submitted by the ET; Review the proposed remedial measures by the Contractor and advise the WKCDA accordingly; Advise the WKCDA on the effectiveness of the proposed remedial measures. 	 Confirm receipt of notification of failure in writing; Notify Contractor; In consolidation with the IEC, agree with the Contractor on the remedial measures to be implemented; Supervise the implementation of remedial measures. 	 Submit noise mitigation proposals to IEC and WKCDA; Implement noise mitigation proposals 		
Limit Level	 Inform IEC, WKCDA, Contractor and EPD; Repeat measurements to confirm findings; Increase monitoring frequency; Identify source and investigate the cause of exceedance; Carry out analysis of Contractor's working procedures; Discuss with the IEC, Contractor and WKCDA on remedial measures required; Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and WKCDA informed of the results; If exceedance stops, cease additional 	 Discuss amongst WKCDA, ET, and Contractor on the potential remedial actions; Review Contractor's remedial actions whenever necessary to assure their effectiveness and advise the WKCDA accordingly. 	 Confirm receipt of notification of failure in writing; Notify Contractor; In consolidation with the IEC, agree with the Contractor on the remedial measures to be implemented; Supervise the implementation of remedial measures; If exceedance continues, consider stopping the Contractor to continue working on that portion of work which causes the exceedance is abated. 	 Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IEC and WKCDA within 3 working days of notification; Implement the agreed proposals; Submit further proposal if problem still not under control; Stop the relevant portion of works as instructed by the WKCDA until the exceedance is abated. 		

Landscape and Visual Impact

In case of non-compliance of landscape and visual impacts, procedures in accordance with the Event and Action Plan should be followed:

Frent	Action						
Event	Action	Event	Action	Event			
Design Check	 Design check to make sure the design complies with all the proposed mitigation measures in the EIA report; Prepare and submit report. 	 Check report submitted by ET; Recommend remedial design if necessary. 	1. Undertake remedial design if necessary.	-			
Non-conformity on one occasion	 Identify source of non-conformity; Report to IEC and WKCDA; Discuss remedial actions with IEC, WKCDA and Contractor; Monitor remedial actions until rectification has been completed. 	 Check and verify source of non- conformity; Discuss remedial actions with ET and Contractor; Advise WKCDA on effectiveness of proposed remedial actions; Check implementation of remedial actions. 	 Notify Contractor; Ensure remedial actions are properly implemented. 	 Amend working method as necessary; Rectify damage and undertake necessary replacement and remedial actions. 			
Repeated non- conformity	 Identify source of non-conformity; Report to IEC and WKCDA; Increase monitoring frequency; Discuss remedial actions with IEC, WKCDA and Contractor; Monitor remedial actions until rectification has been completed; If non-conformity rectified, reduce monitoring frequency back to normal. 	 Check and verify source of non- conformity; Check Contractor's working method; Discuss remedial actions with ET and Contractor; Advise WKCDA on effectiveness of proposed remedial actions; Supervise implementation of remedial actions. 	 Notify Contractor; Ensure remedial actions are properly implemented. 	 Amend working method as necessary; Rectify damage and undertake necessary replacement and remedial actions. 			

Table D-3: Event and Action Plan for Landscape and Visual Impact

E. Monitoring Schedule

Notes:

AM3A - Northeast corner of West Kowloon Station's station box (G/F)

AM4A - Southeast corner of West Kowloon Station's station box (G/F)

AM5A - North of West Kowloon Station's station box (G/F)

NM2A - The Arch – Sun Tower (G/F)

NM3A - Xiqu Centre (G/F)

NM4A - Next to Tsim Sha Tsui Fire Station (G/F)

NM5A - Pedestrian road (G/F) outside West Kowloon Station

January 2021 (Hong Kong)

Sun	Mon	Tue	Wed	Thu	Fri	Sat
27	28	29	30	31 New Year's Eve	1 • New Year's Day	2 AM3A,AM4A,AM5A - 24-hr TSP, 1-hr TSP X 3 NM2A,NM3A,NM4A,NM5A - Noise Impact Monitoring
3	4	5	6	7	8 AM3A,AM4A,AM5A - 24-hr TSP, 1-hr TSP X 3 NM2A,NM3A,NM4A,NM5A - Noise Impact Monitoring	9
10	11	12	13	14 AM3A,AM4A,AM5A - 24-hr TSP, 1-hr TSP X 3 NM2A,NM3A,NM4A,NM5A - Noise Impact Monitoring	15	16
17	18	19	20 AM3A,AM4A,AM5A - 24-hr TSP, 1-hr TSP X 3 NM2A,NM3A,NM4A,NM5A - Noise Impact Monitoring	21	22	23
24	25	26 AM3A,AM4A,AM5A - 24-hr TSP, 1-hr TSP X 3 NM2A,NM3A,NM4A,NM5A - Noise Impact Monitoring	27	28	29	30
31 • Federal Holidays	1	2	3	4	5	6

Notes:

AM3A - Northeast corner of West Kowloon Station's station box (G/F)

AM4A - Southeast corner of West Kowloon Station's station box (G/F)

AM5A - North of West Kowloon Station's station box (G/F)

NM2A - The Arch – Sun Tower (G/F)

NM3A - Xiqu Centre (G/F)

NM4A - Next to Tsim Sha Tsui Fire Station (G/F)

NM5A - Pedestrian road (G/F) outside West Kowloon Station

February 2021 (Hong Kong)

Sun	Mon	Tue	Wed	Thu	Fri	Sat
31	1	2	3	4	5	6
	AM3A,AM4A,AM5A - 24-hr TSP, 1-hr TSP X 3 NM2A,NM3A,NM4A,NM5A - Noise Impact Monitoring					AM3A,AM4A,AM5A - 24-hr TSP, 1-hr TSP X 3 NM2A,NM3A,NM4A,NM5A - Noise Impact Monitoring
7	8	9	10 AM3A,AM4A,AM5A - 24-hr TSP, 1-hr TSP X 3 NM2A,NM3A,NM4A,NM5A - Noise Impact Monitoring	11	12 • Chinese Lunar New Year's Day	 13 Second day of Chinese Lunar New Year
14 Valentine's Day	15 • Fourth day of Chinese Lunar New Year	AM3A,AM4A,AM5A - 24-hr TSP, 1-hr TSP X 3 NM2A,NM3A,NM4A,NM5A - Noise Impact Monitoring	17	AM3A,AM4A,AM5A - 24-hr TSP, 1-hr TSP X 3 NM2A,NM3A,NM4A,NM5A - Noise Impact Monitoring	19	20
21	22	23	24 AM3A,AM4A,AM5A - 24-hr TSP, 1-hr TSP X 3 NM2A,NM3A,NM4A,NM5A - Noise Impact Monitoring	25	26	27
28	1	2	3	4	5	6

F. Calibration Certifications

RECALIBRATION

DUE DATE:

November 2, 2021

Certificate of Calibration

			Calibration	Certificati	on Informat	tion	······································	
Cal. Date:	November	2, 2020	Roots	meter S/N:	438320	Та:	Ta: 294	
Operator:	Jim Tisch					Pa: 756.7		mm Hg
Calibration	Model #:	TE-5025A	Calib	prator S/N:	3543			Ū
					1			1
		Vol. Init	Vol. Final	ΔVol.	ΔTime	ΔΡ	ΔΗ	
	Run 1	(m3)	(m3)	(m3)	(min)	(mm Hg)	(in H2O)	
	2	1	2	1		3.2 6.4	2.00	
	3	5		<u>_</u>		8.0 8.0	4.00	
	4	7	8	1		8.9	5.50	
	5	9	10	1	0.7100	12.9	8.00	
				Data Tabula				
	Vstd	Qstd	$\sqrt{\Delta H \left(\frac{Pa}{Pstd}\right)}$	<u>)(Tstd</u>) Ta)		Qa	$\sqrt{\Delta H(Ta/Pa)}$	
	(m3)	(x-axis)	(y-axi	is)	Va	(x-axis)	(y-axis)	
	1.0049	0.7022	1.420		0.9958	0.6959	0.8815	
	1.0006	0.9897	2.009		0.9915	0.9808	1.2467	
	0.9985	1.1094	2,246		0.9894	1.0994	1.3938	
	0.9973	1.1651	2.355		0.9882	1.1545	1.4619	
	0.9920	1.3971	2.841 2.039		0.9830	1.3844	1.7631	
	QSTD		-0.012			<u>m=</u> b=	<u>1.27701</u> -0.00805	
	QJID	<u>r=</u>	0.999		QA	r=	0.99995	
		········		Calculatio		-		
	Vstd=	ΔVol((Pa-ΔP)	/Pstd)(Tstd/Ta			ΔVol((Pa-Δf	P)/Pa)	
		Vstd/ΔTime	/ / (/	7	Qa=			
	i		For subsequ	ent flow ra	te calculation			
	Qstd=	1/m ((Pa (Tstd Pstd Ta)-b)				
	Standard	Conditions				·····	<u>_</u>	
Tstd:	298.15	°K				RECAL	IBRATION	
Pstd:		mm Hg				mana and a a	unial secoliter-st-	
U. onther-		ey or roading (iii	1201				nual recalibratio	-
		er reading (in eter reading (egulations Part 5	
		erature (°K)	111115/				Reference Meth ended Particulate	
		essure (mm l	-1g)					
: intercept		•	<u></u>		the	: Aunosphe	re, 9.2.17, page 3	iυ
n: slope				1				

Tisch Environmental, Inc.

145 South Miami Avenue Village of Cleves, OH 45002 <u>www.tisch-env.com</u> TOLL FREE: (877)263-7610 FAX: (513)467-9009

			Site I	nformation			
	Location: AM3A Sampler: TE-5170			Zones 2A at West Site ID: Kowloon Cultural Serial No: ⁴³⁴⁰		Date: 11-Nov-20 Tech: CS Tang	
				Conditions			
Barometric Pressure (in Hg): 30.14					Corrected Pre	ssure (mm Hg): 766	
Temperature (deg F): 73						erature (deg K): 296	
	-	Press. (in Hg): 3				erage (mm Hg): 766	
	Average	Temp. (deg F): 7	5		Average	Temp. (deg K): 296	
	Malaas		Calibra	ation Orifice	Orthe Slamon	2 02026	
	Make: 5	risch FE-5025A			Qstd Slope: Qstd Intercept:		
	Serial#:				Date Certified:		
			Calibratio	on Informatio	on		
Plate or	H2O	Qstd	I	IC			
Test #	(in)	(m3/min)	(chart)	(corrected)		Linear Regression	
1	12.20	1.732	53.0	53.39		Slope: 29.9241	
2	10.50	1.607	48.0	48.36		Intercept: 1.1241	
3	7.30	1.341	41.0	41.30		Corr. Coeff: 0.9982	
4	4.40	1.043	33.0	33.24			
5	2.30	0.756	23.0	23.17	# c	of Observations: 5	
			C	alculations			
d = 1/m[Sqrt(H)]	I2O(Pa/Pstd)(Ts	td/Ta))-b]			m = sampler slo	pe	
= I[Sqrt(Pa/Psto	d)(Tstd/Ta)]				b = sampler inter	ercept	
					I = chart response		
d = standard flo					Tav = daily avera		
= corrected cha					Pav = daily avera	ge pressure	
actual chart res							
= calibrator Qs	-					verage I (chart): 40	
= calibrator Qst					Averag	ge Flow Calculation m3/min	
		ibration (deg K)				1.295591082	
	re during calibra	ition (mm Hg)			Averag	ge Flow Calculation in CFM	
d = 298 deg K d = 760 mm He					G	45.74732111	
d = 760 mm Hg	-	plar flow.				ple Time (Hrs): 1.0	
	culation of sam					Total Flow in m3/min	
u((1)[Sqft(298/1	Cav)(Pav/760)]-t))				77.73546492 Total Flow in CFM	
						2744.839266	
OTE: Ensure cal	libration orifice	has been certifie	d within 12 m	onths of use		2744.859200	

			Site I	nformation		
Location: ² Sampler: ⁷			Site ID: Serial No:	Zones 2A a Kowloon Cu 4340		Date: 9-Jan-21 Tech: ^{CS} Tang
			Site	Conditions		
Barometric Pressure (in Hg): 30.25 Temperature (deg F): 51 Average Press. (in Hg): 30.25 Average Temp. (deg F): 51					Temp Corrected Ave	ssure (mm Hg): 768 erature (deg K): 284 erage (mm Hg): 768 Temp. (deg K): 284
			Calibra	ation Orifice		
Make: Tisch Model: TE-5025A Serial#: 3543					Qstd Slope: Qstd Intercept: Date Certified:	-0.01298
			Calibratio	on Informatic	n	
Plate or Test # 2 3 4 5	H2O (in) 12.30 10.40 7.20 4.50 2.20	Qstd (m3/min) 1.779 1.636 1.363 1.079 0.756	I (chart) 53.0 48.0 41.0 33.0 23.0	IC (corrected) 54.63 49.48 42.26 34.02 23.71	# 0	Linear Regression Slope: 29.6607 Intercept: 1.5918 Corr. Coeff: 0.9993
std = 1/m[Sqrt(F 2 = I[Sqrt(Pa/Pst std = standard fl 2 = corrected cha = actual chart re	ow rate art response	td/Ta))-b]	C	alculations	m = sampler slo b = sampler into I = chart respon Tav = daily avera Pav = daily avera	ercept ise age temperature
= calibrator Qs = calibrator Qst a = actual tempe a = actual pressu std = 298 deg K std = 760 mm H pr subsequent ca	td slope td intercept rature during cal re during calibra	pler flow:			Avera Avera Sam	verage I (chart): 40 ge Flow Calculation m3/min 1.322513243 ge Flow Calculation in CFM 46.69794263 nple Time (Hrs): 1.0 Total Flow in m3/min 79.35079461 Total Flow in CFM 2801.876558

			Site I	nformation		
				Zones 2A a Kowloon Cu		Date: 11-Nov-20
	Sampler: TE-5170 Serial No. 3				illuiui	Tech: CS Tang
bampier.						1001. 5
	Donom otrio Dr	essence (in Halt a		Conditions	Composted Due	
Barometric Pressure (in Hg): 30.14						ssure (mm Hg): 766 erature (deg K): 296
Temperature (deg F): 73 Average Press. (in Hg): 30.14					-	erage (mm Hg): 766
	_	Temp. (deg F): 7				Temp. (deg K): ²⁹⁶
	Average	Temp. (deg I).			Average	Temp. (dog IX).
	Make: 5	Tisch	Calibra	ation Orifice	Qstd Slope:	2 03936
		TE-5025A			Qstd Intercept:	
	Serial#:				Date Certified:	
			Calibratio	on Informatio	on	
Plate or	H2O	Qstd	Ι	IC		
Test #	(in)	(m3/min)	(chart)	(corrected)		Linear Regression
1	12.50	1.753	53.0	53.39		Slope: 29.0451
2	10.20	1.584	48.0	48.36		Intercept: 2.3506
3	7.60	1.368	41.0	41.30		Corr. Coeff: 0.9976
4	4.20	1.019	33.0	33.24		
5	2.20	0.739	23.0	23.17	#0	of Observations: 5
			С	alculations		
	H2O(Pa/Pstd)(Ts	std/Ta))-b]			m = sampler slo	
= I[Sqrt(Pa/Ps	,td)(Tstd/Ta)]				b = sampler inter	-
	~				I = chart respon	
td = standard f					Tav = daily avera	
= corrected chart response					Pav = daily avera	ge pressure
					· · ·	
actual chart re	n = calibrator Qstd slope					verage I (chart): 40
actual chart re = calibrator Q					Averag	ge Flow Calculation m3/min
actual chart re = calibrator Q = calibrator Qs	std intercept	a = actual temperature during calibration (deg K)				1.292573154
actual chart re = calibrator Q = calibrator Qs = actual tempe	std intercept erature during cal				٨	
actual chart re = calibrator Q = calibrator Qs = actual tempo = actual pressu	std intercept erature during cal ure during calibra				Averag	ge Flow Calculation in CFM
actual chart re = calibrator Q = calibrator Qs = actual tempo = actual pressu d = 298 deg K	std intercept erature during cal ure during calibra					ge Flow Calculation in CFM 45.64075807
actual chart re = calibrator Q = calibrator Qs = actual tempe = actual pressu d = 298 deg K d = 760 mm H	std intercept erature during cal ure during calibra Ig	ation (mm Hg)			Sam	ge Flow Calculation in CFM 45.64075807 ple Time (Hrs): 1.0
actual chart re = calibrator Q = calibrator Qs = actual tempe = actual pressi d = 298 deg K d = 760 mm H r subsequent ca	std intercept erature during cal ure during calibra Ig alculation of sam	ation (mm Hg) pler flow:			Sam	ge Flow Calculation in CFM 45.64075807 ple Time (Hrs): 1.0 Total Flow in m3/min
actual chart re = calibrator Q = calibrator Qs = actual tempe = actual pressu td = 298 deg K td = 760 mm H r subsequent ca	std intercept erature during cal ure during calibra Ig	ation (mm Hg) pler flow:			Sam	ge Flow Calculation in CFM 45.64075807 ple Time (Hrs): 1.0 Total Flow in m3/min 77.55438925
actual chart re = calibrator Q = calibrator Qs = actual tempe = actual pressu td = 298 deg K td = 760 mm H r subsequent ca	std intercept erature during cal ure during calibra Ig alculation of sam	ation (mm Hg) pler flow:			Sam	ge Flow Calculation in CFM 45.64075807 ple Time (Hrs): 1.0 Total Flow in m3/min

			Site Ir	formation	
Location: 2	ΛΜΑΛ			Zones 2A a Kowloon Cu	
Sampler:			Site ID. Serial No:		Tech: CS Tang
Sampler.	11 31,0		Sellal INO.	5550	Tech. 65 Tang
			Site C	Conditions	
Barometric Pressure (in Hg): 30.25					Corrected Pressure (mm Hg): 768
Temperature (deg F): 51					Temperature (deg K): 284
Average Press. (in Hg): 30.25				Corrected Average (mm Hg): 768	
	Average	Temp. (deg F): 5	1		Average Temp. (deg K): 284
			Calibra	tion Orifice	
	Make:	Fisch			Qstd Slope: 2.03936
		TE-5025A			Qstd Intercept: -0.01298
	Serial#:	3543			Date Certified: 2-Nov-20
			Calibratio	n Informatio	n
Plate or	H2O	Qstd	Ι	IC	
Test #	(in)	(m3/min)	(chart)	(corrected)	Linear Regression
1	12.30	1.779	53.0	54.63	Slope: 29.6295
2	10.30	1.628	48.0	49.48	Intercept: 1.6295
3	7.50	1.391	41.0	42.26	Corr. Coeff: 0.9971
4 5	4.20 2.30	1.042 0.773	33.0 23.0	34.02 23.71	# of Observations: 5
5	2.50	0.775	23.0		
			Ca	lculations	
	H2O(Pa/Pstd)(Ts	td/Ta))-b]	Ca	lculations	m = sampler slope
		td/Ta))-b]	Ca	lculations	b = sampler intercept
= I[Sqrt(Pa/Ps	std)(Tstd/Ta)]	.td/Ta))-b]	Ca	lculations	b = sampler intercept I = chart response
= I[Sqrt(Pa/Ps td = standard f	td)(Tstd/Ta)] low rate	.td/Ta))-b]	Ca	lculations	 b = sampler intercept I = chart response Tav = daily average temperature
= I[Sqrt(Pa/Ps td = standard f = corrected ch	std)(Tstd/Ta)] low rate nart response	.td/Ta))-b]	Ca	lculations	b = sampler intercept I = chart response
= I[Sqrt(Pa/Ps td = standard f = corrected ch actual chart re	td)(Tstd/Ta)] low rate aart response esponse	.td/Ta))-b]	Ca	lculations	 b = sampler intercept I = chart response Tav = daily average temperature Pav = daily average pressure
= I[Sqrt(Pa/Ps td = standard f = corrected ch : actual chart re = calibrator Q	td)(Tstd/Ta)] low rate nart response esponse lstd slope	.td/Ta))-b]	Ca	lculations	 b = sampler intercept I = chart response Tav = daily average temperature Pav = daily average pressure Average I (chart): 40
= I[Sqrt(Pa/Ps td = standard f = corrected ch = actual chart re = calibrator Q = calibrator Qs	ttd)(Tstd/Ta)] low rate hart response esponse lstd slope std intercept		Ca	lculations	 b = sampler intercept I = chart response Tav = daily average temperature Pav = daily average pressure Average I (chart): 40 Average Flow Calculation m3/min
= I[Sqrt(Pa/Ps td = standard f = corrected ch actual chart re = calibrator Q = calibrator Qs = actual tempe	ttd)(Tstd/Ta)] low rate aart response esponse lstd slope std intercept erature during cal	libration (deg K)	Ca	lculations	 b = sampler intercept I = chart response Tav = daily average temperature Pav = daily average pressure Average I (chart): 40 Average Flow Calculation m3/min 1.322634005
= I[Sqrt(Pa/Ps td = standard f = corrected ch actual chart re = calibrator Q = calibrator Qs = actual tempe = actual pressu	td)(Tstd/Ta)] low rate aart response esponse lstd slope std intercept erature during calibra	libration (deg K)	Ca	lculations	 b = sampler intercept I = chart response Tav = daily average temperature Pav = daily average pressure Average I (chart): 40 Average Flow Calculation m3/min 1.322634005 Average Flow Calculation in CFM
= I[Sqrt(Pa/Ps td = standard f = corrected ch actual chart re = calibrator Qs = actual tempe = actual pressi td = 298 deg K	ttd)(Tstd/Ta)] low rate aart response esponse lstd slope std intercept erature during cal ure during calibra	libration (deg K)	Ca	lculations	 b = sampler intercept I = chart response Tav = daily average temperature Pav = daily average pressure Average I (chart): 40 Average Flow Calculation m3/min 1.322634005 Average Flow Calculation in CFM 46.70220672
= I[Sqrt(Pa/Ps td = standard f = corrected ch : actual chart re = calibrator Q = calibrator Qs = actual tempe = actual pressi td = 298 deg K td = 760 mm H	ttd)(Tstd/Ta)] now rate aart response esponse estd slope std intercept erature during cal ure during calibra G	libration (deg K) ation (mm Hg)	Ca	lculations	 b = sampler intercept I = chart response Tav = daily average temperature Pav = daily average pressure Average I (chart): 40 Average Flow Calculation m3/min 1.322634005 Average Flow Calculation in CFM 46.70220672 Sample Time (Hrs): 1.0
= I[Sqrt(Pa/Ps td = standard f = corrected ch = calibrator Q = calibrator Qs = actual tempe = actual press td = 298 deg K td = 760 mm H r subsequent ca	td)(Tstd/Ta)] low rate mart response esponse estd slope std intercept erature during cal ure during calibra G Ig alculation of sam	libration (deg K) ation (mm Hg) pler flow:	Ca	lculations	 b = sampler intercept I = chart response Tav = daily average temperature Pav = daily average pressure Average I (chart): 40 Average Flow Calculation m3/min 1.322634005 Average Flow Calculation in CFM 46.70220672 Sample Time (Hrs): 1.0 Total Flow in m3/min
= I[Sqrt(Pa/Ps td = standard f = corrected ch = actual chart re = calibrator Q = calibrator Qs = actual tempe = actual press td = 298 deg K td = 760 mm H r subsequent ca	ttd)(Tstd/Ta)] now rate aart response esponse estd slope std intercept erature during cal ure during calibra G	libration (deg K) ation (mm Hg) pler flow:	Ca	lculations	 b = sampler intercept I = chart response Tav = daily average temperature Pav = daily average pressure Average I (chart): 40 Average Flow Calculation m3/min 1.322634005 Average Flow Calculation in CFM 46.70220672 Sample Time (Hrs): 1.0 Total Flow in m3/min 79.3580403
= I[Sqrt(Pa/Ps td = standard f = corrected ch = calibrator Q = calibrator Qs = actual tempe = actual press td = 298 deg K td = 760 mm H r subsequent ca	td)(Tstd/Ta)] low rate mart response esponse estd slope std intercept erature during cal ure during calibra G Ig alculation of sam	libration (deg K) ation (mm Hg) pler flow:	Ca	lculations	 b = sampler intercept I = chart response Tav = daily average temperature Pav = daily average pressure Average I (chart): 40 Average Flow Calculation m3/min 1.322634005 Average Flow Calculation in CFM 46.70220672 Sample Time (Hrs): 1.0 Total Flow in m3/min

Location: 7	AM5A		Site ID:	Zones 2A a Kowloon Cu		Date: 11-Nov-20
Sampler:			Serial No:			Tech: CS Tang
-				Conditions		
Barometric Pressure (in Hg): 30.14					Corrected Pre	ssure (mm Hg): 766
Temperature (deg F): 73						erature (deg K): 296
Average Press. (in Hg): 30.14						erage (mm Hg): 766
	Average	Temp. (deg F): 7	3		Average	Temp. (deg K): 296
			Calibra	tion Orifice		
	Make:				Qstd Slope:	
		TE-5025A			Qstd Intercept:	
	Serial#:	3543			Date Certified:	2-11-2020
			Calibratio	on Informatio	on	
Plate or	H2O	Qstd	I	IC		
Test #	(in)	(m3/min)	(chart)	(corrected)		Linear Regression
1	12.10	1.725	53.0	53.39		Slope: 29.6386
2	10.10	1.576	48.0	48.36		Intercept: 2.0292
3	7.30	1.341	41.0	41.30		Corr. Coeff: 0.9975
4	4.10 2.20	1.007 0.739	33.0	33.24	# of Observational E	
5		0.755	23.0 23.17 # of Observations: 5			
5			0	1 1 1		
			С	alculations		
d = 1/m[Sqrt(I	H2O(Pa/Pstd)(Ts	std/Ta))-b]	C	alculations	m = sampler slo	ре
	H2O(Pa/Pstd)(Ts	std/Ta))-b]	C	alculations	m = sampler slo b = sampler inte	pe rcept
d = 1/m[Sqrt(] = I[Sqrt(Pa/Pst	H2O(Pa/Pstd)(Ts td)(Tstd/Ta)]	std/Ta))-b]	C	alculations	m = sampler slo b = sampler inte I = chart respon	pe rcept se
d = 1/m[Sqrt(] = I[Sqrt(Pa/Psi d = standard fl	H2O(Pa/Pstd)(Ts td)(Tstd/Ta)] low rate	std/Ta))-b]	C	alculations	m = sampler slo b = sampler inte I = chart respon Tav = daily avera	pe rcept Se ge temperature
d = 1/m[Sqrt(] = I[Sqrt(Pa/Ps d = standard f1 = corrected cha	H2O(Pa/Pstd)(Ts td)(Tstd/Ta)] low rate art response	std/Ta))-b]	C	alculations	m = sampler slo b = sampler inte I = chart respon	pe rcept Se ge temperature
d = 1/m[Sqrt(] = I[Sqrt(Pa/Psi d = standard f] = corrected chi actual chart re	H2O(Pa/Pstd)(Ts td)(Tstd/Ta)] low rate art response :sponse	std/Ta))-b]	C	alculations	m = sampler slo b = sampler inte I = chart respon Tav = daily avera Pav = daily avera	pe rcept se ge temperature ge pressure
d = 1/m[Sqrt(] = I[Sqrt(Pa/Pst d = standard fl = corrected cha actual chart re = calibrator Qs	H2O(Pa/Pstd)(Ts td)(Tstd/Ta)] low rate art response ssponse std slope	std/Ta))-b]	C	alculations	m = sampler slo b = sampler inte I = chart respon Tav = daily avera Pav = daily avera	pe rcept se ge temperature ge pressure /erage I (chart): 40
d = 1/m[Sqrt(] = I[Sqrt(Pa/Pst d = standard fl = corrected ch actual chart re = calibrator Qs = calibrator Qs	H2O(Pa/Pstd)(Ts td)(Tstd/Ta)] low rate art response ssponse std slope td intercept		C	alculations	m = sampler slo b = sampler inte I = chart respon Tav = daily avera Pav = daily avera	pe rcept se ge temperature ge pressure verage I (chart): 40 ge Flow Calculation m3/min
d = 1/m[Sqrt(] = I[Sqrt(Pa/Pst d = standard fl = corrected cha actual chart re = calibrator Qs = actual tempe	H2O(Pa/Pstd)(Ts td)(Tstd/Ta)] low rate art response sponse std slope td intercept erature during cal	libration (deg K)	C	alculations	m = sampler slo b = sampler inte I = chart respon Tav = daily avera Pav = daily avera Averag	pe rcept se ge temperature ge pressure verage I (chart): 40 ge Flow Calculation m3/min 1.277533737
d = 1/m[Sqrt(] = I[Sqrt(Pa/Psi d = standard fl = corrected cha actual chart re = calibrator Qs = actual tempe = actual pressu	H2O(Pa/Pstd)(Ts td)(Tstd/Ta)] low rate art response sponse std slope td intercept erature during calibra	libration (deg K)	C	alculations	m = sampler slo b = sampler inte I = chart respon Tav = daily avera Pav = daily avera Averag	pe rcept se ge temperature ge pressure verage I (chart): 40 ge Flow Calculation m3/min 1.277533737 ge Flow Calculation in CFM
d = 1/m[Sqrt(] = I[Sqrt(Pa/Psi d = standard fl = corrected cha actual chart re = calibrator Qs = actual tempe = actual pressu d = 298 deg K	H2O(Pa/Pstd)(Ts td)(Tstd/Ta)] low rate art response ssponse std slope td intercept erature during calibra	libration (deg K)	C	alculations	m = sampler slo b = sampler inte I = chart respon Tav = daily avera Pav = daily avera Averag Averag	pe rcept se ge temperature ge pressure /erage I (chart): 40 te Flow Calculation m3/min 1.277533737 te Flow Calculation in CFM 45.10971624
d = 1/m[Sqrt(I = I[Sqrt(Pa/Pst d = standard fl = corrected cha actual chart re = calibrator Qs = actual tempe = actual pressu d = 298 deg K d = 760 mm H	H2O(Pa/Pstd)(Ts td)(Tstd/Ta)] low rate art response ssponse std slope td intercept erature during calibra ire during calibra	libration (deg K) ation (mm Hg)	C	alculations	m = sampler slo b = sampler inte I = chart respon Tav = daily avera Pav = daily avera Averag Averag Sam	pe rcept se ge temperature ge pressure /erage I (chart): 40 ge Flow Calculation m3/min 1.277533737 ge Flow Calculation in CFM 45.10971624 ple Time (Hrs): 1.0
d = 1/m[Sqrt(I = I[Sqrt(Pa/Pst d = standard fl = corrected ch actual chart re = calibrator Qs = actual tempe = actual pressu d = 298 deg K d = 760 mm H subsequent ca	H2O(Pa/Pstd)(Ts td)(Tstd/Ta)] low rate art response sponse std slope td intercept erature during calibra ig ilculation of sam	libration (deg K) ation (mm Hg) pler flow:	C	alculations	m = sampler slo b = sampler inte I = chart respon Tav = daily avera Pav = daily avera Averag Averag Sam	pe rcept se ge temperature ge pressure verage I (chart): 40 ge Flow Calculation m3/min 1.277533737 ge Flow Calculation in CFM 45.10971624 ple Time (Hrs): 1.0 Fotal Flow in m3/min
d = 1/m[Sqrt(I = I[Sqrt(Pa/Pst d = standard fl = corrected ch actual chart re = calibrator Qs = actual tempe = actual pressu d = 298 deg K d = 760 mm H	H2O(Pa/Pstd)(Ts td)(Tstd/Ta)] low rate art response ssponse std slope td intercept erature during calibra ire during calibra	libration (deg K) ation (mm Hg) pler flow:	C	alculations	m = sampler slo b = sampler inte I = chart respon Tav = daily avera Pav = daily avera Averag Averag Sam	pe rcept se ge temperature ge pressure /erage I (chart): 40 ge Flow Calculation m3/min 1.277533737 ge Flow Calculation in CFM 45.10971624 ple Time (Hrs): 1.0

			Site Ir	nformation		
	Location: AM5A Sampler: TE-5170			Zones 2A a Kowloon Cu 4344		Date: 9-Jan-21 Tech: CS Tang
			Site C	Conditions		
Barometric Pressure (in Hg): 30.24 Temperature (deg F): 51 Average Press. (in Hg): 30.24 Average Temp. (deg F): 51			1 0.25		Temper Corrected Aver	sure (mm Hg): 768 rature (deg K): 284 rage (mm Hg): 768 Temp. (deg K): ²⁸⁴
			Calibra	tion Orifice		
Make: Tisch Model: TE-5025A Serial#: 3543					Qstd Slope: 2 Qstd Intercept: - Date Certified: 2	0.01298
			Calibratic	n Informatic	n	
Plate or Test # 1 2 3 4 5	H2O (in) 12.40 10.20 7.30 4.30 2.40	Qstd (m3/min) 1.786 1.621 1.372 1.054 0.789	I (chart) 53.0 48.0 41.0 33.0 23.0	IC (corrected) 54.63 49.48 42.26 34.02 23.71	# of	Linear Regression Slope: 30.1991 Intercept: 0.8190 Corr. Coeff: 0.9977
			Ca	alculations		
std = 1/m[Sqrt(FC = I[Sqrt(Pa/Pststd = standard flC = corrected cha= actual chart res	d)(Tstd/Ta)] ow rate art response	td/Ta))-b]			 m = sampler slop b = sampler inter I = chart response Tav = daily averag Pav = daily averag 	cept e ge temperature
 actual chart response a = calibrator Qstd slope calibrator Qstd intercept a = actual temperature during calibration (deg K) a = actual pressure during calibration (mm Hg) 298 deg K 298 deg K 296 deg K 296 deg K 207 subsequent calculation of sampler flow: /m((I)[Sqrt(298/Tav)(Pav/760)]-b) 					Average Average Samp T	erage I (chart): 40 e Flow Calculation m3/min 1.324526469 e Flow Calculation in CFM 46.76902962 ole Time (Hrs): 1.0 otal Flow in m3/min 79.47158813 Total Flow in CFM 2806.141777

CERTIFICATE OF ACCREDITATION

This is to attest that

AQUALILTY TESTCONSULT LIMITED

11A&B, KAI FONG GARDEN, PING CHE ROAD FANLING, HONG KONG

Calibration Laboratory CL-207

has met the requirements of AC204, *IAS Accreditation Criteria for Calibration Laboratories*, and has demonstrated compliance with ISO/IEC Standard 17025:2017, *General requirements for the competence of testing and calibration laboratories*. This organization is accredited to provide the services specified in the scope of accreditation.

Effective Date October 19, 2020

Expiration Date December 1, 2021

President

Visit www.iasonline.org for current accreditation information.

International Accreditation Service, Inc.

3060 Saturn Street, Suite 100, Brea, California 92821, U.S.A. | www.iasonline.org

AQUALILTY TESTCONSULT LIMITED

www.aqtlgroup.com

Contact Name Lee Mei Yee Julia

Contact Phone + 852-6309-2280

Accredited to ISO/IEC 17025:2017

Effective Date October 19, 2020

MEASURED QUANTITY or DEVICE	RANGE	UNCERTAINTY ^{1,2} (±)	· /						
TYPE CALIBRATED		(-)	EQUIPMENT USED						
Dimensional									
Caliper -Vernier, Dial & Electronic ³	0 mm to 300 mm	30 µm	Checker by comparison method (BS 887:1982)						
Steel Ruler ³	1 mm to 1000 mm	280 µm	Reference Steel Rule by comparison method (BS 4372:1968)						
Dial Indicator / Gauge (Plunger) ³	0 mm to 50 mm	8 µm	Reference micrometer head by comparison method (BS 907:2008)						
Feeler Gauge ³	0.01 mm to 1 mm	8 µm	Reference Dial Gauge by comparison method (BS BS957-2008)						
Measuring tape ³	0 m to 1.5 m	1200 µm	Reference steel ruler by comparison method (BS 4035:1966)						
Engineering Square ³	Length 0 mm to 160 mm	20 µm	Reference engineering square and Feeler Gauge (BS 939:2007)						
Slump cone ³	Diameter = 0 mm to 200 mm Thickness = 1.5 mm Height = 0 mm to 300 mm	560 μm 100 μm 560 μm	Reference Caliper & Reference Steel ruler by direct measurement (Verification in accordance with in-house method for the dimensional requirements as specified CS1:1990 Vol.1 A4; CS1: 2010 Vol. 1, A5)						
Tamping rod ³	Diameter = 0 mm to 16 mm Length = 600 mm	600 μm 950 μm	Reference steel ruler & Reference Caliper by direct measurement (Verification in accordance with in-house method for the dimensional						

CALIBRATION AND MEASUREMENT CAPABILITY (CMC)*

* If information in this CMC is presented in non-SI units, the conversion factors stated in NIST Special Publication 811 "Guide for the Use of the International System of Units (SI)" apply.

International Accreditation Service, Inc.

3060 Saturn Street, Suite 100, Brea, California 92821, U.S.A. | www.iasonline.org

MEASURED QUANTITY or DEVICE TYPE CALIBRATED	RANGE	UNCERTAINTY ^{1,2} (±)	CALIBRATION PROCEDURE AND/OR STANDARD EQUIPMENT USED
			requirements as specified CS1:1990 Vol.1 A5;CS1: 2010 Vol. 1, A6)
Cube mould ³	(Max dimensions 150 mm per side) Dimension Flatness Perpendicularity Parallelism	50 μm 10 μm 10 μm 50 μm	Reference Caliper, straight edge & feeler gauge by direct measurement. (Verification in accordance with in-house method for the dimensional requirements as specified in BS1881: Part 108:1983; CS1:1990 Vol1, A21; CS1:2010 Vol 1, A25; BS EN 12390-2:2000)
Compacting Bar ³	Ramming Face = 25 mm Length = 380 mm Weight = 1.8 kg	100 μm 560 μm 1 g	Reference Caliper & Steel ruler by direct measurement. (Verification in accordance with in-house method for the dimensional & mass requirements as specified in BS1881: Part 105:1984 Cl 3.3; CS1:1990 Vol 2, E3 CS1:2010 Vol 1, A15.3; BS EN 12350 -5:2000 Cl 4.3.)
Covermeter	20 mm to 103 mm	2.9 mm	Reference concrete block (Verification in accordance with in-house method for the dimensional requirements as specified in BS 1881:Part 204:1988 CI.6.4- Method C)
Flow table ³	15 kg to 17 kg 1 mm to 71 mm	12 g 600 μm	Weighing Balance, Reference caliper & Reference steel ruler by direct measurement
Test Sieve ³	4 mm to 50 mm	50 µm	Reference Caliper bydirect measurement
	Mechanic	cal	
Force Measuring Machine ³ (Compression Mode)	1 kN to 3000 kN	0.4 %	Ref. Load cell by direct measurement BS 1610: Part 1:1985; BS 1610: Part 1:1992; BS EN ISO 12390-4:2000 Annex B; BS EN ISO 7500-1:2004
Laser Dust Meter ³	Dust particles 0.001 mg/m ³ to 10.00 mg/m ³	0.9 mg/m ³	By comparison method by using reference laser dust meter

International Accreditation Service, Inc.

3060 Saturn Street, Suite 100, Brea, California 92821, U.S.A. | www.iasonline.org

MEASURED QUANTITY or DEVICE TYPE CALIBRATED	RANGE	UNCERTAINTY ^{1,2} (±)	CALIBRATION PROCEDURE AND/OR STANDARD EQUIPMENT USED
Rebound Hammer ³	80 unit (hardness)	1.6 rebound count	Reference Rebound count by comparison method. BS1881: Part 202:1986; BS EN 12504-2:2001; BS EN 12504-2:2012
Mass (F2 class and coarser)	1 g to 200 g 200 g to 5 kg 5 kg to 10 kg 10 kg to 50 kg	1.3 mg 0.5 g 1 g 7 g	Standard Weight E2/ F1 Class & Weighing Balances by comparison method (OIMLR111)
Weighing Scale & Balance ³	1 g to 200 g 200 g to 5 kg 5 kg to 50 kg	1 mg 1 g 15 g	Standard weight of E2/F1 Grade by direct measurement
Volumetric Glassware	1 mL to 100 mL 100 mL to 1000 mL	0.004 mL 0.09 mL	Standard weight E2 Class, Weighing Balances & Distilled water by gravimetric method
	Therma	1	
Digital/Liquid in Glass Thermometers & <i>RTD/</i> Thermocouples with or without Indicators	15 °C to 55°C 55°C to 95°C	0.4 °C 0.9 °C	Water Baths, Reference Sensor and Indictor by Comparison Method (OIML R133)
Curing Tank ³	(Calibration at 20 °C & 27 °C @ 30 min) 20 °C Temperature distribution 27 °C Temperature distribution Efficiency of circulation	0.4 °C 0.8 °C 5 s	Reference Temperature datalogger by Mapping Method & Reference Stop Watch (Verification in accordance with in-house method for the Temp & Time requirements as specified in BS1881-111:1983 CS1:1990 Vol 1 App A24 CS1:2010 Vol 1 App A28 BE EN 12390-2:2000
Oven ³	40.0 °C to 180.0 °C	1.5 °C	Reference Temperature datalogger by Mapping Method (AS 2853:1986)
Furnace ³	200 °C to 1300 °C	6 °C	Reference Thermocouple with Indicator By single point Calibration (AS 2853:1986)
Water bath ³	15 °C to 95 °C	0.2 °C	Reference Temperature datalogger by Mapping Method (AS 2853:1986)
	Time and Free		
Stop Watch/ Timer ³	10 s to 3600 s	0.2 s	Reference stop watch

International Accreditation Service, Inc.

3060 Saturn Street, Suite 100, Brea, California 92821, U.S.A. | www.iasonline.org

MEASURED QUANTITY or DEVICE TYPE CALIBRATED		(±)	CALIBRATION PROCEDURE AND/OR STANDARD EQUIPMENT USED
Grout Flow Cone ³	7 s to 9 s		Reference stop watch by direct method (ASTM C939-10 Cl.9)

¹The uncertainty covered by the Calibration and Measurement Capability (CMC) is expressed as the expanded uncertainty having a coverage probability of approximately 95 %. It is the smallest measurement uncertainty that a laboratory can achieve within its scope of accreditation when performing calibrations of a best existing device. The measurement uncertainty reported on a calibration certificate may be greater than that provided in the CMC due to the behavior of the calibration item and other factors that may contribute to the uncertainty of a specific calibration.

²When uncertainty is stated in relative terms (such as percent, a multiplier expressed as a decimal fraction or in scientific notation), it is in relation to instrument reading or instrument output, as appropriate, unless otherwise indicated.

³Also available as site calibration. Note that actual measurement uncertainties achievable at a customer's site can normally be expected to be larger than the uncertainties listed on this Scope of Accreditation.

FAQ / Information

Mutual Recognition Arrangements (MRA) / Multilateral Recognition Arrangements (MLA)

Mutual Recognition Arrangement (MRA) Partners for HOKLAS 🔨

Every effort is made to promote acceptance of test data from accredited laboratories, both internationally and locally. HKAS has concluded mutual recognition arrangements with accreditation bodies listed below by being one of the signatories of the <u>International Laboratory Accreditation</u> <u>Cooperation Mutual Recognition Arrangement (ILAC MRA)</u> and the <u>Asia Pacific Accreditation Cooperation</u> <u>Mutual Recognition Arrangement (APAC MRA)</u> for testing, calibration, medical testing, Proficiency Testing Providers (PTP) and Reference Material Producers (RMP). Click <u>here</u> to view the up-to-date signatories of ILAC and <u>here</u> to access the up-to-date signatories of APAC.

Visitors checking the names, logos and accreditation symbols shown on an endorsed certificate or report should note that some of our MRA partners may have their names, logos or accreditation symbols changed recently and test reports or certificates endorsed by displaying their old accreditation symbols may still be valid during the change-over period. For details, please visit their websites or contact them directly.

» Mutual Recognition Arrangement (MRA) Partners for HOKLAS

HKAS MRA partners will recognise HOKLAS endorsed test certificates as having the same technical validity as certificates endorsed by their respective schemes.

Multilateral Recognition Arrangements (MLA) for HKCAS 🔨

HKAS has been a signatory of <u>Asia Pacific Accreditation Cooperation Mutual Recognition Arrangement</u> (<u>APAC MRA</u>) for Quality Management System (QMS), Environmental Management System (EMS), Food Safety Management System (FSMS), Energy Management System (EnMS), Occupational Health and Safety Management System (OHSMS) certifications, product certifications, and Greenhouse Gas (GHG) validation and verification.

HKAS has also been a signatory of the <u>International Accreditation Forum Multilateral Recognition</u> <u>Arrangement (IAF MLA)</u> for Quality Management System (QMS), Environmental Management System (EMS), Food Safety Management System (FSMS), Energy Management System (EnMS), Occupational Health and Safety Management System (OHSMS) certifications, product certifications, and Greenhouse Gas (GHG) validation and verification.

Click <u>here</u> to view the up-to-date signatories of IAF and <u>here</u> to access the up-to-date signatories of APAC.

» Mutual / Multilateral Recognition Arrangements (MRA / MLA) Partners for HKCAS

Mutual Recognition Arrangement (MRA) Partners for HKIAS <

HKAS has concluded mutual recognition arrangements with accreditation bodies listed below by being one of the signatories of the International Laboratory Accreditation Cooperation Mutual Recognition Arrangement (ILAC MRA) and Asia Pacific Accreditation Cooperation Mutual Recognition Arrangement (APAC MRA) for inspection. Click here to view the up-to-date signatories of ILAC and here to access the up-to-date signatories of APAC.

HKAS MRA partners will recognise HKIAS endorsed inspection reports or certificates having the same technical validity as reports or certificates endorsed by their respective schemes.

» Mutual Recognition Arrangement (MRA) Partners for HKIAS

🕤 back
Economy	Logo	Name of Partner	URL	Test Area
United Kingdom of Great Britain and Northern Ireland	UKAS SANTO SANTO SERVES	United Kingdom Accreditation Service (UKAS)	http://www.ukas.com	Calibration, Medical Testing, Proficiency Testing Provider, Reference Material Producer, Non-medical Testing
United States of America		AIHA Laboratory Accreditation Programs, LLC (AIHA-LAP, LLC)	http://www.aihaaccredite dlabs.org/	Non-medical Testing
United States of America	2	American Association for Laboratory Accreditation (A2LA)	http://www.a2la.org/	Calibration, Medical Testing, Proficiency Testing Provider, Reference Material Producer, Non-medical Testing
United States of America		ANSI-ASQ National Accreditation Board (ANAB)	https://www.ansi <u>.org/accr</u> editation/Default	Calibration, Medical Testing, Proficiency Testing Provider, Reference Material Producer, Non-medical Testing
United States of America	MILLION AND AND AND AND AND AND AND AND AND AN	International Accreditation Service Inc. (IAS)	http://www.iasonline.org/	Calibration, Non-medical Testing
United States of America	qalvn	National Voluntary Laboratory Accreditation Program (NVLAP)	http://www.nist.gov/nvlap	Calibration, Non-medical Testing

Hong Kong Laboratory Accreditation Scheme (HOKLAS) - Mutual Recognition Arrangement (MRA) Partners

AQuality 東恒測試顧問有限公司 AQUALITY TESTCONSULT LIMITED

香港新界粉嶺坪輋路啟芳園11A&11B號

No. 11A&B, KAI FONG GARDEN, PING CHE ROAD, FANLING, NEW TERRITORIES, HONG KONG TEL : 852-3582-9589 FAX : 852-2674-1177 EMAIL : cal.aqtl@gmail.com WEBSITE: www.aqtlgroup.com

	CERTIFICATE OF CALIBRATION
Report Number	: 201108MCA-126F
Date of Report	: 12-Nov-20
Page Number	: 1 of 2
Customer *	: Apex Testing & Certification Ltd.
Customer Address*	: Unit D6A, 10/F, TML Tower, 3 Hoi Shing Road, Tsuen Wan, N.T., HK
Customers Ref. *	: A005
Item Under Calibration (IUC)	*
Equipment No.	: N/A
Manufacturer	: Sibata Scientific Technology Ltd
	: LD-3B
Serial No.	: 235811
Scale Division	: 0.001 mg/m3
Range	: 0.001 to 1 mg/m3
Condition of Item	: Normal
Date Item Received	: 8-Nov-20
Date Calibrated	: 8-Nov-20
Calibration Location	: AQuality Calibration Lab.
Date of Next Calibration	: 7-Nov-21
Calibrated By	: Jessica Liu
Test Environment	

I est Environment					
Ambient Temperature	:	27.5	°C to	23.9	°C
Relative Humidity	:	51	% to	83	%

Calibration Results

Reference True Reading (mg/m3)	Average IUC Reading (mg/m ³)	Correction (mg/m ³)	Error of IUC Reading (%)	Expanded Uncertainty (mg/m ³)	Coverage Factor K
0.158	0.167	-0.008	5.1%	0.020	2.0
5.164	5.647	-0.484	8.5%	0.463	2.0
10.100	11.141	-1.041	9.3%	0.904	2.0

<u>Remarks</u>

- 1. * Denotes information supplied by customer.
- 2. The results relate only to the items calibrated.
- 3. The results apply to the items as received.
- 4. Correction = Average of (Ref reading IUC reading)
- 5. The technical requirement of laser dust meter. +/- 20% error for the particles concentration.

Approved by:

LEE Mei Yee, Julia Managing Director

東恒測試顧問有限公司

AQUALITY TESTCONSULT LIMITED

香港新界粉嶺坪輋路啟芳園11A&11B號

No. 11A&11B, KAI FONG GARDEN, PING CHE ROAD, FANLING, NEW TERRITORIES, HONG KONG TEL : 852-3582-9589 FAX : 852-2674-1177 EMAIL : cal.aqtl@gmail.com WEBSITE: www.aqtlgroup.com

CERTIFICATE OF CALIBRATION

Report Number	: 201108MCA-126F
Date of Report	: 12-Nov-20
Page Number	: 2 of 2
Customer *	: Apex Testing & Certification Ltd.
Customers Ref. *	: A005

Details of Calibration

- 1. The calibration was performed in accordance with AQuality Testconsult Procedure Number ENV-L-003 (in-house method), by comparison with the laboratory's reference equipment which have traceable international standards of measurement.
- 2. The item under calibration (IUC) was allowed to stabilize in the laboratory for 0.25 hour before commencement of calibration.
- 3. A set of readings were made at each calibration concentration. The values quoted in the results are the average of each set of readings.
- 4. The values given in this calibration certificate only relate to the values measured at the time of calibration. Any uncertainties quoted do not include allowance for the capability of any other laboratory to repeat the measurement. The uncertainty quoted relate only to item at time of calibration. AQuality Testconsult Limited is not liable for any loss or damage resulting from the use of this equipment.
- 5. The identification, calibration certificate numbers for the reference equipment used were as follows :

Equipment Number	Certificate Number	Description
CH-LDM-1	HBW202001563	粉尘测试仪

6. Copies of the Calibration certificates of the reference equipment used in this calibration may be obtained from AQuality Testconsult Limited, if necessary.

- End of Report -

東恒測試顧問有限公司 AQUALITY TESTCONSULT LIMITED 香港新界粉嶺坪輋路啟芳園11A&11B號

TEL : 852-3582-9589 FAX : 852-2674-1177 EMAIL : cal.aqtl@gmail.com WEBSITE: www.aqtlgroup.com

No. 11A&11B, KAI FONG GARDEN, PING CHE ROAD, FANLING, N.T., HONG KONG

CERTIFICATE OF CALIBRATION

Apex Testing & Certification Ltd.	Test Report No.	201108MCA-126F
Unit D6A, 10/F, TML Tower, 3 Hoi Shing	Date of Issue	12-Nov-20
	Date of Testing	8-Nov-20
Road, Tsuen Wan, N.T., HK	Page	1 of 1

Item for Calibration

Description	: Laser Dust Monitor
Manufacturer	: Sibata Scientific Technology Ltd
Model No.	: LD-3B
Serial No.	: 235811

Standard Equipment

Volume Sampler / Calibration Orifice
n Environmental, Inc.
170 / TE-5025A
/ 3543
v-20 / 2-Nov-20

	Time	Mean Temp	Mean Pressure	Concentration	Concentration
Date				Standard	Calibrated
Date	1 mie			Equipment	Equipment
		(°C)	(hPa)	(mg/m3)	(mg/m3)
8-Nov-20	20:15	25.7	1017.2	0.0628	0.0639
8-Nov-20	21:20	25.7	1017.2	0.0534	0.0544
8-Nov-20	22:25	25.7	1017.2	0.0571	0.0581

By Linear Regression of	fΥ	or X
Slope (K-factor)	:	1.0100
Correlation Coefficient	•	1.0000
Validity of Calibration	:	7-Nov-21

AQuality 東恒測試顧問有限公司 AQUALITY TESTCONSULT LIMITED

香港新界粉嶺坪輋路啟芳園11A&11B號

No. 11A&B, KAI FONG GARDEN, PING CHE ROAD, FANLING, NEW TERRITORIES, HONG KONG TEL : 852-3582-9589 FAX : 852-2674-1177 EMAIL : cal.aqtl@gmail.com WEBSITE: www.aqtlgroup.com

	CERTIFICATE OF CALIBRATION			
Report Number	: 201108MCA-123F			
Date of Report	: 12-Nov-20			
Page Number	: 1 of 2			
Customer *	: Apex Testing & Certification Ltd.			
Customer Address*	: Unit D6A, 10/F, TML Tower, 3 Hoi Shing Road, Tsuen Wan, N.T., HK			
Customers Ref. *	: A005			
Item Under Calibration (IUC)	*			
Equipment No.				
	: Sibata Scientific Technology Ltd			
Model No.				
Serial No.				
Scale Division				
Range	: 0.001 to 1 mg/m3			
Condition of Item				
Date Item Received	: 8-Nov-20			
Date Calibrated	: 8-Nov-20			
Calibration Location	: AQuality Calibration Lab.			
Date of Next Calibration	: 7-Nov-21			
Calibrated By	: Jessica Liu			

Test Environment					
Ambient Temperature		27.5	°C to	23.9	°C
Relative Humidity	:	51	% to	83	%

Calibration Results

Reference True Reading (mg/m3)	Average IUC Reading (mg/m ³)	Correction (mg/m ³)	Error of IUC Reading (%)	Expanded Uncertainty (mg/m ³)	Coverage Factor K
0.158	0.168	-0.010	5.7%	0.026	2.0
5.164	5.562	-0.398	7.1%	0.462	2.0
10.100	10.936	-0.837	7.6%	0.905	2.0

<u>Remarks</u>

- 1. * Denotes information supplied by customer.
- 2. The results relate only to the items calibrated.
- 3. The results apply to the items as received.
- 4. Correction = Average of (Ref reading IUC reading)
- 5. The technical requirement of laser dust meter. +/- 20% error for the particles concentration.

20

Approved by:

LEE Mei Yee, Julia Managing Director

東恒測試顧問有限公司

AQUALITY TESTCONSULT LIMITED

香港新界粉嶺坪輋路啟芳園11A&11B號

No. 11A&11B, KAI FONG GARDEN, PING CHE ROAD, FANLING, NEW TERRITORIES, HONG KONG TEL : 852-3582-9589 FAX : 852-2674-1177 EMAIL : cal.aqtl@gmail.com WEBSITE: www.aqtlgroup.com

CERTIFICATE OF CALIBRATION

Report Number	: 201108MCA-123F
Date of Report	: 12-Nov-20
Page Number	: 2 of 2
Customer *	: Apex Testing & Certification Ltd.
Customers Ref. *	: A005

Details of Calibration

- 1. The calibration was performed in accordance with AQuality Testconsult Procedure Number ENV-L-003 (in-house method), by comparison with the laboratory's reference equipment which have traceable international standards of measurement.
- 2. The item under calibration (IUC) was allowed to stabilize in the laboratory for 0.25 hour before commencement of calibration.
- 3. A set of readings were made at each calibration concentration. The values quoted in the results are the average of each set of readings.
- 4. The values given in this calibration certificate only relate to the values measured at the time of calibration. Any uncertainties quoted do not include allowance for the capability of any other laboratory to repeat the measurement. The uncertainty quoted relate only to item at time of calibration. AQuality Testconsult Limited is not liable for any loss or damage resulting from the use of this equipment.
- 5. The identification, calibration certificate numbers for the reference equipment used were as follows :

Equipment Number	Certificate Number	Description
CH-LDM-1	HBW202001563	粉尘测试仪

6. Copies of the Calibration certificates of the reference equipment used in this calibration may be obtained from AQuality Testconsult Limited, if necessary.

- End of Report -

東恒測試顧問有限公司 AQUALITY TESTCONSULT LIMITED 香港新界粉嶺坪輋路啟芳園11A&11B號

No. 11A&11B, KAI FONG GARDEN, PING CHE ROAD, FANLING, N.T., HONG KONG

CERTIFICATE OF CALIBRATION

Apex Testing & Certification Ltd.	Test Report No.	201108MCA-123F		
Unit D6A, 10/F, TML Tower, 3 Hoi Shing Road, Tsuen Wan, N.T., HK	Date of Issue	12-Nov-20		
	Date of Testing	8-Nov-20		
	Page	1 of 1		

Item for Calibration

Description	: Laser Dust Monitor
Manufacturer	: Sibata Scientific Technology Ltd
Model No.	: LD-3B
Serial No.	: 336338

Standard Equipment

: High Volume Sampler / Calibration Orifice
: Tisch Environmental, Inc.
: TE-5170 / TE-5025A
4344 / 3543
: 8-Nov-20 / 2-Nov-20

Date Time	T:		Mean	Concentration	Concentration
		Mean Temp		Standard	Calibrated
	Time		Pressure	Equipment	Equipment
		(°C)	(hPa)	(mg/m3)	(mg/m3)
8-Nov-20	20:15	25.7	1017.2	0.0628	0.0642
8-Nov-20	21:20	25.7	1017.2	0.0534	0.0546
8-Nov-20	22:25	25.7	1017.2	0.0571	0.0574

Y or X
1.0328
0.9861
7-Nov-21

:

Jessin Recorded by Signature: Jessica Liu Date: 8-Nov-20 •

Checked by

S Tang

Signature:

Date: 8-Nov-20

東恒測試顧問有限公司 **AQuality AQUALITY TESTCONSULT LIMITED**

香港新界粉嶺坪鲞路啟芳園11A&11B號

No. 11A&B, KAI FONG GARDEN, PING CHE ROAD, FANLING, NEW TERRITORIES, HONG KONG TEL: 852-3582-9589 FAX: 852-2674-1177 EMAIL: cal.aqtl@gmail.com WEBSITE: www.aqtlgroup.com

	CERTIFICATE OF CALIBRATION
Report Number	: 201108MCA-125F
Date of Report	: 12-Nov-20
Page Number	: 1 of 2
Customer *	: Apex Testing & Certification Ltd.
Customer Address*	: Unit D6A, 10/F, TML Tower, 3 Hoi Shing Road, Tsuen Wan, N.T., HK
Customers Ref. *	: A005

Item Under Calibration (IUC)*

Equipment No.	: N/A
Manufacturer	: Sibata Scientific Technology Ltd
Model No.	: LD-3B
Serial No.	: 567188
Scale Division	: 0.001 mg/m3
Range	: 0.001 to 1 mg/m3
Condition of Item	: Normal
n Received	: 8-Nov-20

Date Item Received	: 8- N	ov-20			
Date Calibrated	: 8- N	ov-20			
Calibration Location	: AQ	uality Cali	bration Lab.		
Date of Next Calibration	: 7-N	ov-21			
Calibrated By	: Jess	ica Liu			
Test Environment					
Ambient Temperature	:	27.5	°C to	23.9	°C
Relative Humidity	:	51	% to	83	%

Calibration Results

Reference True Reading (mg/m3)	Average IUC Reading (mg/m ³)	Correction (mg/m ³)	Error of IUC Reading (%)	Expanded Uncertainty (mg/m ³)	Coverage Factor K
0.158	0.167	-0.008	4.9%	0.023	2.0
5.164	5.693	-0.530	9.3%	0.463	2.0
10.100	11.045	-0.945	8.6%	0.905	2.0

Remarks

- 1. * Denotes information supplied by customer.
- 2. The results relate only to the items calibrated.
- 3. The results apply to the items as received.
- 4. Correction = Average of (Ref reading IUC reading)
- 5. The technical requirement of laser dust meter. +/- 20% error for the particles concentration.

20

Approved by:

LEE Mei Yee, Julia Managing Director

東恒測試顧問有限公司

AQUALITY TESTCONSULT LIMITED

香港新界粉嶺坪輩路啟芳園11A&11B號

No. 11A&11B, KAI FONG GARDEN, PING CHE ROAD, FANLING, NEW TERRITORIES, HONG KONG TEL : 852-3582-9589 FAX : 852-2674-1177 EMAIL : cal.aqtl@gmail.com WEBSITE: www.aqtlgroup.com

CERTIFICATE OF CALIBRATION

Report Number	: 201108MCA-125F
Date of Report	: 12-Nov-20
Page Number	: 2 of 2
Customer *	: Apex Testing & Certification Ltd.
Customers Ref. *	: A005

Details of Calibration

- 1. The calibration was performed in accordance with AQuality Testconsult Procedure Number ENV-L-003 (in-house method), by comparison with the laboratory's reference equipment which have traceable international standards of measurement.
- 2. The item under calibration (IUC) was allowed to stabilize in the laboratory for 0.25 hour before commencement of calibration.
- 3. A set of readings were made at each calibration concentration. The values quoted in the results are the average of each set of readings.
- 4. The values given in this calibration certificate only relate to the values measured at the time of calibration. Any uncertainties quoted do not include allowance for the capability of any other laboratory to repeat the measurement. The uncertainty quoted relate only to item at time of calibration. AQuality Testconsult Limited is not liable for any loss or damage resulting from the use of this equipment.
- 5. The identification, calibration certificate numbers for the reference equipment used were as follows :

Equipment Number	Certificate Number	Description
CH-LDM-1	HBW202001563	粉尘测试仪

6. Copies of the Calibration certificates of the reference equipment used in this calibration may be obtained from AQuality Testconsult Limited, if necessary.

- End of Report -

東恒測試顧問有限公司 AQUALITY TESTCONSULT LIMITED 香港新界粉嶺坪輋路啟芳園11A&11B號

No. 11A&11B, KAI FONG GARDEN, PING CHE ROAD, FANLING, N.T., HONG KONG

CERTIFICATE OF CALIBRATION

Apex Testing & Certification Ltd.	Test Report No.	201108MCA-125F		
Unit DCA 10/E TMU Terror 2 Hei	Date of Issue	12-Nov-20		
Unit D6A, 10/F, TML Tower, 3 Hoi	Date of Testing	8-Nov-20		
Shing Road, Tsuen Wan, N.T., HK	Page	1 of 1		

Item for Calibration

Description	: Laser Dust Monitor
Manufacturer	: Sibata Scientific Technology Ltd
Model No.	: LD-3B
Serial No.	: 567188

<u>Standard Equipment</u>

Description :	High Volume Sampler / Calibration Orifice
Manufacturer :	Tisch Environmental, Inc.
Model No.	TE-5170 / TE-5025A
Serial No.	4344 / 3543
Last Calibration :	8-Nov-20 / 2-Nov-20

			Mean	Concentration	Concentration
Date	Time	Mean Temp	Pressure	Standard	Calibrated
Date	1 mile		riessure	Equipment	Equipment
		(°C)	(hPa)	(mg/m3)	(mg/m3)
8-Nov-20	20:15	25.7	1017.2	0.0628	0.0642
8-Nov-20	21:20	25.7	1017.2	0.0534	0.0552
8-Nov-20	22:25	25.7	1017.2	0.0571	0.0581

By Linear Regression of	fΥ	or X
Slope (K-factor)	:_	0.9726
Correlation Coefficient	:	0.9948
Validity of Calibration	:	7-Nov-21

综合試驗 有限公司 SOILS & MATERIALS ENGINEERING CO., LTD. 香港新界葵涌永基路22-24號好爸爸創科大廈 Good Ba Ba Hitech Building, Nos. 22-24 Wing Kei Boad, Kwai Chung, New Territories.

Good Ba Ba Hitech Building, Nos. 22-24 Wing Kei Road, Kwai Chung, New Territories, Hong Kong Tel: (852) 2873 6860 Fax: (852) 2555 7533 E-mail: smec@cigismec.com Website: www.cigismec.com

CERTIFICATE OF CALIBRATION

Certificate No.:	20CA1005 01-05		Page	1	of	2
Item tested						
Description: Manufacturer: Type/Model No.: Serial/Equipment No.: Adaptors used:	Sound Level Meter (C Hangzhou Aihua Instr AWA5661 301135 -		Microphone - AWA14425 15338 -			
Item submitted by						
Customer Name: Address of Customer: Request No.: Date of receipt:	Apex Testing & Certif Unit D6A, 10/F, TML - 05-Oct-2020	ication Ltd. Tower, 3 Hoi Shing Ro	oad, Tsuen Wan, N.T.			
Date of test:	09-Oct-2020					
Reference equipment	used in the calibrat	ion				
Description: Multi function sound calibrator Signal generator	Model: B&K 4226 DS 360	Serial No. 2288444 61227	Expiry Date: 23-Aug-2021 24-Dec-2020		Traceat CIGISME CEPREI	
Ambient conditions						
Temperature: Relative humidity: Air pressure:	22 ± 1 °C 55 ± 10 % 1005 ± 5 hPa					
Test specifications						

- 1, The Sound Level Meter has been calibrated in accordance with the requirements as specified in BS 7580: Part 1: 1997 and the lab calibration procedure SMTP004-CA-152.
- 2, The electrical tests were performed using an electrical signal substituted for the microphone which was removed and replaced by an equivalent capacitance within a tolerance of ±20%.
- 3, The acoustic calibration was performed using an B&K 4226 sound calibrator and corrections was applied for the difference between the free-field and pressure responsess of the Sound Level Meter.

Test results

This is to certify that the Sound Level Meter conforms to BS 7580: Part 1: 1997 for the conditions under which the test was performed.

Details of the performed measurements are presented on page 2 of this certificate.

Actual Measurement data are documented on worksheets.

Approved Signatory: Company Chop: Date: 10-Oct-2020 Feng Junqi

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument. The results apply to the item as received.

© Soils & Materials Engineering Co., Ltd.

Form No.CARP152-1/Issue 1/Rev.C/01/02/2007

HKAS has accredited this laboratory (Reg. No. HOKLAS 028) under HOKLAS for specific calibration activities as listed in the HOKLAS directory of accredited laboratories. The results shown in this certificate are traceable to the International System of Units (SI) or recognised measurement standards. The results relate only to the item(s) calibrated. This certificate shall not be reproduced except in full without approval of the laboratory.

20CA1005 01-05

香港新界葵涌永基路22-24號好爸爸創科大廈 Good Ba Ba Hitech Building, Nos. 22-24 Wing Kei Road, Kwai Chung, New Territories, Hong Kong Tel: (852) 2873 6860 Fax: (852) 2555 7533 E-mail: smec@cigismec.com Website: www.cigismec.com

CERTIFICATE OF CALIBRATION

(Continuation Page)

Page 2 of 2

1, Electrical Tests

Certificate No.:

The electrical tests were perfomed using an equivalent capacitance substituted for the microphone. The results are given in below with test status and the estimated uncertainties. The "Pass" means the result of the test is inside the tolerances stated in the test specifications. The "-" means the result of test is outside these tolerances.

			Expanded	Coverage
Test:	Subtest:	Status:	Uncertanity (dB)	Factor
o . K	•	Dees	0.2	
Self-generated noise	A	Pass	0.3	0.4
	С	Pass	0.8	2.1
	Lin	Pass	1.6	2.2
Linearity range for Leq	At reference range , Step 5 dB at 4 kHz	Pass	0.3	
	Reference SPL on all other ranges	Pass	0.3	
	2 dB below upper limit of each range	Pass	0.3	
	2 dB above lower limit of each range	Pass	0.3	
Linearity range for SPL	At reference range , Step 5 dB at 4 kHz	Pass	0.3	
Frequency weightings	A	Pass	0.3	
	С	Pass	0.3	
	Lin	Pass	0.3	
Time weightings	Single Burst Fast	Pass	0.3	
3	Single Burst Slow	Pass	0.3	
Peak response	Single 100µs rectangular pulse	Pass	0.3	
R.M.S. accuracy	Crest factor of 3	Pass	0.3	
Time weighting I	Single burst 5 ms at 2000 Hz	Pass	0.3	
rine neighting r	Repeated at frequency of 100 Hz	Pass	0.3	
Time averaging	1 ms burst duty factor 1/10 ³ at 4kHz	Pass	0.3	
	1 ms burst duty factor 1/10 ⁴ at 4kHz	Pass	0.3	
Pulse range	Single burst 10 ms at 4 kHz	Pass	0.4	
Sound exposure level	Single burst 10 ms at 4 kHz	Pass	0.4	
Overload indication	SPL	Pass	0.3	
	Leq	Pass	0.4	

2, Acoustic tests

The complete sound level meter was calibrated on the reference range using a B&K 4226 acoustic calibrator with 1000Hz and SPL 94 dB. The sensitivity of the sound level meter was adjusted. The test result at 125 Hz and 8000 Hz are given in below with test status and the estimated uncertainties.

Subtest	Status	Expanded Uncertanity (dB)	Coverage Factor
Weighting A at 125 Hz	Pass	0.3	
Weighting A at 8000 Hz	Pass	0.5	
	Weighting A at 125 Hz	Weighting A at 125 Hz Pass	SubtestStatusUncertanity (dB)Weighting A at 125 HzPass0.3

3, Response to associated sound calibrator

N/A

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated.

End Calibrated by: Checked by: Fung Chi Yip Feng nqi Date: 10-Oct-2020 Date: 09-Oct-2020

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

© Soils & Materials Engineering Co., Ltd.

Form No.CARP152-2/Issue 1/Rev.C/01/02/2007

HKAS has accredited this laboratory (Reg. No. HOKLAS 028) under HOKLAS for specific calibration activities as listed in the HOKLAS directory of accredited laboratories. The results shown in this certificate are traceable to the International System of Units (SI) or recognised measurement standards. The results relate only to the item(s) calibrated. This certificate shall not be reproduced except in full without approval of the laboratory.

香港新界葵涌永基路22-24號好爸爸創科大廈 Good Ba Ba Hitech Building, Nos. 22-24 Wing Kei Road, Kwai Chung, New Territories, Hong Kong Tel: (852) 2873 6860 Fax: (852) 2555 7533 E-mail: smec@cigismec.com Website: www.cigismec.com

Test Data for Sou	and Level Me	ter				Page 1 of 5
Sound level me		AWA5661 AWA14425	Serial No. Serial No.	301135 15338	Date	09-Oct-2020
Microphone	type:	AVVA 14420	Senarino.	10000	Report	: 20CA1005 01-05

SELF GENERATED NOISE TEST

The noise test is performed in the most sensitive range of the SLM with the microphone replaced by an equivalent impedance.

Noise level in A weighting	12.3	dB
Noise level in C weighting	13.6	dB
Noise level in Lin	18.2	dB

LINEARITY TEST

The linearity is tested relative to the reference sound pressure level using a continuous sinusoidal signal of frequency 4 kHz. The measurement is made on the reference range for indications at 5 dB intervals starting from the 94 dB reference sound pressure level. And until within 5 dB of the upper and lower limits of the reference range, the measurements shall be made at 1 dB intervals.(SLM set to LEQ/SPL)

Reference/Expected level	Actua	Actual level		Devia	Deviation		
Reference/Expected level	non-integrated	integrated		non-integrated	integrated		
dB	dB	dB	+/- dB	dB	dB		
94.0	94.0	94.0	0.7	0.0	0.0		
99.0	98.9	98.9	0.7	-0.1	-0.1		
104.0	103.9	103.9	0.7	-0.1	-0.1		
109.0	108.9	108.9	0.7	-0.1	-0.1		
114.0	113.9	113.9	0.7	-0.1	-0.1		
115.0	114.9	114.9	0.7	-0.1	-0.1		
116.0	115.9	115.9	0.7	-0.1	-0.1		
117.0	116.9	116.9	0.7	-0.1	-0.1		
118.0	117.9	117.9	0.7	-0.1	-0.1		
119.0	118.9	118.9	0.7	-0.1	-0.1		
120.0	119.9	119.9	0.7	-0.1	-0.1		
89.0	89.0	89.0	0.7	0.0	0.0		
84.0	84.0	84.0	0.7	0.0	0.0		
79.0	79.0	79.0	0.7	0.0	0.0		
74.0	74.0	74.0	0.7	0.0	0.0		
69.0	69.0	69.0	0.7	0.0	0.0		
64.0	64.0	64.0	0.7	0.0	0.0		
59.0	59.0	59.0	0.7	0.0	0.0		
54.0	54.1	54.1	0.7	0.1	0.1		
49.0	49.0	49.0	0.7	0.0	0.0		
44.0	44.0	44.0	0.7	0.0	0.0		
39.0	39.0	39.0	0.7	0.0	0.0		
34.0	34.0	34.0	0.7	0.0	0.0		
29.0	29.0	29.0	0.7	0.0	0.0		
28.0	28.0	28.0	0.7	0.0	0.0		

(c)Soils Materials Eng. Co., Ltd.

香港新界 葵涌 永基路 2 2 - 2 4 號好 爸 爸 創 科 大 廈 Good Ba Ba Hitech Building, Nos. 22-24 Wing Kei Road, Kwai Chung, New Territories, Hong Kong Tel: (852) 2873 6860 Fax: (852) 2555 7533 E-mail: smec@cigismec.com Website: www.cigismec.com

Test Data for Sound Level N	leter				Р	age 2 of 5
Sound level meter type: Microphone type:	AWA5661 AWA14425		ial No. 30113 ial No. 15338		e 09-Oct-	
27.0	27.1	27.1	0.7	0.1	0.1	

Measurements for an indication of the reference SPL on all other ranges which include it

Other ranges	Expected level	Actual level	Tolerance	Deviation
dB	dB	dB	+/- dB	dB
27-120	94.0	94.0	0.7	0.0
45-140	94.0	93.9	0.7	-0.1

Measurements on all level ranges for indications 2 dB below the upper limit and 2 dB above the lower limit

Ranges	Reference/Expected level	Actual level	Tolerance	Deviation
dB	dB	dB	+/- dB	dB
07.400	29.0	29.0	0.7	0.0
27-120	118.0	117.9	0.7	-0.1
45 440	47.0	47.1	0.7	0.1
45-140	138.0	137.8	0.7	-0.2

FREQUENCY WEIGHTING TEST

The frequency response of the weighting netwoks are tested at octave intervals over the frequency ranges 31.5 Hz to 12500 Hz. The signal level at 1000 Hz is set to give an indication of the reference SPL. Frequency weighting A:

Frequency	Ref. level	Expected level	Actual level	Tolerar	nce(dB)	Deviation
Hz	dB	dB	dB	+	-	dB
1000.0	94.0	94.0	94.0	0.0	0.0	0.0
31.6	94.0	54.6	54.4	1.5	1.5	-0.2
63.1	94.0	67.8	67.7	1.5	1.5	-0.1
125.9	94.0	77.9	77.8	1.0	1.0	-0.1
251.2	94.0	85.4	85.3	1.0	1.0	-0.1
501.2	94.0	90.8	90.7	1.0	1.0	-0.1
1995.0	94.0	95.2	95.3	1.0	1.0	0.1
3981.0	94.0	95.0	95.3	1.0	1.0	0.3
7943.0	94.0	92.9	93.6	1.5	3.0	0.7
12590.0	94.0	89.7	89.4	3.0	6.0	-0.3

Frequency weighting C:

Frequency	Ref. level	Expected level	Actual level	Tolerar	nce(dB)	Deviation
Hz	dB	dB	dB	+	-	dB
1000.0	94.0	94.0	94.0	0.0	0.0	0.0
31.6	94.0	91.0	90.9	1.5	1.5	-0.1
63.1	94.0	93.2	93.1	1.5	1.5	-0.1
125.9	94.0	93.8	93.8	1.0	1.0	0.0
251.2	94.0	94.0	94.0	1.0	1.0	0.0
501.2	94.0	94.0	94.0	1.0	1.0	0.0

(c)Soils Materials Eng. Co., Ltd.

香港新界葵涌永基路22-24號好爸爸創科大廈 Good Ba Ba Hitech Building, Nos. 22-24 Wing Kei Road, Kwai Chung, New Territories, Hong Kong Tel: (852) 2873 6860 Fax: (852) 2555 7533 E-mail: smec@cigismec.com Website: www.cigismec.com

	S	M	E	С	La	b
--	---	---	---	---	----	---

Page 3 of 5

Test Data for Sound Level Meter

Sound level met		WA5661 WA14425	Serial No. Serial No.	301 153			Oct-2020
nor non-real ran transmission of the 2						Report: 200	A1005 01-05
1995.0	94.0	93.8	93.9	1.0	1.0	0.1	
3981.0	94.0	93.2	93.5	1.0	1.0	0.3	
7943.0	94.0	91.0	91.7	1.5	3.0	0.7	
12590.0	94.0	87.8	87.5	3.0	6.0	-0.3	
Frequency weigl	hting Lin:						7
Frequency	Ref. level	Expected level	Actual level	Tolera	nce(dB)	Deviation	
1.0	ID		ЧD			dP	

Hz	dB	dB	dB	+	-	dB
1000.0	94.0	94.0	94.0	0.0	0.0	0.0
31.6	94.0	94.0	93.9	1.5	1.5	-0.1
63.1	94.0	94.0	93.9	1.5	1.5	-0.1
125.9	94.0	94.0	94.0	1.0	1.0	0.0
251.2	94.0	94.0	94.0	1.0	1.0	0.0
501.2	94.0	94.0	94.0	1.0	1.0	0.0
1995.0	94.0	94.0	94.0	1.0	1.0	0.0
3981.0	94.0	94.0	94.0	1.0	1.0	0.0
7943.0	94.0	94.0	94.0	1.5	3.0	0.0
12590.0	94.0	94.0	93.9	3.0	6.0	-0.1

TIME WEIGHTING FAST TEST

Time weighting F is tested on the reference range with a single sinusoidal burst of duration 200 ms at a frequency 2000 Hz and an amplitude which produces an indication 4 dB below the upper limit of the primary indicator range when the signal is continuous (Weight A. Maximum hold)

when the signal is continuous.	(vvoigner, maxin	nann nora)			
Ref. level	Expected level	Actual level	Tolerance(dB		Deviation
dB	dB	dB	+	-	dB
116.0	115.0	114.9	1.0	1.0	-0.1

TIME WEIGHTING SLOW TEST

Time weighting S is tested on the reference range with a single sinusoidal burst of duration 500 ms at a frequency 2000 Hz and an amplitude which produces an indication 4 dB below the upper limit of the primary indicator range when the signal is continuous. (Weight A, Maximum hold)

Whom the eighter to contained at	(
Ref. level	Expected level	Actual level	Tolerance(dB)		Deviation
dB	dB	dB	+	-	dB
116.0	111.9	111.9	1.0	1.0	0.0

PEAK RESPONSE TEST

The onset time of the peak detector is tested on the reference range by comparing the response to a 100 us rectangular test pulse with the response to a 10 ms reference pulse of the same amplitude. The amplitude of the 10 ms reference pulse is such as to produce an indication 1 dB below the upper limit of the primary indicator range. Positive polarities: (Weighting 7, set the generator signal to single, Lzpeak)

r usitive polarities.	(voighting £, oot the gen	erater ergmante en	.g.e,p.e.e.e.	
Ref. level	Response to 10 ms	Response to 100 us	Tolerance	Deviation
dB	dB	dB	+/- dB	dB
119.0	119.0	119.5	2.0	0.5

(c)Soils Materials Eng. Co., Ltd.

The copyright of this report is owned by the Soils & Materials Engineering Co., Ltd. It shall not be reproduced except in full without approval of the laboratory.

綜合試驗有限公司 SOILS & MATERIALS ENGINEERING CO., LTD.

香港新界葵涌永基路 2 2 - 2 4 號好 爸爸 創科 大 厦 Good Ba Ba Hitech Building, Nos. 22-24 Wing Kei Road, Kwai Chung, New Territories, Hong Kong Tel: (852) 2873 6860 Fax: (852) 2555 7533 E-mail: smec@cigismec.com Website: www.cigismec.com

Test Data for So	Fest Data for Sound Level Meter Page 4 of 3									
Sound level me Microphone	eter type: type:	AWA5661 AWA14425	Serial No. Serial No.	301135 15338	Date Report	09-Oct-2020 : 20CA1005 01-05				
Negative polar	ities:									

Ref. level	Response to 10 ms	Response to 100 us	Tolerance	Deviation
dB	dB	dB	+/- dB	dB
119.0	119.0	119.5	2.0	0.5

RMS ACCURACY TEST

The RMS detector accuracy is tested on the reference range for a crest factor of 3.

	The fine detector detailed in the relevance funge for a second								
Test frequence	Test frequency: Amplitude:								
Amplitude:			2 dB below the upper limit of the primary indicator range.						
Burst repetition frequency:		40 Hz	40 Hz						
Tone burst sig	Tone burst signal:		11 cycles of a sine wave of frequency 2000 Hz. (Set to INT)						
	Ref. Level	Expected level	Tone burst signal	Tolerance	Deviation				
Time wighting	dB	dB	indication(dB)	+/- dB	dB				
Slow	117.0+6.6	117.0	116.6	0.5	-0.4				

TIME WEIGHTING IMPULSE TEST

Time weighting I is tested on the reference range (Set the SLM to LAImax)

Test frequency: Amplitude: 2000 Hz The upper limit of the primary indicator range.

Single sinusoidal burst of duration 5 ms:

Ref. Level	Single burs	t indication	Tolerance	Deviation	
dB	Expected (dB)	Actual (dB)	+/- dB	dB	
120.0	111.2	111.1	2.0	-0.1	

Repeated at 100 Hz

Ref. Level	Repeated bu	Repeated burst indication		Deviation
dB	Expected (dB)	Actual (dB)	+/- dB	dB
120.0	117.3	117.1	1.0	-0.2

TIME AVERAGING TEST

This test compares the SLM reading for continuous sine signals with readings obtained from a sine tone burst sequence having the same RMS level. The test level is 30 dB below the upper limit of the linearity range and repeated for Type 1 SLM with 40 dB below the upper limit of the linearity.

Frequency of tone burst: 4000 Hz

Duration of tone burst:	1 ms					
Repetition Time	Level of	Expected	Actual	Tolerance	Deviation	Remarks
	tone burst	Leq	Leq			
msec	dB	dB	dB	+/- dB	dB	
1000	90.0	90.0	89.9	1.0	-0.1	60s integ.
10000	80.0	80.0	79.9	1.0	-0.1	6min. integ.

PULSE RANGE AND SOUND EXPOSURE LEVEL TEST

The test tone burst signal is superimposed on a baseline signal corresponding to the lower limit of reference range

Test frequency: 4000 Hz

Integration time: 10 sec

(c)Soils Materials Eng. Co., Ltd.

香港新界葵涌永基路 2 2 - 2 4 號好爸爸創科大廈 Good Ba Ba Hitech Building, Nos. 22-24 Wing Kei Road, Kwai Chung, New Territories, Hong Kong Tel: (852) 2873 6860 Fax: (852) 2555 7533 E-mail: smec@cigismec.com Website: www.cigismec.com

Test Data for Sound Level Meter								
Sound level me	ter type:	AWA5661	Serial No.	301135	Date	09-Oct-2020		
Microphone	type:	AWA14425	Serial No.	15338	Report	: 20CA1005 01-05		

e integrating	sound level meter s	et to Leq:			
Duration	Rms level of	Expected	Actual	Tolerance	Deviation
msec	tone burst (dB)	dB	dB	+/- dB	dB
10	90.0	60.0	60.0	1.7	0.0

The integrating sound level meter set to SEL:

Duration	Rms level of	Expected	Actual	Tolerance	Deviation
msec	tone burst (dB)	dB	dB	+/- dB	dB
10.0	90.0	70.0	70.0	1.7	0.0

OVERLOAD INDICATION TEST

For SLM capable of operating in a non-integrating mode.

		0 0						
Test frequen	icy:	2000 Hz						
Amplitude:		2 dB below the upper limit of the primary indicator range.						
Burst repetit	ion frequency:	40 Hz						
Tone burst s	ignal:	11 cycles of a sine wave of frequency 2000 Hz.						
Level	Level reduced by	Further reduced	Difference	Tolerance	Deviation			
at overload (dB) 1 dB		3 dB	dB	dB	dB			
115.7	114.7	111.7	3.0	1.0	0.0			

For integrating SLM, with the instrument indicating Leq.

121.0

For integrating SLM, with the instrument indicating Leq and set to the reference range. The test signal as following: The test tone burst signal is superimposed on a baseline signal corresponding to the lower limit of reference range Test frequency: 4000 Hz Integration time: 10 sec Single burst duration: 1 msec Deviation Level reduced by Expected level Actual level Tolerance Rms level dB dB at overload (dB) 1 dB dB dB

ACOUSTIC TEST

122.0

The acoustic test of the complete SLM is tested at the frequency 125 Hz and 8000 Hz using a B&K type 4226 Multifunction Acoustic Calibrator. The test is performed in A weighting.

81.0

2.2

0.0

Frequency	Expected level Actual level		Tolerar	nce (dB)	Deviation	
Hz	dB	Measured (dB)	+	-	dB	
1000	94.0	94.0	0.0	0.0	0.0	
125	77.9	78.2	1.0	1.0	0.3	
8000	92.9	93.6	1.5	3.0	0.7	

81.0

-----END------

(c)Soils Materials Eng. Co., Ltd.

综合試馬錠有限公司 SOILS & MATERIALS ENGINEERING CO., LTD. 香港黄竹坑道37號利達中心12樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

Certificate No.:	20CA0616 03-02	2	Page:	1	of	2
Item tested						
Description:	Acoustical Calibr	ator (Class 1)				
Manufacturer:	Pulsar					
Type/Model No.:	100B					
Serial/Equipment No.:	039507					
Adaptors used:	Yes					
Item submitted by						
Customer:	Apex Testing & C	Certification Ltd.				
Address of Customer:	Unit D6A, 10/F, 1	ML Tower, 3 Hoi Shin	ig Road, Tsuen Wan, N	I.T.		
Request No.:						
Date of receipt:	16-Jun-2020					
Date of test:	20-Jun-2020					
Reference equipmen	t used in the cali	bration				
Description:	Model:	Serial No.	Expiry Date:		Tracea	ble to:

Description:	Model:	Serial No.	Eurise Dates	The second second	
Stand Standard Stand Stand Cold Standard Stand			Expiry Date:	Traceable to:	
Lab standard microphone	B&K 4180	2412857	11-May-2021	SCL	
Preamplifier	B&K 2673	2743150	03-Jun-2021	CEPREI	
Measuring amplifier	B&K 2610	2346941	03-Jun-2021	CEPREI	
Signal generator	DS 360	33873	19-May-2021	CEPREI	
Digital multi-meter	34401A	US36087050	19-May-2021	CEPREI	
Audio analyzer	8903B	GB41300350	18-May-2021	CEPREI	
Universal counter	53132A	MY40003662	18-May-2021	CEPREI	

Ambient conditions

Temperature:	22 ± 1 °C
Relative humidity:	55 ± 10 %
Air pressure:	1005 ± 5 hPa

Test specifications

 The Sound Calibrator has been calibrated in accordance with the requirements as specified in IEC 60942 1997 Annex B and the lab calibration procedure SMTP004-CA-156.

2. The calibrator was tested with its axis vertical facing downwards at the specific frequency using insert voltage technique.

3. The results are rounded to the nearest 0.01 dB and 0.1 Hz and have not been corrected for variations from a reference pressure of 1013.25 hectoPascals as the maker's information indicates that the instrument is insensitive to pressure changes.

Test results

This is to certify that the sound calibrator conforms to the requirements of annex B of IEC 60942: 1997 for the conditions under which the test was performed. This does not imply that the sound calibrator meets IEC 60942 under any other conditions.

Details of the performed measurements are presented on page 2 of this certificate.

Date:

22-Jun-2020 Company Chop:

Comments: The results reported in this certificate refer to the conditon of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

© Soils & Materials Engineering Co Ltd.

Form No.CARP156-1/Issue 1/Rev.D/01/03/2007

Hong Kong Accreditation Service (HKAS) has accredited this laboratory (Reg. No. HOKLAS 028) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific calibration activities as listed in the HOKLAS directory of accredited laboratories. The results shown in this certificate are traceable to the International System of Units (SI) or recognised measurement standards. This certificate shall not be reproduced except in full.

Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

(Continuation Page)

Certificate No.:

20CA0616 03-02

Page: 2 of

01

2

1, Measured Sound Pressure Level

The output Sound Pressure Level in the calibrator head was measured at the setting and frequency shown using a calibrated laboratory standard microphone and insert voltage technique. The results are given in below with the estimated uncertainties.

Frequency Shown	Output Sound Pressure Level Setting	Measured Output Sound Pressure Level	Estimated Expanded Uncertainty
Hz	dB	dB	dB
1000	94.00	94.10	0.10

2, Sound Pressure Level Stability - Short Term Fluctuations

The Short Term Fluctuations was determined by measuring the maximum and minimum of the fast weighted DC output of the B&K 2610 measuring amplifier over a 20 second time interval as required in the standard. The Short Term Fluctuation was found to be:

At 1000 Hz	STF = 0.009 dB
Estimated expanded uncertainty	0.005 dB

3, Actual Output Frequency

The determination of actual output frequency was made using a B&K 4180 microphone together with a B&K 2673 preamplifier connected to a B&K 2610 measuring amplifier. The AC output of the B&K 2610 was taken to an universal counter which was used to determine the frequency averaged over 20 second of operation as required by the standard. The actual output frequency at 1 KHz was:

At 1000 Hz	Actual Frequency = 997.6 Hz	
Estimated expanded uncertainty	0.1 Hz	Coverage factor k = 2.2

4, Total Noise and Distortion

For the Total Noise and Distortion measurement, the unfiltered AC output of the B&K 2610 measuring amplifier was connected to an Agilent Type 8903 B distortion analyser. The TND result at 1 KHz was:

At 1000 Hz	TND = 0.9 %
Estimated expanded uncertainty	0.7 %

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated.

	1	- End -	Aann
Calibrated by:	$1 \sim 1$	Checked by:	71 0016-6
	/ Fung Chi Yip		Shek Kwong Tat
Date:	/ 20-Jun-2020 \)	Date:	22-Jun-2020

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

© Soils & Materials Engineering Co., Ltd.

Form No.CARP156-2/Issue 1/Rev.C/01/05/2005

Hong Kong Accreditation Service (HKAS) has accredited this laboratory (Reg. No. HOKLAS 028) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific calibration activities as listed in the HOKLAS directory of accredited laboratories. The results shown in this certificate are traceable to the International System of Units (SI) or recognised measurement standards. This certificate shall not be reproduced except in full.

G. Graphical Plots of the Monitoring Results

Air Quality Monitoring Result at Station AM3A (24-hour TSP)

Sta	ırt	Fini	sh	Filter W	eight (g)	Elapsed Tir	lapsed Time Reading Sampling		Flow Rate (m ³ /min)		Conc.	Weather	Action	Limit	
Date	Time	Date	Time	Initial	Final	Initial	Final	Time (hrs)	Initial	Final	Average	(µg/m3)	Condition	Level	Level
02-Jan-21	10:00AM	03-Jan-21	10:00AM	2.8074	2.8754	1387.8	1411.8	24	1.12	1.12	1.12	42.2	Fine	152.4	260
08-Jan-21	10:00AM	09-Jan-21	10:00AM	2.8025	2.8720	1411.8	1435.8	24	1.12	1.12	1.12	43.2	Fine	152.4	260
14-Jan-21	10:00AM	15-Jan-21	10:00AM	2.8029	2.9071	1435.8	1459.8	24	1.12	1.12	1.12	64.8	Sunny	152.4	260
20-Jan-21	10:00AM	21-Jan-21	10:00AM	2.8013	2.8854	1459.8	1483.8	24	1.12	1.12	1.12	52.3	Fine	152.4	260
26-Jan-21	10:00AM	27-Jan-21	10:00AM	2.8086	2.8993	1483.8	1507.8	24	1.12	1.12	1.12	56.3	Sunny	152.4	260

Air Quality Monitoring Result at Station AM4A (24-hour TSP)

Sta	art	Fini	sh	Filter W	eight (g)	Elapsed Tir	d Time Reading Sampling Flow Rate (m ³ /mi		Flow Rate (m ³ /min)		Conc.	Weather	Action	Limit	
Date	Time	Date	Time	Initial	Final	Initial	Final	Time (hrs)	Initial	Final	Average	(µg/m3)	Condition	Level	Level
02-Jan-21	10:00AM	03-Jan-21	10:00AM	2.8076	2.8809	1807.4	1831.4	24	1.12	1.12	1.12	45.6	Fine	152.6	260
08-Jan-21	10:00AM	09-Jan-21	10:00AM	2.8065	2.8830	1831.4	1855.4	24	1.12	1.12	1.12	47.5	Fine	152.6	260
14-Jan-21	10:00AM	15-Jan-21	10:00AM	2.8041	2.9121	1855.4	1879.4	24	1.12	1.12	1.12	67.1	Sunny	152.6	260
20-Jan-21	10:00AM	21-Jan-21	10:00AM	2.8045	2.8816	1879.4	1903.4	24	1.12	1.12	1.12	47.9	Fine	152.6	260
26-Jan-21	10:00AM	27-Jan-21	10:00AM	2.8013	2.8927	1903.4	1927.4	24	1.12	1.12	1.12	56.8	Sunny	152.6	260

Air Quality Monitoring Result at Station AM5A (24-hour TSP)

Sta	ırt	Fini	sh	Filter W	eight (g)	Elapsed Tir	sed Time Reading Sampling Flow Ra		Flow Rate (m ³ /min)			Weather	Action	Limit	
Date	Time	Date	Time	Initial	Final	Initial	Final	Time (hrs)	Initial	Final	Average	(µg/m3)	Condition	Level	Level
02-Jan-21	10:00AM	03-Jan-21	10:00AM	2.8064	2.8813	1947.6	1971.6	24	1.12	1.12	1.12	46.6	Fine	141.1	260
08-Jan-21	10:00AM	09-Jan-21	10:00AM	2.8075	2.8844	1971.6	1995.6	24	1.12	1.12	1.12	47.7	Fine	141.1	260
14-Jan-21	10:00AM	15-Jan-21	10:00AM	2.8071	2.9257	1995.6	2019.6	24	1.12	1.12	1.12	73.7	Sunny	141.1	260
20-Jan-21	10:00AM	21-Jan-21	10:00AM	2.8048	2.8824	2019.6	2043.6	24	1.12	1.12	1.12	48.2	Fine	141.1	260
26-Jan-21	10:00AM	27-Jan-21	10:00AM	2.8014	2.8954	2043.6	2067.6	24	1.12	1.12	1.12	58.4	Sunny	141.1	260

Air Quality Monitoring Result at Station AM3A (1-hour TSP)

Date	Weather	Tir	ne	C	onc. (µg/m3	3)	Action	Limit
Dale	Condition	Start	Finish	1st Hour	2nd Hour	3rd Hour	Level	Level
02-Jan-21	Fine	8:31	11:31	51	43	46	280.4	500
08-Jan-21	Cloudy	14:22	17:22	48	45	50	280.4	500
14-Jan-21	Fine	8:27	11:27	69	66	71	280.4	500
20-Jan-21	Fine	14:08	17:08	53	57	51	280.4	500
26-Jan-21	Fine	8:20	11:20	61	66	59	280.4	500

Air Quality Monitoring Result at Station AM4A (1-hour TSP)

Date	Weather	Time		Conc. (µg/m3)			Action	Limit
Dale	Condition	Start	Finish	1st Hour	2nd Hour	3rd Hour	Level	Level
02-Jan-21	Fine	8:39	11:39	44	48	50	278.5	500
08-Jan-21	Cloudy	14:30	17:30	53	55	47	278.5	500
14-Jan-21	Fine	8:35	11:35	65	72	74	278.5	500
20-Jan-21	Fine	14:16	17:16	50	55	58	278.5	500
26-Jan-21	Fine	8:28	11:28	57	62	65	278.5	500

Air Quality Monitoring Result at Station AM5A (1-hour TSP)

Date	Weather	Time		Conc. (µg/m3)			Action	Limit
Dale	Condition	Start	Finish	1st Hour	2nd Hour	3rd Hour	Level	Level
02-Jan-21	Fine	8:54	11:54	49	45	43	275.4	500
08-Jan-21	Cloudy	14:47	17:47	49	51	54	275.4	500
14-Jan-21	Fine	8:50	11:50	71	75	73	275.4	500
20-Jan-21	Fine	14:33	17:33	56	48	53	275.4	500
26-Jan-21	Fine	8:43	11:43	64	61	67	275.4	500

Noise Monitoring Result at Station NM2A

Date	Time	Measured L10 dB(A)	Measured L90 dB(A)	Leq (30 min.) dB(A)	
02-Jan-21	8:31	63.4	58.3		
02-Jan-21	8:36	64.9	57.6		
02-Jan-21	8:41	65.5	60.2	63.2	
02-Jan-21	8:46	66.1	59.4	03.2	
02-Jan-21	8:51	64.4	58.1		
02-Jan-21	8:56	64.7	58.8		
08-Jan-21	14:22	65.5	57.1		
08-Jan-21	14:27	66.4	58.5		
08-Jan-21	14:32	66.2	58.8	63.9	
08-Jan-21	14:37	64.6	60.3	03.9	
08-Jan-21	14:42	65.3	60.1		
08-Jan-21	14:47	65.9	59.6		
14-Jan-21	8:27	65.8	60.3		
14-Jan-21	8:32	66.1	59.6		
14-Jan-21	8:37	65.3	59.1	64.2	
14-Jan-21	8:42	65.2	58.2	04.2	
14-Jan-21	8:47	64.7	58.8		
14-Jan-21	8:52	65.5	59.4		
20-Jan-21	14:08	66.7	59.3		
20-Jan-21	14:13	66.1	58.4		
20-Jan-21	14:18	65.4	58.9	64.5	
20-Jan-21	14:23	67.3	60.2	04.5	
20-Jan-21	14:28	66.5	59.5		
20-Jan-21	14:33	64.8	59.1		
26-Jan-21	8:20	65.1	58.4		
26-Jan-21	8:25	64.3	59.1		
26-Jan-21	8:30	64.8	59.9	64.1	
26-Jan-21	8:35	65.6	59.5	04.1	
26-Jan-21	8:40	66.7	60.7		
26-Jan-21	8:45	66.2	58.8		

The station set-up of a façade measurement at station NM2A.

Noise Monitoring Result at Station NM3A

Date	Time	Measured L10 dB(A)	Measured L90 dB(A)	Leq (30 min.) dB(A)	
02-Jan-21	10:01	75.1	67.8		
02-Jan-21	10:06	74.6	69.5		
02-Jan-21	10:11	75.5	70.1	73.6	
02-Jan-21	10:16	76.3	69.3	73.0	
02-Jan-21	10:21	74.8	68.4		
02-Jan-21	10:26	75.6	67.7		
08-Jan-21	15:55	76.4	68.3		
08-Jan-21	16:00	76.7	67.7		
08-Jan-21	16:05	75.9	69.1	74.1	
08-Jan-21	16:10	74.8	69.8	74.1	
08-Jan-21	16:15	75.1	70.2		
08-Jan-21	16:20	76.2	69.4		
14-Jan-21	9:57	75.8	68.5		
14-Jan-21	10:02	75.1	67.1		
14-Jan-21	10:07	74.3	67.7	73.7	
14-Jan-21	10:12	73.7	68.2	15.1	
14-Jan-21	10:17	74.6	69.4		
14-Jan-21	10:22	75.3	68.7		
20-Jan-21	15:41	72.1	65.5		
20-Jan-21	15:46	72.3	64.3		
20-Jan-21	15:51	73.3	66.3	71.2	
20-Jan-21	15:56	72.1	65.4	11.2	
20-Jan-21	16:01	73.4	68.5		
20-Jan-21	16:06	73.1	68.4		
26-Jan-21	9:50	72.2	65.1		
26-Jan-21	9:55	71.3	65.3		
26-Jan-21	10:00	72.6	64.5	70.5	
26-Jan-21	10:05	72.4	65.2	10.5	
26-Jan-21	10:10	72.9	65.4		
26-Jan-21	10:15	73.3	68.2		

The station set-up of a façade measurement at station NM3A.

Noise Monitoring Result at Station NM4A

Date	Time	Measured L10 dB(A)	Measured L90 dB(A)	Leq (30 min.) dB(A)
02-Jan-21	10:36	71.6	67.5	
02-Jan-21	10:41	68.6	65.2	
02-Jan-21	10:46	70.3	66.2	69.0
02-Jan-21	10:51	71.1	67.5	09.0
02-Jan-21	10:56	70.5	66.5	
02-Jan-21	11:01	71.1	67.5	
08-Jan-21	16:30	71.3	67.5	
08-Jan-21	16:35	71.2	67.3	
08-Jan-21	16:40	71.5	67.4	69.1
08-Jan-21	16:45	71.1	67.5	09.1
08-Jan-21	16:50	71.6	67.3	
08-Jan-21	16:55	68.3	65.4	
14-Jan-21	10:32	67.5	63.2	
14-Jan-21	10:37	70.3	66.2	
14-Jan-21	10:42	68.1	65.5	67.8
14-Jan-21	10:47	70.3	66.2	07.8
14-Jan-21	10:52	68.6	65.9	
14-Jan-21	10:57	70.2	66.3	
20-Jan-21	16:16	66.5	61.5	
20-Jan-21	16:21	66.5	61.4	
20-Jan-21	16:26	65.4	58.5	64.0
20-Jan-21	16:31	65.3	58.1	04.0
20-Jan-21	16:36	66.9	61.3	
20-Jan-21	16:41	66.4	61.2	
26-Jan-21	10:25	66.5	61.8	
26-Jan-21	10:30	65.3	60.2	
26-Jan-21	10:35	66.3	61.4	64.2
26-Jan-21	10:40	66.3	61.3	04.2
26-Jan-21	10:45	66.1	61.2	
26-Jan-21	10:50	65.3	60.4	

The station set-up of a façade measurement at station NM4A.

Noise Monitoring Result at Station NM5A

Date	Time	Measured L10 dB(A)	Measured L90 dB(A)	Leq (30 min.) dB(A)	Leq (30 min.) +3 dB(A)
02-Jan-21	9:21	64.3	54.9		
02-Jan-21	9:26	65.1	55.6		
02-Jan-21	9:31	64.8	57.1	62.2	65.2
02-Jan-21	9:36	63.3	56.4	02.2	03.2
02-Jan-21	9:41	63.7	56.9		
02-Jan-21	9:46	64.4	57.7		
08-Jan-21	15:14	63.8	56.1		
08-Jan-21	15:19	63.5	54.4		
08-Jan-21	15:24	62.7	55.5	61.6	64.6
08-Jan-21	15:29	64.1	55.2	01.0	04.0
08-Jan-21	15:34	63.3	56.6		
08-Jan-21	15:39	62.9	56.3		
14-Jan-21	9:17	65.5	55.5		
14-Jan-21	9:22	64.8	55.8		
14-Jan-21	9:27	64.3	57.1	62.7	65.7
14-Jan-21	9:32	64.9	56.3	02.1	03.7
14-Jan-21	9:37	63.7	54.9		
14-Jan-21	9:42	65.2	54.4		
20-Jan-21	15:00	64.7	54.2		
20-Jan-21	15:05	65.1	55.5		
20-Jan-21	15:10	63.6	55.8	62.0	65.0
20-Jan-21	15:15	64.5	54.9	02.0	03.0
20-Jan-21	15:20	64.2	53.8		
20-Jan-21	15:25	63.3	54.5		
26-Jan-21	9:10	62.8	55.8		
26-Jan-21	9:15	63.5	55.1		
26-Jan-21	9:20	64.3	56.3	61.5	64.5
26-Jan-21	9:25	63.1	54.4	01.5	04.0
26-Jan-21	9:30	63.4	53.8		
26-Jan-21	9:35	64.6	55.5		

Remarks:

+3dB(A) correction was applied to free-field measurement.

The station set-up of a free-field measurement at station NM5A.

H. Meteorological Data Extracted from Hong Kong Observatory

I. Waste Flow table

Table I-1: Monthly Waste Flow Table for Zone 2A

	A	ctual Quant	tities of Iner	t C&D Mate	rials Genera	ated Monthl	у	Actu	ual Quantitie	s of C&D M	laterials Gei	nerated Mo	nthly
Month	Total Quantity Generated	Hard Rocks and Large Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Disposed to Sroting Facility	Imported Fill	Metals	Paper/ Cardboard Packaging	Plastics	Wood/ Timber	Chemical Waste	Others, e.g. General Refuse
	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)	(in tonnes)
2020											-		
Oct	2623.48	0.00	0.00	0.00	2623.48	0.00	0.00	0.00	0.00	0.00	0.00	0.00	21.94
Nov	8838.69	0.00	685.23	1198.56	6954.90	0.00	1194.93	0.00	0.00	0.00	0.00	0.00	17.49
Dec	8890.70	0.00	510.59	1675.21	6704.90	0.00	51.51	0.00	0.00	0.00	0.00	0.00	11.75
Sub-total (2020)	20352.87	0.00	1195.82	2873.77	16283.28	0.00	1246.44	0.00	0.00	0.00	0.00	0.00	51.18
2021													
Jan	6849.66	0.00	52.90	0.00	6796.76	0.00	0.00	0.00	0.00	0.00	0.00	0.00	19.94
Sub-total (2020)	6849.66	0.00	52.90	0.00	6796.76	0.00	0.00	0.00	0.00	0.00	0.00	0.00	19.94
Total	28448.97	0.00	1248.72	2873.77	23080.04	0.00	1246.44	0.00	0.00	0.00	0.00	0.00	71.12

Note:

- 215.99 tonnes, 6580.77 tonnes of inert C&D material were disposed of as public fill to Tseung Kwan O Area 137 Public Fill, and Tuen Mun Area 38 respectively in the reporting month.

J. Environmental Mitigation Measures – Implementation Status

Table J-1: Environmental Mitigation Measures Implementation Status (Jan 2021)

EM&A	Recommendation Measures	Implementation Stage
Ref.		
Air Quality	Impact (Construction)	
2.1	General Dust Control Measures Frequent water spraying for active construction areas (12 times a day or once every one hour), including Heavy construction activities such as construction of buildings or roads, drilling, ground excavation, cut and fill operations (i.e., earth moving)	1
2.1	 Best Practice For Dust Control The relevant best practices for dust control as stipulated in the Air Pollution Control (construction Dust) Regulation should be adopted to further reduce the construction dust impacts from the Project. These best practices include: <i>Good Site Management</i> Good site management is important to help reducing potential air quality impact down to an acceptable level. As a general guide, the Contractor should maintain high standard of housekeeping to prevent emission of fugitive dust. Loading, unloading, handling and storage of raw materials, wastes or by-products should be carried out in a manner so as to minimise the release of visible dust emission. Any piles of materials accumulated on or around the work areas should be carried out in a manner minimising generation of fugitive dust emissions. The material should be handled properly to prevent fugitive dust emission before cleaning. 	Obs
	 Disturbed Parts of the Roads Each and every main temporary access should be paved with concrete, bituminous hardcore materials or metal plates and kept clear of dusty materials; or 	
	 Unpaved parts of the road should be sprayed with water or a dust suppression chemical so as to keep the entire road surface wet. <i>Exposed Earth</i> Exposed earth should be properly treated by compaction, hydroseeding, vegetation planting or seating with latex, vinyl, bitumen within six months after the last construction activity on the site or part of the site where the exposed earth lies. 	Obs N/A No exposed earth in this project.

Implementation Stage

Loading, Unloading or Transfer of Dusty Materials	\checkmark
 All dusty materials should be sprayed with water immediately prior to any loading or transfer operation so as to keep the dusty material wet. 	
Debris Handling	1
 Any debris should be covered entirely by impervious sheeting or stored in a debris collection area sheltered on the top and the three sides. 	·
• Before debris is dumped into a chute, water should be sprayed so that it remains wet when it is dumped.	N/A
	No debris chute on-site
Transport of Dusty Materials	1
• Vehicle used for transporting dusty materials/spoils should be covered with tarpaulin or similar material. The cover should extend over the edges of the sides and tailboards.	
Wheel washing	✓
 Vehicle wheel washing facilities should be provided at each construction site exit. Immediately before leaving the construction site, every vehicle should be washed to remove any dusty materials from its body and wheels. 	
Use of vehicles	1
• The speed of the trucks within the site should be controlled to about 10km/hour in order to reduce adverse dust impacts and secure the safe movement around the site.	
 Immediately before leaving the construction site, every vehicle should be washed to remove any dusty materials from its body and wheels. 	1
• Where a vehicle leaving the construction site is carrying a load of dusty materials, the load should be covered entirely by clean impervious sheeting to ensure that the dusty materials do not leak from the vehicle.	1
Site hoarding	1
• Where a site boundary adjoins a road, street, service lane or other area accessible to the public, hoarding of not less than 2.4m high from ground level should be provided along the entire length of that portion of the site boundary except for a site entrance or exit.	-

The relevant best practices for dust control as stipulated in the Guidance Note on the Best Practicable Means for

Implementation Stage

✓

Ref.		
	Cement Works (Concrete Batching Plant) BPM 3/2(93) should be followed and implemented to further reduce the	
	construction dust impacts of the Project. These best practices include:	
	Exhaust from Dust Arrestment Plant	N/A
	• Wherever possible the final discharge point from particulate matter arrestment plant, where is not necessary	No concrete batching plant in
	to achieve dispersion from residual pollutants, should be at low level to minimise the effect on the local	this project.
	community in the case of abnormal emissions and to facilitate maintenance and inspection	
	Emission Limits	N/A
	• All emissions to air, other than steam or water vapour, shall be colourless and free from persistent mist or	No concrete batching plant in
	smoke	this project.
	Engineering Design/Technical Requirements	N/A
	• As a general guidance, the loading, unloading, handling and storage of fuel, raw materials, products, wastes	No concrete batching plant in
	or by-products should be carried out in a manner so as to prevent the release of visible dust and/or other	this project.
	noxious or offensive emissions	
	Non-Road Mobile Machinery (NRMM):	1
	All NRMMs operating on-site which are subject to emission control of Air Pollution Control (Non-road Mobile	
	Machinery) (Emission) Regulation are approved/exempted (as the case may be) and affixed with the requisite	
	approval/exemption labels.	
Noise Im	pact (Construction)	
3.1	Good Site Practice	
	Good site practice and noise management can significantly reduce the impact of construction site activities on	
	nearby NSRs. The following package of measures should be followed during each phase of construction:	

• only well-maintained plant to be operated on-site and plant should be serviced regularly during the

Implementation Stage

Ref.	construction works;			
	• machines and plant that may be in intermittent use to be shut down between work periods or should be	\checkmark		
	 throttled down to a minimum nlant known to emit noise strongly in one direction, should, where possible, be orientated to direct noise 			
	 plant known to emit noise strongly in one direction, should, where possible, be orientated to direct noise away from the NSRs; 	v		
	 mobile plant should be sited as far away from NSRs as possible; and 	\checkmark		
	 material stockpiles and other structures to be effectively utilised, where practicable, to screen noise from on- site construction activities. 	\checkmark		
3.1	Adoption of Quieter PME	✓		
	The recommended quieter PME adopted in the assessment were taken from the EPD's QPME Inventory and			
	"Sound Power Levels of Other Commonly Used PME" are presented in Table 4.26 in the EIA report. It should be			
	noted that the silenced PME selected for assessment can be found in Hong Kong.			
3.1	Use of Movable Noise Barriers			
	Movable noise barriers can be very effective in screening noise from particular items of plant when constructing			
	the Project. Noise barriers located along the active works area close to the noise generating component of a PME			
	could produce at least 10 dB(A) screening for stationary plant and 5 dB(A) for mobile plant provided the direct line			
	of sight between the PME and the NSRs is blocked.			
3.1	Use of Noise Enclosure/ Acoustic Shed	1		
	The use of noise enclosure or acoustic shed is to cover stationary PME such as air compressor and concrete pump.			
	With the adoption of the noise enclosure, the PME could be completely screened, and noise reduction of 15 dB(A)			
	can be achieved according to the EIAO Guidance Note No. 9/2010.			
3.1	Use of Noise Insulating Fabric	1		

Ref.		
	Noise insulating fabric can also be adopted for certain PME (e.g. drill rig, pilling machine etc). The fabric should be	
	lapped such that there are no openings or gaps on the joints. According to the approved Tsim Sha Tsui Station	
	Northern Subway EIA report (AEIAR-127/2008), a noise reduction of 10 dB(A) can be achieved for the PME lapped	
	with the noise insulating fabric.	
3.1	Scheduling of Construction Works outside School Examination Periods	✓
	During construction phase, the contractor should liaise with the educational institutions (including NSRs LCS and	
	CRGPS) to obtain the examination schedule and avoid the noisy construction activities during school examination	
	periods.	
Water Qu	uality Impact (Construction)	
4.1	Construction site runoff and drainage	
	The site practices outlined in ProPECC Note PN 1/94 should be followed as far as practicable in order to minimise	
	surface runoff and the chance of erosion. The following measures are recommended to protect water quality and	
	sensitive uses of the coastal area, and when properly implemented should be sufficient to adequately control site	
	discharges so as to avoid water quality impacts:	
	• At the start of site establishment, perimeter cut-off drains to direct off-site water around the site should be	\checkmark
	constructed with internal drainage works and erosion and sedimentation control facilities implemented.	
	Channels, earth bunds or sand bag barriers should be provided on site to direct storm water to silt removal	
	facilities. The design of the temporary on-site drainage system should be undertaken by the WKCDA's	
	Contractor prior to the commencement of construction;	
	Sand/silt removal facilities such as sand/silt traps and sediment basins should be provided to remove	\checkmark
	sand/silt particles from runoff to meet the requirements of the TM standards under the WPCO. The design of	
	efficient silt removal facilities should be based on the guidelines in Appendix A1 of ProPECC Note PN 1/94.	

Ref.		
	Sizes may vary depending upon the flow rate. The detailed design of the sand/silt traps should be undertaken	
	by the WKCDA's Contractor prior to the commencement of construction.	
	All drainage facilities and erosion and sediment control structures should be regularly inspected and	Obs
	maintained to ensure proper and efficient operation at all times and particularly during rainstorms.	
	Deposited silt and grit should be regularly removed, at the onset of and after each rainstorm to ensure that	
	these facilities are functioning properly at all times.	
	• Measures should be taken to minimize the ingress of site drainage into excavations. If excavation of trenches	\checkmark
	in wet periods is necessary, they should be dug and backfilled in short sections wherever practicable. Water	
	pumped out from foundation excavations should be discharged into storm drains via silt removal facilities.	
	• All vehicles and plant should be cleaned before leaving a construction site to ensure no earth, mud, debris	\checkmark
	and the like is deposited by them on roads. An adequately designed and sited wheel washing facility should	
	be provided at construction site exit where practicable. Wash-water should have sand and silt settled out and	
	removed regularly to ensure the continued efficiency of the process. The section of access road leading to,	
	and exiting from, the wheel-wash bay to the public road should be paved with sufficient backfall toward the	
	wheel-wash bay to prevent vehicle tracking of soil and silty water to public roads and drains.	
	• Open stockpiles of construction materials or construction wastes onsite should be covered with tarpaulin or	\checkmark
	similar fabric during rainstorms. Measures should be taken to prevent the washing away of construction	
	materials, soil, silt or debris into any drainage system.	
	 Manholes (including newly constructed ones) should be adequately covered and temporarily sealed so as to 	\checkmark
	prevent silt, construction materials or debris being washed into the drainage system and stormwater runoff	
	being directed into foul sewers.	
	• Precautions should be taken at any time of the year when rainstorms are likely. Actions should be taken	Obs

Ref.		
	when a rainstorm is imminent or forecasted and actions to be taken during or after rainstorms are	
	summarized in Appendix A2 of ProPECC Note PN 1/94. Particular attention should be paid to the control of	
	silty surface runoff during storm events, especially for areas located near steep slopes.	
	• Bentonite slurries used in piling or slurry walling should be reconditioned and reused wherever practicable.	N/A
	Temporary enclosed storage locations should be provided on-site for any unused bentonite that needs to be	No bentonite slurries are used
	transported away after all the related construction activities are completed. The requirements in ProPECC	in this project.
	Note PN 1/94 should be adhered to in the handling and disposal of bentonite slurries.	
4.1	Barging facilities and activities	
	Recommendations for good site practices during operation of the proposed barging point include:	
	• All vessels should be sized so that adequate clearance is maintained between vessels and the seabed in all	N/A
	tide conditions, to ensure that undue turbidity is not generated by turbulence from vessel movement or	No barging facilities in this
	propeller wash;	project at this stage.
	• Loading of barges and hoppers should be controlled to prevent splashing of material into the surrounding	N/A
	water. Barges or hoppers should not be filled to a level that will cause the overflow of materials or polluted	No barging facilities in this
	water during loading or transportation;	project at this stage.
	• All hopper barges should be fitted with tight fitting seals to their bottom openings to prevent leakage of	N/A
	material; and	No barging facilities in this
		project at this stage.
	• Construction activities should not cause foam, oil, grease, scum, litter or other objectionable matter to be	N/A
	present on the water within the site.	No barging facilities in this
		project at this stage.

4.1 Sewage effluent from construction workforce

✓

Ref.			
	Temporary sanitary facilities, such as portable chemical toilets, should be employed on-site where necessary to		
	handle sewage from the workforce. A licensed contractor should be employed to provide appropriate and		
	adequate portable toilets and be responsible for appropriate disposal and maintenance.		
4.1	General construction activities		
	• Construction solid waste, debris and refuse generated on-site should be collected, handled and disposed of	1	
	properly to avoid entering any nearby storm water drain. Stockpiles of cement and other construction		
	materials should be kept covered when not being used.		
	• Oils and fuels should only be stored in designated areas which have pollution prevention facilities. To prevent	1	
	spillage of fuels and solvents to any nearby storm water drain, all fuel tanks and storage areas should be		
	provided with locks and be sited on sealed areas, within bunds of a capacity equal to 110% of the storage		
	capacity of the largest tank. The bund should be drained of rainwater after a rain event.		
Waste Mar	nagement Implications (Construction)		
6.1	Good Site Practices		
	Recommendations for good site practices during the construction activities include:		
	 Nomination of an approved person, such as a site manager, to be responsible for good site practices, 	1	
	arrangements for collection and effective disposal to an appropriate facility, of all wastes generated at the		
	site		
	 Training of site personnel in proper waste management and chemical handling procedures 	1	
	 Provision of sufficient waste disposal points and regular collection of waste 	1	
	• Appropriate measures to minimise windblown litter and dust/odour during transportation of waste by either	1	
	covering trucks or by transporting wastes in enclosed containers		
	 Provision of wheel washing facilities before the trucks leaving the works area so as to minimise dust 	\checkmark	

EM&A Ref.	Recommendation Measures	Implementation Stage
	introduction to public roads	
	Well planned delivery programme for offsite disposal such that adverse environmental impact from	\checkmark
	transporting the inert or non-inert C&D materials is not anticipated	
5.1	Waste Reduction Measures	
	Recommendations to achieve waste reduction include:	
	 Sort inert C&D material to recover any recyclable portions such as metals 	\checkmark
	Segregation and storage of different types of waste in different containers or skips to enhance reuse or	\checkmark
	recycling of materials and their proper disposal	
	• Encourage collection of recyclable waste such as waste paper and aluminium cans by providing separate	\checkmark
	labelled bins to enable such waste to be segregated from other general refuse generated by the work force	
	Proper site practices to minimise the potential for damage or contamination of inert C&D materials	\checkmark
	Plan the use of construction materials carefully to minimise amount of waste generated and avoid	\checkmark
	unnecessary generation of wastes	
5.1	Inert and Non-inert C&D Materials	
	In order to minimise impacts resulting from collection and transportation of inert C&D material for off-site	
	disposal, the excavated materials should be reused on-site as fill material as far as practicable. In addition, inert	
	C&D material generated from excavation works could be reused as fill materials in local projects that require public	
	fill for reclamation.	
	 The surplus inert C&D material will be disposed of at the Government's PFRFs for beneficial use by other projects in Hong Kong. 	1
	• Liaison with the CEDD Public Fill Committee (PFC) on the allocation of space for disposal of the inert C&D	\checkmark
	materials at PFRF is underway. No construction work is allowed to proceed until all issues on management of	

Implementation Stage

Ref.			
	inert C&D materials have been resolved and all relevant arrangements have been endorsed by the relevant		
	authorities including PFC and EPD.		
	• The C&D materials generated from general site clearance should be sorted on site to segregate any inert	\checkmark	
	materials for reuse or disposal of at PFRFs whereas the non-inert materials will be disposed of at the		
	designated landfill site.		
	 In order to monitor the disposal of inert and non-inert C&D materials at respectively PFRFs and the 	\checkmark	
	designated landfill site, and to control fly-tipping, it is recommended that the Contractor should follow the		
	Technical Circular (Works) No. 6/2010 for Trip Ticket System for Disposal of Construction & Demolition		
	Materials issued by Development Bureau. In addition, it is also recommended that the Contractor should		
	prepare and implement a Waste Management Plan detailing their various waste arising and waste		
	management practices in accordance with the relevant requirements of the Technical Circular (Works) No.		
	19/2005 Environmental Management on Construction Site.		
6.1	Chemical Waste		
	• If chemical wastes are produced at the construction site, the Contractor will be required to register with the	\checkmark	
	EPD as a chemical waste producer and to follow the guidelines stated in the "Code of Practice on the		
	Packaging Labelling and Storage of Chemical Wastes". Good quality containers compatible with the chemical		

wastes should be used, and incompatible chemicals should be stored separately. Appropriate labels should
be securely attached on each chemical waste container indicating the corresponding chemical characteristics
of the chemical waste, such as explosive, flammable, oxidizing, irritant, toxic, harmful, corrosive, etc. The
Contractor should use a licensed collector to transport and dispose of the chemical wastes at the approved
Chemical Waste Treatment Centre or other licensed recycling facilities, in accordance with the Waste
Disposal (Chemical Waste) (General) Regulation.

Implementation Stage

Ref.		
	• Potential environmental impacts arising from the handling activities (including storage, collection,	✓
	transportation and disposal of chemical waste) are expected to be minimal with the implementation of	
	appropriate mitigation measures as recommended.	
6.1	General Refuse	\checkmark
	General refuse should be stored in enclosed bins or compaction units separated from inert C&D materials. A	
	reputable waste collector should be employed by the Contractor to remove general refuse from the site,	
	separately from inert C&D materials. Preferably an enclosed and covered area should be provided to reduce the	
	occurrence of 'wind blown' light material.	
Land Con	tamination (Construction)	
7.1	The potential for land contamination issues at the TST Fire Station due to its future relocation will be confirmed by	
	site investigation after land acquisition. Where necessary, mitigation measures for minimising potential exposure	
	to contaminated materials (if any) or remediation measures will be identified. If contaminated land is identified	
	(e.g., during decommissioning of fuel oil storage tanks) after the commencement of works, mitigation measures	
	are proposed in order to minimise the potentially adverse effects on the health and safety of construction workers	
	and impacts arising from the disposal of potentially contaminated materials. The following measures are proposed	
	for excavation and transportation of contaminated material:	
	• To minimize the chance for construction workers to come into contact with any contaminated materials, bulk	N/A
	earth-moving excavation equipment should be employed;	TST Fire Station is out of this
		project boundary, no mitigatio
		measure is required.
	• Contact with contaminated materials can be minimised by wearing appropriate clothing and personal	N/A
	protective equipment such as gloves and masks (especially when interacting directly with contaminated	TST Fire Station is out of this

Development at West Kowloon Cultural District Monthly Environmental Monitoring and Audit (EM&A) Report for January 2021

Ref.

Implementation Stage

	material), provision of washing facilities and prohibition of smoking and eating on site;	project boundary, no mitigation
		measure is required.
•	Stockpiling of contaminated excavated materials on site should be avoided as far as possible;	N/A
		TST Fire Station is out of this
		project boundary, no mitigation
		measure is required.
•	The use of contaminated soil for landscaping purpose should be avoided unless pre-treatment was carried	N/A
	out;	TST Fire Station is out of this
		project boundary, no mitigatior
		measure is required.
•	Vehicles containing any contaminated excavated materials should be suitably covered to reduce dust	N/A
	emissions and/or release of contaminated wastewater;	TST Fire Station is out of this
		project boundary, no mitigation
		measure is required.
•	Truck bodies and tailgates should be sealed to stop any discharge;	N/A
		TST Fire Station is out of this
		project boundary, no mitigation
		measure is required.
•	Only licensed waste haulers should be used to collect and transport contaminated material to	N/A
	treatment/disposal site and should be equipped with tracking system to avoid fly tipping;	TST Fire Station is out of this
		project boundary, no mitigatior
		measure is required.
		•

Ref.

Implementation Stage

itten.		
	Speed control for trucks carrying contaminated materials should be exercised;	N/A TST Fire Station is out of this project boundary, no mitigatio
	 Observe all relevant regulations in relation to waste handling, such as Waste Disposal Ordinance (Cap. 354), Waste Disposal (Chemical Waste) (General) Regulation (Cap. 354) and obtain all necessary permits where required; and 	measure is required. N/A TST Fire Station is out of this project boundary, no mitigatio measure is required.
	• Maintain records of waste generation and disposal quantities and disposal arrangements.	N/A TST Fire Station is out of this project boundary, no mitigatio measure is required.
Ecological	Impact (Construction)	
Landscape	No mitigation measure is required. and Visual Impact (Construction)	
Table 9.1 (CM1)	Trees should be retained in situ on site as far as possible. Should tree removal be unavoidable due to construction impacts, trees will be transplanted or felled with reference to the stated criteria in the Tree Removal Applications to be submitted to relevant government departments for approval in accordance to ETWB TCW No. 29/2004 and 3/2006.	✓
Table 9.1 (CM2)	Compensatory tree planting shall be incorporated to the proposed project and maximize the new tree, shrubs and other vegetation planting to compensate tree felled and vegetation removed. Also, implementation of compensatory planting should be of a ratio not less than 1:1 in terms of quality and quantity within the site.	N/A Compensatory tree planting i being reviewed.
	compensatory planting should be of a ratio not less than 1:1 in terms of quality and quantity within the site.	being review

Implementation Stage

Ref.		
Table 9.1	Buffer trees for screening purposes to soften the hard architectural and engineering structures and facilities.	N/A
(CM3)		Roof garden is designed to be
		built, but it has not been
		completed yet.
Table 9.1	Softscape treatments such as vertical green wall panel /planting of climbing and/or weeping plants, etc, to	N/A
(CM4)	maximize the green coverage and soften the hard architectural and engineering structures and facilities.	Climbing or weeping plants are
		designed to be planted, but
		proposal is being reviewed for
		the planting location.
Table 9.1	Roof greening by means of intensive and extensive green roof to maximize the green coverage and improve	N/A
(CM5)	aesthetic appeal and visual quality of the building/structure.	Roof garden is designed to be
		built, but it has not been
		completed yet.
Table 9.1	Sensitive streetscape design should be incorporated along all new roads and streets.	N/A
(CM6)		Greening along the seafront is
		proposed, and under review.
Table 9.1	Structure, ornamental planting shall be provided along amenity strips to enhance the landscape quality.	N/A
(CM7)		Gardens are designed to be
		built, and under review.
Table 9.1	Landscape design shall be incorporated to architectural and engineering structures in order to provide	N/A
(CM8)	aesthetically pleasing designs.	Roof garden is designed to be
		built, and under review.

Development at West Kowloon Cultural District Monthly Environmental Monitoring and Audit (EM&A) Report for January 2021

Implementation Stage

Ref.		
Table 9.1	Minimize the structure of marine facilities to be built on the seabed and foreshore in order to minimize the	N/A
(CM9)	affected extent to the waterbody	No marine facilities for this
		project.
Table 9.2	Use of decorative screen hoarding/boards	1
(MCP1)		
Table 9.2	Early introduction of landscape treatments	N/A
(MCP2)		No landscape treatments during
		this stage.
Table 9.2	Adoption of light colour for the temporary ventilation shafts for the basement during the transition period.	N/A
(MCP3)		No ventilation shafts for this
		project.
Table 9.2	Control of night time lighting	1
(MCP4)		
Table 9.2	Use of greenery such as grass cover for the temporary open areas will help achieve the visual balance and soften	N/A
(MCP5)	the hard edges of the structures.	No temporary open areas for
		this project.

- N/A Not Applicable
- Implemented
- Obs Observed
- Rem Reminder

K. Cumulative Statistics on Complaints, Notifications of Summons and Successful Prosecutions

Cumulative statistics for complaints, notifications of summons and successful prosecutions for the Project account for period starting from the date of commencement of construction works (i.e. 3 October 2020 for Zone 2A Foundation, Excavation and Lateral Support Works) to the end of the reporting month and are summarised in the Table K-1 below respectively.

Table K-1: Statistics for complaints, notifications of summons and successful prosecutions for Zone2A Foundation, Excavation and Lateral Support Works

Reporting Period	Cumulative Statistics		
	Complaints	Notifications of summons	Successful prosecutions
This reporting month	1	0	0
From 03 October 2020 to	2	0	0
end of the reporting month		0	0

END OF THE REPORT